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Abstract

We use an extended Barro-Becker model of endogenous fertility, in which parents

are heterogeneous in their labor productivity, to study the efficient degree of consump-

tion inequality in the long run. In our environment a utilitarian planner allows for

consumption inequality even when labor productivity is public information. We show

that adding private information does not alter this result. We also show that the infor-

mationally constrained optimal insurance contract has a resetting property – whenever

a family line experiences the highest shock, the continuation utility of each child is reset

to a (high) level that is independent of history. This implies that there is a non-trivial,

stationary distribution over continuation utilities and there is no mass at misery. The

novelty of our approach is that the no-immiseration result is achieved without requiring

that the objectives of the planner and the private agents disagree. Because there is no

discrepancy between planner and private agents’ objectives, the policy implications for

implementation of the efficient allocation differ from previous results in the literature.

Two examples of these are: 1) estate taxes are positive and 2) there are positive taxes

on family size.

∗We are indebted to Alice Schoonbroodt for all of her helpful comments and suggestions at various stages
of this project. We would also like to thank V.V.Chari, Chris Phelan and Ariel Zetlin-Jones for comments.

1



1 Introduction

A key question in normative public finance is the extent to which it is socially efficient

to insure agents against shocks to their circumstances. The basic trade-off is one between

providing incentives for productive agents to work hard – thereby making the pie big – versus

promising to transfer resources from more productive agents to less to insure them against

the possibility of being poor. This is the problem first analyzed in Mirrlees (1971) where

he characterized the solution to a problem of this form in a static setting. More recently, a

series of authors (e.g., Green (1987), Thomas and Worrall (1990) and Atkeson and Lucas Jr.

(1992)) have extended this analysis to cover dynamic settings – agents are more productive

some times and less others. A common result from this literature is that the socially efficient

level of insurance (ex ante and under commitment) involves an asymmetry between how

good and bad shocks are treated. In particular, when an agent is hit with a bad shock, the

decrease in what he can expect in the future is more than the corresponding increase after a

good shock – there is a negative drift in expected future utility. This feature of the optimal

contract in dynamic settings has become known as ’immiseration.’

Two recent papers, Phelan (2006) and Farhi and Werning (2007) have given a novel in-

terpretation to the immiseration result. This is to interpret different periods in the model

as different generations. In this interpretation, current period agents care about the fu-

ture because of dynastic altruism a la Barro (1974). Thus, parents care about the level

of consumption of their children, their grandchildren, etc. Under this interpretation, social

insurance is comprised of two conceptually different components. These are: 1) Insurance

against the uncertainty coming from current generation productivity shocks, 2) Insurance

against the uncertainty coming from the shock of what family you are born into – what

future utility was promised to your parents (e.g., through the intergenerational transmission

of wealth).

In this case, optimally provided social insurance against the bad luck of lower than average

productivity will not necessarily lead to an outcome in which more and more of the wealth

of society is concentrated among an ever shrinking population – i.e., immiseration will not

necessarily occur. Indeed, whether or not this occurs is completely determined by whether

the planner discounts the utility of subsequent generations in the same way that parents do,

or if, to the contrary, the planner puts additional extra weight on future generations over

and above that given by altruistic parents.

When this is the case, Phelan (2006) and Farhi and Werning (2007) show that a feature

of the optimal insurance scheme is that there is a stationary distribution of consumption,

etc. This stationary distribution is what determines the long run level of inequality in an
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efficient allocation. It depends on the extent to which society weighs the utilities of future

generations beyond the minimum that occurs due to dynastic altruism.

In an intergenerational setting with dynastic altruism such as what is studied by these

authors, a natural question arises: To what extent are these results altered when the size of

generations – i.e., fertility – is itself endogenous as in the model of Barro and Becker (1989)

and Becker and Barro (1988)?

The study of this question is the focus of this paper.

We show that the explicit inclusion of the fertility dimension into the model alters the

qualitative character of the optimal allocations in two important ways. First, we show

that even when the planner does not put extra weight on future generations, there is a

stationary distribution in per capita variables. That is, per child consumption, labor supply

and expected future utility all follow a stationary probability law even when social and

private discount factors agree – there is no immiseration in per capita terms. In addition

to this, since fertility is explicitly included, the model has implications about the properties

of fertility in an ex ante socially efficient arrangement (for example, fertility also follows

a stationary law of motion). Because of this, the model has implications about the best

way to design policies relating to fertility choice (e.g., child care deductions, tax credits for

children, education subsidies, etc.) Incidentally, this socially efficient allocation also has

features observed in the data, such as a negative income-fertility relationship, intra-family

insurance provision and inter-vivos transfers. It therefore seems like the inclusion of fertility

is a very natural way of getting away from immiseration.

To develop these intuitions, we analyze a model in which labor productivity is private

information and varying over time – here interpreted as different generations. Thus, an

individual can be born with high or low productivity and only he knows this. He cares

about his own consumption, the size of his family (a la Barro and Becker (1989)) and the

utility level that each of his children will enjoy. Each of his children is also subject to a labor

productivity shock assumed to be i.i.d. Thus, this is a model of dynamic private information

with i.i.d. shocks in which different periods are interpreted as different generations. The

difference between this and the previous literature is that family size is endogenous and

directly affects the utility of the parent.

From a mechanical point of view, the inclusion of fertility gives the planner an extra

instrument to use to induce current agents to truthfully reveal their productivities. That is,

the planner can use both family size and continuation utility of future generations.

In the normal case (i.e., without fertility choice), in order to induce truth telling today,

the planner (optimally) chooses to ’spread’ out continuation utilities so as to be able to offer

insurance in current consumption. The incentives for the planner to do this are present after
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every possible history. That is, the continuation utility increases after a high shock and

decreases after a low shock. Hence, continuation utilities are pushed ever outward. Under

the usual Inada conditions, this outward pressure is asymmetric and has a negative bias – it

is cheaper to provide incentives in the future when continuation utilities are lower. Because

of this continuation utilities are pushed to their lower bound – inequality becomes greater

and greater over time.

In contrast, when fertility is endogenous, this optimal degree of spreading in continuation

utility for the parent can be thought of as being provided through two distinct sources –

spreading of per child continuation utility and spreading in family sizes through differential

fertility. In general both of these instruments are used to provide incentives, but, the way

that they are used is different. We find that there is a natural limit to the amount of

spreading that is done through per child continuation utilities. There are two manifestations

of this. First, there is an upper bound on continuation utilities that is never exceeded. So,

even if a family has a very long series of good shocks, the utility of the children does not

continue to grow but stays at a fixed, high level, w0. Second, this same level of continuation

utility is used as a reward for the children of currently highly productive workers no matter

what their past history was (i.e., the previous continuation utility). That is, continuation

utility gets ’reset’ to w0 subsequent to every realization of a high shock. Thus, there is a

limited amount of inequality in per capita consumption, labor supply, etc., in the long run.

This reasoning concerning the limits of long run inequality in per capita variables differs

from what is found in Farhi and Werning (2007) in two ways. The first of these is the basic

reason for the breakdown in the immiseration result. In Farhi and Werning (2007), it is

because of a difference between social and private discounting – society puts more weight

on future generations than parents do. Here, immiseration breaks down even when social

and private discounting are the same. The second difference concerns the movements of per

capita consumption over time. The version of the Inverse Euler Equation that holds in the

Farhi and Werning (2007) world when society is more patient than individuals implies that

consumption has a mean reversion property. In our model, as discussed above, the resetting

property implies that consumption (and continuation utility, etc.) revert to the ’top’ of the

distribution each time a high shock is realized.

The intuition behind the resetting property is the product of two complementary effects.

The first of these concerns the assignment of continuation utility when there is no private

information problem. Because of the form of the Barro and Becker (1989) dynastic utility

function, continuation utility, from the perspective of the parent is a homothetic function

of family size and per child continuation utility. Because of this, the relative breakdown

between these two is scale independent. Thus, the increase in total family continuation
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utility in response to an increase in wealth (i.e., parent continuation utility) is equal to the

increase in total family size – per child continuation utility is independent of wealth. It follows

that, under full information, the continuation utility of a child depends on the productivity

of his parent, but not on the continuation utility of the parent – i.e., continuation utility

of children is reset in a way that is independent of the family history of shocks. When

productivity levels are private information this argument continues to hold, but only for

those types whose first order conditions are undistorted due to the fact that no one wants

to pretend to be them. Since this always holds for the highest type, it follows that we have

resetting at any time the highest possible shock occurs.

In contrast to this, we find that there is no upper bound on the amount of spreading

that occurs through the choice of family size. What we find is that along any subset of the

family tree, the population dies out if the discount factor is the inverse of the interest rate.

However, this does not necessarily imply that population shrinks, since this property holds

even when mean population is growing. Rather, some strands of the dynasty tree die out

and others expand. Those that are growing are exactly those sub-populations that have the

best ’luck.’

It’s also true that the driving force responsible for getting rid of the immiseration result

here is substantially different from previous work. From a mechanical point of view, the

allocations that are considered by these authors can equivalently be thought of as putting

lower bounds on the continuation utility levels of future generations in a problem where the

social and private discount factors are the same. As such, they are closely linked to the

approach followed in Atkeson and Lucas Jr. (1995) and Sleet and Yeltekin (2006). Here, the

reason is different. It is because of the inclusion and optimal exploitation by the planner of a

new choice variable, family size. Key properties of this new variable are that it is observable

by the planner and that the way it enters utility is to affect total continuation utility of the

parent.

There are several other interesting differences between the two approaches. For example,

one of the key ways that Phelan (2006) and Farhi and Werning (2007), differ from earlier

work is that in socially efficient scheme, the Inverse Euler Equation need not hold. Indeed,

in those papers, the inter-temporal wedge is always negative in contrast to earlier papers.

This can be interpreted (in some implementations) as requiring a negative estate tax. This

has been interpreted as meaning that, in order to overcome immiseration, a negative inter-

temporal wedge was necessary. This does not hold for us however, since a version of the

Inverse Euler Equation holds. This implies that there will always be a positive ’wedge’ in

the FOC determining savings and hence, estate taxes are always implicitly positive.

An interesting new feature that emerges is the dependence of taxes on family size. What
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we find is that for everyone other than the highest type, there is a positive tax wedge on

the fertility-consumption margin – fertility is discouraged to better provide incentives for

truthful revelation.

Another difference between the two approaches concerns the degree of intervention re-

quired to realize the optimal allocation. When social and private discounting agree (as is

true here), the socially efficient allocation can be implemented through a one time redistribu-

tion and a strong legal system to enforce private bequest contracts. These bequest contracts

strongly resemble intergenerational transfers observed in the data: poorer children tend to

receive transfers from luckier family members. In contrast, in Phelan (2006) and Farhi and

Werning (2007), there is a persistent difference between the preferences of the planner and

the agent, and because of this, persistent intervention is required.

1.1 Related Literature

Our paper is related to the large literature on dynamic contracting including Green (1987),

Thomas and Worrall (1990), Atkeson and Lucas Jr. (1992) (and many others). These papers

established the basic way of characterizing the optimal allocation in endowment economies

where there is private information. They also show that, in the long run, inequality increases

without bound, i.e. the immiseration result. Phelan (1998) shows that this result is robust

to many variations in the assumptions of the model. Moreover, Khan and Ravikumar (2001)

establish numerically that in a production economy, the same result holds and although

the economy grows, the detrended distribution of consumption has a negative trend. We

contribute to this literature by extending the model to allow for endogenous choice of fertility.

We employ the methods developed in the aforementioned papers to analyze this problem.

As mentioned before, a number of earlier papers have developed models with private

information where there is no immiseration, including Atkeson and Lucas Jr. (1995), Phelan

(2006), Sleet and Yeltekin (2006), and Farhi and Werning (2007). One feature that is shared

by these models is that they are mathematically equivalent to a problem with a lower bound

on continuation utility. Our paper differs from these in that the basic mechanism that drives

the result is different. Because of this, there are also different implications about evolution of

consumption, etc. In addition, our paper differs from the earlier work on on dynamic optimal

taxation as in Golosov, Kocherlakota, and Tsyvinski (2003), Albanesi and Sleet (2006), and

Golosov and Tsyvinski (2006) by characterizing to the design of optimal taxes when fertility

is endogenous choice variable.

Finally, our paper has some novel implications about fertility per se. First, the socially ef-

ficient allocation is characterized by a negative income-fertility relationship—independently
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on specific assumptions on curvature in utility (see Jones et al. (2008) for a recent summary).

Given the realism of our results on implementation of this socially efficient allocation, this

suggests that intergenerational income risk and intra-generational risk sharing may be impor-

tant factors to explain the observed negative income-fertility relationship. What our model

has in common with other theories that deliver this relationship with ability heterogeneity is

that child costs are in terms of leisure (time). Second, very few papers have analyzed ability

heterogeneity and intergenerational transmission of wealth in dynastic models with fertility

choice. Our paper is most related to Alvarez (1999) who analyzes intergenerational income

risk but assumes that it is uninsurable (i.e. all children receive the same realization and there

is no insurance markets across dynasties) and does therefore not address the question of risk

sharing. For the most part of his paper, he rules out time costs and therefore finds that

fertility is increasing in both, ability and wealth, while bequests are independent on both.

Hence, this version of the model generates no intergenerational persistence of wealth, beyond

that coming from intergenerational correlations in ability shocks.1 Our model generates such

persistence even with i.i.d. shocks.

In section 3 the benchmark model is laid out as well as its properties. Section 4 contains

the general model with private information. In section 5 we study the main implications of

the private information model about long-run inequality. Section 5 is devoted to discussing

implementations of efficient allocations in our environment. Finally, in section 6, we analyze

numerical examples.

2 A Two-Period Example

In this section we present the key ideas in the paper in the context of a two period example.

We start by characterizing the ex ante efficient allocation under full information and then

go on to add private information.

Consider a two-period economy populated with a continuum of parents with mass 1 who

live for one period. Each parent receives a random productivity θ in the set Θ = {θL, θH} in

which θH > θL. 2 At date 1, each parent’s productivity, θ, is realized, they consume, work

and decide about the number of children. The cost of having a child is in terms of leisure.

Every child requires b units of leisure to raise. The coefficient b can be thought of as market

1When analyzing how crucial his assumptions are he finds that when per child costs are allowed to depend
on wages (i.e. a time cost), fertility is decreasing in ability and increasing in wealth, as long as utility is
more curved than log (i.e. number and utility of children are substitutes).

2We are normalizing population in date-1 to 1, which we will relax later.
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value of maternity leave for women. The child lives for one period and consumes out of the

savings done by their parents. The parent’s utility function is the following:

u(c1) + h(1− l − bn) + βnηu(c2)

where l is hours worked, n is the number of children and ct is consumption per person in

period t. From this, it can be seen that the parent has an altruistic utility function where

the degree of altruism is determined by β. A worker of productivity θ ∈ Θ who works for l

hours has effective labor supply of θl. For now, we assume that everything is observable to

the planner.

In what follows we denote the aggregate consumption of all children by C2 = n2c2. We

will use the following, technical conditions:

Assumption 1 1. The functions u and h are strictly increasing, strictly concave and

continuously differentiable;

2. The function nηu(C/n) is strictly quasi-concave in (C, n).

Suppose each parent is promised an ex ante utility W0 at date zero. We study the problem

of a planner that has access to a saving technology at rate R and wants to allocate resources

efficiently such that the ex ante utility to each parent is at least W0.

min
c1(θ),n(θ),l(θ),c2(θ)

∑
θ∈Θ

π(θ)

(
c1(θ) +

1

R
n(θ)c2(θ)

)
−
∑
θ∈Θ

π(θ)θl(θ) (1)

s.t.
∑
θ∈Θ

[π(θ) (u(c1(θ)) + h (1− l(θ)− bn(θ)) + βn(θ)ηu(c2(θ)))] ≥ W0

Taking first order conditions, we can write the optimality conditions as follows:

c1(W0, θ) = c1(W0, θ
′) ∀θ, θ′ ∈ Θ (2)

θu′(c1(W0, θ)) = h′ (1− l(W0, θ)− bn(W0, θ)) (3)

βRn(W0, θ)
η−1u′(c2(W0, θ)) = u′(c1(W0, θ)) (4)

βηn(W0, θ)
η−1u(c2(W0, θ)) = bh′ (1− l(W0, θ)− bn(W0, θ))

+βn(W0, θ)
η−1u′(c2(W0, θ))c2(W0, θ) (5)

The interpretation of equation (2) is standard – it is the full risk sharing condition that

is common in Mirrlees problems without informational frictions and separable preferences.
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Equation (3) is also standard. It represents the static trade off between leisure and consump-

tion for different types. Using this along with equation (2), it follows directly that higher

productivity types get less leisure. Equation (4) is the Euler equation, augmented by the fact

that population is growing. Thus, the rate of return on capital, R, should be corrected by

the rate of population growth, nη−1. Equation (5) is new here. It equates the marginal value

of having an extra child to the marginal cost of having an extra child. The two terms on the

right hand side reflect the two components of costs that come from an increase in fertility.

First is the value of the extra leisure that is used to raise the additional child. Second, is

the reduction in per capita consumption that will occur in the second period if fertility is

increased but nothing else is changed. The left hand side is the utility value of the increase

in fertility.

Replacing (3) and (4) in (5), gives the following equation:

βηn(W0, θ)
η−1u(c2(W0, θ)) = βn(W0, θ)

η−1u′(c2(W0, θ))c2(W0, θ) (6)

+bθβRn(W0, θ)
η−1u′(c2(W0, θ)) (7)

which simplifies to

ηu(c2(W0, θ)) = u′(c2(W0, θ))c2(W0, θ) + bθRu′(c2(W0, θ)) (8)

As it can be seen from (8), the consumption of each child, c2, only depends on θ and does not

depend on promised utility to the parent, W0. This is in sharp contrast to the special case in

which fertility is not a choice. In those environments risk sharing implies that consumption of

each child is independent of parent’s shock θ and depends directly on parents promised utility.

To gain insight about this result we rewrite problem (1) slightly differently. Let m =

1− l− bn be parents leisure. Consider the problem of social planner who minimizes the cost

of allocating parents time between leisure and parenting as well as consumption to parents

ad children:

min
c1(θ),n(θ),m(θ),C2(θ)

∑
θ∈Θ

π(θ) (c1(θ) + θm(θ)) +
∑
θ∈Θ

π(θ)

(
bθn(θ) +

1

R
C2(θ)

)
(9)

s.t.
∑
θ∈Θ

π(θ) (u(c1(θ)) + h (m(θ))) +
∑
θ∈Θ

π(θ)βn(θ)ηu

(
C2(θ)

n(θ)

)
≥ W0

This is the same as problem (9) except that we substituted out hours, l(θ) = 1−m(θ)−bn(θ)

and per child consumption, c2 = C2

n
, and rearranged terms in the objective function. The
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first term in the objective function is planner’s expenditure on parents’ consumption and

leisure (denominated in parents’ consumption). The second term is the total expenditure on

children: their total consumption and time spent parenting (again, denominated in parents’

consumption).

We can separate this problem in two stages. In stage one planner decides how much con-

sumption and leisure to give to parents and also how much utility each parent should get

from having children. In the second stage planner decides how many children each parent

should have and total consumption of all children for each parent. We solve this problem

backward. Suppose the planner has decided in the first stage that a type θ parent will enjoy

utility W from having children. Then in the second stage the planner solves the following

problem for the parent who has shock θ:

V̂ (W, θ) = min
C2,n

bθn+
1

R
C2 (10)

s.t. nηu

(
C2

n

)
= W

Denote the solution to this problem as C2(W, θ) and n(W, θ). V̂ (W, θ) is the cost of delivering

utility W from having children to a parent who has type θ. In the first stage the planner

solves the following problem

min
c1(θ),m(θ),W (θ)

∑
θ∈Θ

π(θ)
(
c1(θ) + θm(θ) + V̂ (W (θ), θ)

)
(11)

s.t.
∑
θ∈Θ

π(θ) (u(c1(θ)) + h (m(θ)) + βW (θ)) ≥ W0

Denote the solution to this problem as c1(W0, θ),m(W0, θ) and W (W0, θ). Given cost

function V̂ (W, θ) the first stage problem is standard, except for the fact that utility to the

parents from having children, W (W0, θ), explicitly depends on θ. The reason is that cost

of having children is parents’ time and therefore this cost is different for parents who have

different productivity shocks. This makes the planner’s cost function, V̂ (W, θ), explicitly

depend on θ.3

Our result that consumption of each child, c2, does not depend on parents’ promised utility

can be understood by looking at the second stage problem. First note that the way c2 varies

with promised utility depends on how C2 (consumption of all children) and n (number of

3This is not the case when fertility is not a choice variable or cost of having children is only in terms of
consumption good. In those environments parent’s future promised utility (utility form having children) is
equalized across different parents. Because cost of delivering those promised utilities are the same across
parents who experience different shocks.
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children) vary with promised utility. For example, in the case in which fertility is not a

choice and number of children are constant, both C2 and c2 are Monotone increasing in

W . We argue that in our formulation of altruism (which we borrow from Barro and Becker

(1989) and Becker and Barro (1988)) the ratio of C2

n
is independent of W . To see this

note that objective of the planner in the second stage problem is homogeneous of degree

one and constraint set is homogeneous of degree η. It can be easily seen that the solution

to this problem is homogeneous of degree 1
η

in W . In other words, the solution has the

form C2(W, θ) = C̃2(θ)W 1/η and n(W, θ) = ñ(θ)W 1/η. Therefore, the ratio C2(W,θ)
n(W,θ)

does not

depend on W and only depends on technology and preference parameters. Since this feature

of the solution will be a recurrent theme throughout the paper it is useful to give it a name.

We will call this the ’resetting’ property – i.e., per capita utility is reset to a level that is

independent of state variables.

There are four qualitative properties of the solution to this problem that will have close

analogies in the results that will come later. We summarize them here as a Proposition for

future reference.

Proposition 1 Under Assumption 1:

1. c1(W0, θ) is independent of θ, and strictly increasing in W0,

2. l(W0, θ) is strictly increasing in θ, and strictly decreasing in W0,

3. n(W0, θ) is strictly decreasing in θ, and strictly increasing in W0,

4. c2(W0, θ) is strictly increasing in θ, but independent of W0.

Proof. See Appendix A.1.

This Proposition shows one of the features of the model; when the cost of children is in

terms of parental leisure, a utilitarian planner would allow for consumption inequality. As

we know in the standard models with constant population, planners set marginal utilities

equal. Here the same property holds. However, the ’correct’ marginal utility is the per capita

marginal – in period 2 it is βn(θ)η−1u′(c2(θ)). Therefore, since more productive households

have fewer children, full risk sharing implies a degree of inequality in consumption among

children. In this simple two period example, the inequality that results depends only the

parent’s income rather than that of the child. A high productivity parent will have a lower

number of children and as a result of risk-sharing, her children will have a higher per capita

consumption.

Before we proceed further, it is helpful to present an asymptotic property of the model when
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W0 become very small and contrast it to a model with no fertility choice. For the purpose of

this exercise assume that both u(·) and h(·) are unbounded below. Then it is straight forward

to show that c1(W0,θ),m(W0,θ)→ 0 and W (W0,θ)→ −∞ as W0 → −∞. Now consider the

second stage problem (problem (10)). If fertility is not a choice (i.e., it is constant), then we

have limW→−∞C2(W, θ) = 0 and limW→−∞ u
(
C2(W,θ)
n(W,θ)

)
= −∞. This follows directly from

constraint (11).

However, when fertility is a choice variable, following the discussion above we know that

C2(W, θ) and n(W, θ) are homogeneous of degree 1
η
. Therefore,

lim
W→−∞

C2(W, θ) = lim
W→−∞

n(W, θ) = 0

But we also know that C2(W,θ)
n(W,θ)

is independent of W and therefore limW→−∞ u
(
C2(W,θ)
n(W,θ)

)
6=

−∞.

Immiseration corresponds to the situation where C2

n
→ 0 as W → −∞. The homoth-

etic formulation of utility usually used in Barro/Becker models of fertility choice gives an

extreme version where this does not occur – C2

n
is independent of W . Thus, although the no

immiseration result is particularly stark in the Barro/Becker case, we suspect that it holds

in much more generality.

2.1 Private information

In this section we use our simple example to show that when productivity of the parent is

private information a version of the resetting property still holds. More precisely, we will

show that the consumption of each child of a parent which has the high productivity shock

is independent of promised utility to parents (W0).

Consider again the original planner’s problem (9) and assume that productivity shock θ is

private information. Then, the appropriate planner’s problem must also include incentive

compatibility constraints. In what follows we make the assumption that only downwards

incentive constraints are binding – a parent with shock θH have incentive to pretend to be
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of a type θL with.4 The new planner’s problem is:

min
c1(θ),n(θ),l(θ),c2(θ)

∑
θ∈Θ={θH ,θL}

π(θ)

(
c1(θ) +

1

R
n(θ)c2(θ)

)
−
∑
θ∈Θ

π(θ)θl(θ) (12)

s.t.
∑

θ∈Θ={θH ,θL}

[π(θ) (u(c1(θ)) + h (1− l(θ)− bn(θ)) + βn(θ)ηu(c2(θ)))] ≥ W0

u(c1(θH)) + h (1− l(θH)− bn(θH)) + βn(θH)ηu(c2(θH)) ≥

u(c1(θL)) + h

(
1− θL

θH
l(θL)− bn(θL)

)
+ βn(θL)ηu(c2(θL))

Note that in this problem no one pretends to be the highest type θI . Therefore, the

allocations of this type are undistorted. To see this suppose λ and µ are the Lagrange multi-

pliers on the promise keeping constraint and incentive compatibility constraint respectively.

Then, the first order conditions are:

π(θH) = (λπ(θH) + µ)u′(c1(W0, θH))

π(θH)θH = (λπ(θH) + µ)h′(1− l(W0, θH)− bn(W0, θH))
1

R
π(θH)n(W0, θH) = (λπ(θH) + µ)βn(W0, θH)ηu′(c2(W0, θH))

1

R
π(θH)c2(W0, θH) = (λπ(θH) + µ) [−bh′ (1− l(W0, θH)− bn(W0, θH))

+βηn(W0, θH)η−1u(c2(W0, θH))
]

Combining these equations we get:

θHu
′(c1(W0, θH)) =′ (1− l(W0, θH)− bn(W0, θH))

βRn(W0, θH)η−1u′(c2(W0, θH)) = u′(c1(W0, θH))

βηn(W0, θH)η−1u(c2(W0, θH)) = bh′ (1− l(W0, θH)− bn(W0, θH))

+βn(W0, θH)η−1u′(c2(W0, θH))c2(W0, θH)

Note that these equations are identical to equations (2)-(5). By combining them we get the

following equation

ηu(c2(W0, θH)) = u′(c2(W0, θH))c2(W0, θH) + bθHRu
′(c2(W0, θH))

4We can show that at the full information efficient allocations the downward constraints are binding and
upward constraints are slack. We also verify the slackness of upward constraints in out numerical example
(in infinite horizon environment). In general we cannot prove that only downward constraints are binding
because the preferences do not exhibit single-crossing property.
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which is equation (8) evaluated at θ = θH . Therefore, as above, c2(W0, θH) is independent

of W0. Moreover, the value of c2(W0, θH) is the same under full information and private

information (nothing in above equation depends on the incentive constraint).

There are two key features in the model that derive this result. First, is the homotheticity

property emphasized above. The second is the fact that upward incentive constraints are

not binding. Because of this, the allocation of the highest productivity type is undistorted.

Note that it is immediate that the asymptotic properties that we discussed for the full

information allocation in section 2 holds for the private information allocation of the highest

type.

3 The Benchmark Model – Full Information

In this section, we lay out the benchmark model with no private information and discuss

its properties. Time is discrete from 0 to ∞. At date 0, the economy is populated by N−1

agents. Each agent lives for one period. Agents, when alive, draw labor productivity shocks,

can consume and have children. The cost of raising a child is in terms of time where we

assume that it takes b units of time to raise each child.

Here, the only source of uncertainty is the idiosyncratic risk of the productivity shock,

θt that an agent in period t receives. We assume that θt is an i.i.d. stochastic process and

takes on values in the set Θ and has distribution π(θ). There is also a production function

F (K,L) = RK + L as in the example above where K is aggregate capital and L is the

aggregate effective labor hours. The initial level of capital is given by K0.

Define Nt(θ
t−1) as the current population of a cohort whose ancestors received history of

shocks of θt−1. We can define a feasible allocation {ct(θt), lt(θt), nt(θt), Kt}∞t=0 as:∑
θt

π(θt)N(θt−1)ct(θ
t) +Kt+1 ≤

∑
θt

π(θt)N(θt−1)θtl(θ
t) +RKt

where

Nt(θ
t−1) = Nt−1(θt−2)nt−1(θt−1) , N0(θ−1) = N−1

Since the production function is linear, we can suppress capital and write feasibility as the
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following constraint:

∞∑
t=0

1

Rt

∑
θt∈Θt+1

π(θt)N−1

[
t−1∏
s=0

ns(θ
s)

] (
ct(θ

t)− θtlt(θt)
)
≤ K0 (13)

The utility of an agent in period t is the following:

Ut = u(ct) + h(1− lt − bnt) + βnηtUt+1 (14)

Therefore a planner that maximizes the expected utility of the generation in period-0 faces

the following problem:

max
∞∑
t=0

βt
∑
θt

π(θt)

[
t−1∏
s=0

ns(θ
s)

]η (
u(ct(θ

t)) + h(1− lt(θ)− bnt(θt))
)

(P1)

s.t. (13),

where the objective in (P1) is derived by iterating on (14)5.

As it is mentioned in Alvarez (1999), the above problem by itself is not concave in nt, ct.

This is due to the fact that we have the product of nt and ct in the budget constraint and

as a result budget set is not convex. Alvarez (1999) proposes a novel way of resolving this

issue by defining new variables as product of per capita allocations with population of the

associated cohort. We will use his approach to make the problem concave. Hence, we define

the following variables:

Ct(θ
t) = ct(θ

t)Nt(θ
t−1)

Lt(θ
t) = lt(θ

t)Nt(θ
t−1)

The problem in terms of the new variables is the following:6

max
∞∑
t=0

βt
∑
θt

π(θt)Nη
t (θt−1)

(
u

(
Ct(θ

t)

Nt(θt−1)

)
+ h

(
1− Lt(θ

t)

Nt(θt−1)
− bNt+1(θt)

Nt(θt−1)

))
(P1’)

s.t.
∞∑
t=0

1

Rt

∑
θt∈Θt+1

π(θt)
(
Ct(θ

t)− θLt(θt)
)
≤ K0

N0(θ−1) = N−1 : given.

5We need to define
∏−1
s=0 n

η
s(θs) = 1.

6Notice that the product term in the objective function as well as in 13 is by definition Nt(θt−1).
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We make the following assumptions to ensure that the above problem is concave.

Assumption 2 1. The function Nηu
(
C
N

)
is strictly concave and strictly increasing in

(C,N).

2. The function Nηh
(
M
N

)
is strictly concave and strictly increasing in (M,N).

3. η < 1.

From the strict concavity of (P1’) it follows that there is a unique solution.

It will be useful for what follows to make one further transformation of this problem.

Since the budget set in (P1’) is convex and the objective is concave by assumption 2, we can

follow the literature and transform this problem into a recursive cost minimization problem

in which the extra state is continuation utility, W . See the Appendix for details. Thus, the

solution to above problem is the same as the solution to the following recursive problem:

V (N,W ) = min
∑
θ∈Θ

π(θ)

(
C(θ)− θL(θ) +

1

R
V (N ′(θ),W ′(θ))

)
(P3)

s.t.
∑
θ∈Θ

π(θ)

(
Nη

(
u

(
C(θ)

N

)
+ h

(
1− L(θ)

N
− bN

′(θ)

N

))
+ βW ′(θ)

)
≥ W

Although, technically, we have N as one of the state variables for our problem, it can be

shown that (because of homotheticity properties) we can rewrite the problem in terms of per

capita variables and eliminate N as a state variable. To do so, we define w = W/Nη and

Ṽ (N,w) = V (N,Nηw)/N . Using these definitions (P3) becomes:7

NṼ (N,Nηw) = min
∑
θ∈Θ

π(θ)N

(
c(θ)− θl(θ) +

1

R

N ′(θ)

N
Ṽ (N ′(θ), N ′(θ)ηw′(θ))

)
s.t.

∑
θ∈Θ

π(θ) (Nη (u (c(θ)) + h (1− l(θ)− bn(θ))) + βN ′(θ)ηw′(θ)) ≥ NηU

where we have used W ′(θ) = N ′(θ)ηw′(θ). Define n(θ) = N ′(θ)
N

. Using this definition, we can

eliminate N from the objective function as well as the constraint. It is then obvious that

Ṽ is independent of N and Ṽ (N,w) = v(w). Hence, v(w) satisfies the following functional

7Small letters represent per cohort member variables.
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equation:

v(w) = min
c(θ),l(θ),n(θ),w′(θ)

∑
θ∈Θ

π(θ)

(
c(θ)− θl(θ) +

1

R
n(θ)v(w′(θ))

)
(P4)

s.t.
∑
θ∈Θ

π(θ) (u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ)) ≥ w

3.1 Properties of the Optimal Allocation

In this section, we discuss the properties of the optimal allocation from problem (P3).

First we have a standard result from dynamic programming:

Theorem 1 Under assumption 2, V (N,W ) is strictly convex. Moreover if u(·) and h(·) are

C1, then V (·, ·) is differentiable.

Proof. See theorem 4.8 and 4.11 in ?.

To do any further characterization of the solution to (P3), we will want to use the FOC’s

from this problem. This requires that the solution be interior however. The usual approach

to guarantee interiority is to use Inada conditions. We use a version of these here to guarantee

that c, 1 − l − bn, and n are interior. The version that we use is stronger than usual and

necessary. We do this because we will need this stronger version below when we consider an

environment with private information.

Assumption 3 Assume that both u and h are bounded above by 0, and unbounded below.

Note that this implies that η < 0 is required for the overall concavity of utility and hence an

Inada condition on n is automatically satisfied.

Under this assumption, it follows that consumption, leisure and fertility are all strictly

positive. This is not enough to guarantee that the solution is interior however, since hours

worked might be zero. Indeed, there is no way to guarantee that l > 0 in this model. This is

because of the way hours spent raising children enter the problem. Because of this feature of

the model, it might be true that the marginal value of leisure exceeds the marginal product

of an hour of work even when l = 0. The usual way of handling this problem by assuming

that h′(1) = 0 will not work in this case since we know that n > 0. Hence, the marginal

value of leisure at zero work will always be positive, even if h′(1) = 0. Because of this, when

continuation utility is sufficiently high, it is always optimal for work to be zero.

In addition to this, in some cases, there are types that never work. This will be true when

it is more efficient for a type to produce goods through the indirect method of having children
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and having their children work than through the direct method of working themselves. This

will hold for a worker with productivity θ, if θ < E(θ)
bR

. That is, l(w, θ) = 0 for all w if θ < E(θ)
bR

.

For this reason, we will rule this situation out by making the following assumption:

Assumption 4 Assume that, for all i, θi >
E(θ)
bR

.

This assumption does not guarantee that l(w, θ) > 0 for all w, but it can be shown that

for low enough continuation utility l > 0. In what follows, we will simply assume that l > 0

for most of the paper. We will return to this issue below when we show that a stationary

distribution exists.

Using the above derivation of (P4), we also have the following corollary. (See Appendix

A.2 for the proof.):

Corollary 2 Assume that V (·, ·) is twice differentiable. Then v(w) is convex and strictly

increasing and ηwv′(w)− v(w) is increasing.

The optimality conditions of the problem are similar to those in section (2).

v′(w) =
1

u′(c(θ))
, ∀θ ∈ Θ (15)

θu′(c(θ)) = h′(1− l(θ)− bn(θ)) if l > 0 (16)

βRn(θ)η−1 = u′(c(θ))v′(w′(θ)) (17)

βηn(θ)η−1w′(θ) =
1

R
v(w′(θ))u′(c(θ)) + bh′(1− l(θ)− bn(θ)) (18)

The interpretation of the above equations are as before. First, equation (15) comes from

the Envelope condition and implies full intra-family risk-sharing. Second, equation (16)

represents the trade-off between leisure and consumption. Equation (17) is the standard

Euler equation and it represents the trade-off between consumption today and consumption

tomorrow. Finally, equation (18) equates the marginal benefit of having an extra child -

LHS - to the marginal cost of having an extra child - RHS - which consists of immediate

utility cost in terms of leisure as well as the cost of having fewer per child resources available

tomorrow in terms of utility today.

Replacing equations (16) and (17) in (18) gives us the following important equation:

ηv′(w′(θ))w′(θ)− v(w′(θ)) = bRθ (19)

Equation (19) together with corollary 2 implies that w′(θ) is increasing in θ. Moreover, it

implies that w′(θ) is independent of w. That is, there is no history dependence in continuation
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utility, when all the choices - labor supply, fertility, consumption - are undistorted. This will

play an important role in the rest of the paper. The intuition for this result is similar to

that given in the two period case – it follows from the homotheticity of the cost function,

V (N,W ).

The properties of the optimal allocation for this problem are summarized in the following

proposition - the claims hold only if l(w, θ) is interior:

Proposition 2 Under assumption 2, the policy functions from (P4) satisfy:

1. c(w, θ) is independent of θ, and strictly increasing in w,

2. l(w, θ) is st. increasing in θ and strictly decreasing in w,

3. n(w, θ) is st. decreasing in θ and strictly increasing in w,

4. w′(w, θ) is strictly increasing in θ, but independent of w.

Proof. See Appendix A.3.

Proposition 1 describes the properties of long-run inequality in this model. In fact, we

know that starting from any ex-ante distribution of continuation utilities, if we apply the

above policy functions, the next period distribution of continuation utilities is independent

of the initial distribution. Moreover, the long-run distribution of w takes on values in the

solutions of equation (19) and hence, is a simple transformation of the probability density

of θ. From equation (15), the long run distribution for c can be directly obtained from that

of w. As can be seen it is not a degenerate distribution as would usually be the case with

separable utility between consumption and leisure. Even though this is true, it follows from

equation (15) that c does not depend on the current shock (θt), but depends on the history

of previous shocks (θt−1) as summarized in wt. Moreover, because of the resetting property

(the fact that w′(w, θ) is independent of w), it follows that wt depends only θt−1. Hence, it

follows that ct depends only on θt−1. Thus, although our model shares a common feature

with more standard models with non-separable preferences between consumption and leisure,

this arises for different reasons. Here, it arises from the non-separability between family size

and per child continuation utility.

4 Adding Private Information

In this section, we will extend the model in section 3. The model is exactly the same as before

except that each agent’s productivity is private information. The planner, can observe the
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output for each agent but not hours worked nor productivity. Using the revelation principle,

we will only focus on direct mechanisms in which each agent is asked to reveal his true

type. As is typical in problems like these, it can be shown that the full information optimal

allocation does not satisfy incentive compatibility. Although the argument is more complex

than in the usual case, we show (in Appendix A.5) that under the full information allocation,

a higher productivity type would want to pretend to be a lower productivity type.

In addition to this, in Mirrleesian environments with private information where a single

crossing property holds, one can show only downward incentive constraints bind. Here,

however, the single crossing property does not hold due the lack of separability between

fertility and leisure. Because of this, we do not currently have a proof that the only incentive

constraints that ever bind are the downward ones. In keeping with what others have done

(e.g., Phelan (1998) and Golosov and Tsyvinski (2007)), we assume that agents can only

report a level of productivity that is less than or equal to their true type.8 In the appendix,

we give a sufficient condition for this to be true. Under this assumption, we can restrict

reporting strategies, σ, to satisfy σt(θ
t) ≤ θt. (Here, for every history θt, σt(θ

t) is agent’s

report of its productivity in period t and σt(θt) is the history of the reports.) Moreover, by

the later restriction on reports, we have σt(θ
t) ≤ θt. Call the set of restricted reports Σ.

Then, an allocation is said to be incentive compatible if

∑
t,θt

βtπ(θt)Nt(θt−1)η
[
u

(
Ct(θt)
Nt(θt−1)

)
+ h

(
1− Lt(θt)

Nt(θt−1)
− bNt+1(θt)

Nt(θt−1)

)]
≥ (20)

∑
t,θt

βtπ(θt)Nt(σt−1(θt−1))η
[
u

(
Ct(σt(θt))

Nt(σt−1(θt−1))

)
+ h

(
1− σt(θt)Lt(σt(θt))

θtNt(σt−1(θt−1))
− b Nt+1(σt(θt))

Nt(σt−1(θt−1))

)]
∀ σ ∈ Σ

Hence, the planning problem becomes the following:

max
∑
t,θt

βtπ(θt)Nt(θt−1)η
[
u

(
Ct(θt)
Nt(θt−1)

)
+ h

(
1− Lt(θt)

Nt(θt−1)
− bNt+1(θt)

Nt(θt−1)

)]

s.t
∞∑
t,θt

1
Rt
π(θt)

[
Ct(θt)− θtLt(θt)

]
≤ K0

∑
t,θt

βtπ(θt)Nt(θt−1)η
[
u

(
Ct(θt)
Nt(θt−1)

)
+ h

(
1− Lt(θt)

Nt(θt−1)
− bNt+1(θt)

Nt(θt−1)

)]
≥

∞∑
t=0

βtπ(θt)Nt(σt−1(θt−1))η
[
u(

Ct(σt(θt))
Nt(σt−1(θt−1))

) + h(1− Yt(σt(θt))
θtNt(σt−1(θt−1))

− b Nt+1(σt(θt))
Nt(σt−1(θt−1))

)
]

∀ σ ∈ Σ
8In numerically calculated examples, this assumption is redundant.
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Using the same techniques as in section 3, we can show that the above problem is equivalent

to the following functional equation:

V (N,W ) = min
C(θ),L(θ),N ′(θ)

∑
θ∈Θ

π(θ)

[
C(θ)− θL(θ) +

1

R
V (N ′(θ),W ′(θ))

]
(P5)

s.t
∑
θ∈Θ

π(θ)

[
Nη

(
u

(
C(θ)

N

)
+ h

(
1− L(θ)

N
− bN

′(θ)

N

))
+ βW ′(θ)

]
≥ W

Nη

(
u

(
C(θ)

N

)
+ h

(
1− L(θ)

N
− bN

′(θ)

N

))
+ βW ′(θ) ≥

Nη

(
u

(
C(θ̂)

N

)
+ h

(
1− θ̂L(θ̂)

θN
− bN

′(θ̂)

N

))
+ βW ′(θ̂) (21)

∀θ > θ̂.

As we can see, the problem is homogeneous in N and therefore as before, if we define

v(N,w) = V (N,Nηw)
N

, v(·, ·) will not depend on N and satisfies the following functional equa-

tion:

v(w) = min
c(θ),l(θ),n(θ)

∑
θ∈Θ

π(θ)

(
c(θ)− θl(θ) +

1

R
n(θ)v(w′(θ))

)
(P5′)

s.t.
∑
θ∈Θ

π(θ) (u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ)) ≥ w

u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ) ≥

u(c(θ̂)) + h(1− θ̂l(θ̂)

θ
− bn(θ̂)) + βn(θ̂)ηw′(θ̂), ∀ θ > θ̂

To ensure that the minimization in problem (P5) has a unique solution, we need the function

V (N,W ) to be convex. A sufficient condition for convexity of the value function is that the

constraint set correspondence should be convex with respect to the state variables. In this

problem, due to perfect substitutability of fertility and labor supply, our constraint set

correspondence is not convex. Therefore, we cannot show that the value function is convex

using the standard methods. One way to resolve this issue is by allowing for randomization.

Allowing for randomization, makes all the constraints linear in the probability distributions

and therefore the constraint correspondence would be convex. This is the method used in

Phelan and Townsend (1991) and Doepke and Townsend (2006). However, optimal plan may

not necessarily involve lotteries since convexity of constraint correspondence is only sufficient

for convexity of the value function.9

9In our numerical example the value function is convex even without the use of lotteries. In the appendix
B, we characterize the case where utility from leisure is linear and there we can show that the constraint
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Therefore, we will make the following assumption:

Assumption 5 V (N,W ) is convex with respect to (N,W ).

4.1 Inverse Euler Equation

An important feature of dynamic Mirrleesian models with private information is the Inverse

Euler Equation. Golosov et al. (2003) extend the original result of Rogerson (1985) and show

that in a dynamic Mirrleesian model with private information, when utility is separable in

consumption and leisure, the Inverse Euler equation holds when processes for productivity

come from a general class. Here we will show that a version of the Inverse Euler equation

holds. To do so, consider problem (P5). Suppose the multiplier on promise keeping is λ

and multiplier on (24) is µ(θ, θ̂). Then the first order condition with respect to W ′(θ) is the

following:

π(θ)
1

R
VW (N ′(θ),W ′(θ)) + λπ(θ)β + β

∑
θ>θ̂

µ(θ, θ̂)− β
∑
θ<θ̂

µ(θ̂, θ) = 0.

Define µ(θ, θ̂) = 0, if θ̂ ≥ θ. Summing the above equations over all θ’s, we have

1

R

∑
θ

π(θ)VW (N ′(θ),W ′(θ)) + βλ+ β
∑
θ

∑
θ̂

µ(θ, θ̂)− β
∑
θ

∑
θ̂

µ(θ̂, θ) = 0.

Moreover, from Envelope Condition:

VW (N,W ) = −λ.

Therefore, we have ∑
θ

π(θ)VW (N ′(θ),W ′(θ)) = βRVW (N,W ).

Now consider the first order condition with respect to C(θ):

π(θ)+λπ(β)Nη−1u′
(
C(θ)

N

)
+Nη−1u′

(
C(θ)

N

)∑
θ̂

µ(θ, θ̂)−Nη−1u′
(
C(θ)

N

)∑
θ̂

µ(θ̂, θ) = 0.

Thus,

VW (N ′(θ),W ′(θ)) =
βR

Nη−1u′
(
C(θ)
N

) .
correspondence is convex.
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Therefore, we know that

VW (Nt+1(θt),W ′
t(θ

t)) =
βR

Nt(θt−1)η−1u′
(

Ct(θt)
Nt(θt−1)

) .
Hence, we can derive the Inverse Euler Equation:

E

 1

Nt+1(θt)η−1u′
(
Ct+1(θt+1)
Nt+1(θt)

) |θt
 =

βR

Nt(θt−1)η−1u′
(

Ct(θt)
Nt(θt−1)

) . (22)

An intuition for this equation is worth mentioning. Consider decreasing per capita consump-

tion of an agent with history θt and saving that unit. There will be R units available the

next day that can be distributed among the descendants. We increase consumption of agents

of type θt+1 by ε(θt+1) such that:

nt(θ
t)
∑
θ

π(θ)ε(θ) = R

u′(ct+1(θt, θ))ε(θ) = u′(ct+1(θt, θ′))ε(θ′) = ∆.

The first is the resource constraint implied by redistributing the available resources. The

second one makes sure that the incentives are aligned. In fact it implies that the change in

the utility of all types are the same and there is no incentive to lie. The above equations

imply that

nt(θ
t)
∑
θt+1

π(θt+1)
∆

u′(ct+1(θt, θt+1))
= R

Since the change in utility from this perturbation must be zero, we must have β∆ = u′(ct(θ
t)).

Replacing in the above equation leads to equation (22). We summarize this as a Proposition:

Proposition 3 If the optimal allocation is interior, the solution satisfies a version of the

Inverse Euler Equation:

E

 1

Nt+1(θt)η−1u′
(
Ct+1(θt+1)
Nt+1(θt)

) |θt
 =

βR

Nt(θt−1)η−1u′
(

Ct(θt)
Nt(θt−1)

) .
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4.2 The Resetting Property and Long Run Properties of Income

and Fertility

We have shown in section 3 that per capita promised value is history independent. Here

we will show that a similar property holds when we add private information to the model,

but only for types for which the presence of private information does not introduce any

distortions – i.e., for any type such that no other type is tempted to pretend to be. In this

case, the resetting property is satisfied. This can be derived from the first order conditions

of the the recursive formulation. Suppose that Θ = {θ1 < · · · < θn}. Taking first order

condition with respect to N ′(θn) and L(θ), respectively, gives us the following equations:

π(θn)
1

R
VN(N ′(θn),W ′(θn)) = b

λπ(θn) +
∑
θ̂<θn

µ(θn, θ̂)

Nη−1h′
(

1− L(θn)

N
− N ′(θn)

N

)

π(θn)θn +

λπ(θn) +
∑
θ̂<θn

µ(θn, θ̂)

Nη−1h′
(

1− L(θn)

N
− N ′(θn)

N

)
= 0

Therefore,

VN(N ′(θn),W ′(θn)) = −bRθn

Using the fact that V (N,W ) = Nv(N−ηW ), we will have

v(w′(θ))− ηw′(θ)v′(w′(θ)) = −bRθn.

We can see that w′(w, θn) is independent of promised continuation utility. That is, w′(w, θn) =

w′(ŵ, θn) for all w, ŵ. Denote by w0 this level of promised continuation utility – w0 =

w′(w, θn).

The resetting property means that once a parent receives a high productivity shock, the

per capita allocation for her descendants is independent of the parents level of wealth – an

extreme version of social mobility holds.

Because of this, it follows that there is no immiseration in this model, under very mild

assumptions, in the sense that per capita utility does not converge to its lower bound. To

see this, first consider the situation if n(w, θ) is independent of (w, θ). In this case, from

any initial position, the fraction of the population that will be assigned to w0 next period is

at least π(θn). This by itself implies that there is not a.s. convergence to the lower bound

of continuation utilities. When n(w, θ) is not constant, the argument involves more steps.

Assume that n is bounded above and below – 0 < a ≤ n(w, θ) ≤ a′. Then, the fraction of

descendants being assigned to w0 next period is at least π(θn)a
(1−π(θn))a′

. Again then, we see that
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there will not be a.s. immiseration.

We summarize this discussion in a Proposition.

Proposition 4 Continuation utility has a ’resetting’ property, w′(w, θn) = w0 for all w.

Assume that n(w, θ) is bounded above and below – 0 < a ≤ n(w, θ) ≤ a′ – then, if π(θn) > 0,

it follows that continuation utilities do not converge a.s. to the lower bound – no immiseration

occurs.

Intuitively, the resetting property here mirrors the argument given above in the full

information case (Proposition 1, part 4). That is, since no ’type’ wants to pretend to have

θ = θn, the first order conditions for the allocation when θ = θn are the same with or without

private information. Since we saw in the full information case that w′ is independent of w,

we have the same property holding here.

Next, we turn to a discussion of the limiting properties of fertility and population.

We have two tools at our disposal for this, our version of the Inverse Euler Equation and

the proposition above.

One version of the Inverse Euler Equation can be written as:

∑
θ

π(θ)VW (N ′(θ),W ′(θ)) = βRVW (N,W ).

Using the homotheticity properties of V , we can rewrite this as:

∑
θ

π(θ) (N ′(θ))
1−η

v′(w′(θ)) = βRN1−ηv′(w).

If βR = 1, we see that Xt = N1−η
t v′(wt) is a non-negative martingale. Thus, the mar-

tingale convergence theorem implies that there exists a non-negative random variable with

finite mean, X∞, such that Xt → X∞ a.s.

As is standard in this literature, to provide incentives for truthful revelation of types,

we must have ’spreading’ in (N ′(θ))1−η v′(w′(θ)) (details in the Appendix). Thus, it follows

that X∞ = 0 a.s. But, as we have seen above, it is not possible for v′(wt) to converge to

zero since it is equal to v′(w0) at least π(θn)a
(1−π(θn))a′

percent of the time. Thus, it follows that

(N ′(θt))
1−η → 0 a.s.

Intuitively, the planner is relying heavily on overall dynasty size to provide incentives and

less on continuation utilities. This is something that sets this model apart from the more

standard approach with exogenous fertility.

Finally, the fact that (N ′(θt))
1−η → 0 a.s. does not mean that fertility converges to zero

almost surely, rather, it means that it is less than replacement (i.e., n < 1). This is most
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easily seen in the context of a discussion of the stationary distribution which we take up in

the next section.

Summarizing:

Proposition 5 Assume that βR = 1, then, (N ′(θt))→ 0 a.s.

5 Stationary Distributions

In this section we discuss the existence of stationary distributions for the endogenous vari-

ables of the model. There are two issues here. First, is there a stationary distribution for

continuation utilities and is it non-trivial (i.e., can we rule out immiseration)? Second, be-

cause the size of population is endogenous here and could be growing (or shrinking), we must

also show that the growth rate of population is also stationary. We deal with this problem

in general here, and then study a special case with only two shocks in detail below.

The policy functions for fertility and future continuation utilities in problem (P5’) above

are n(θ, w), w′(θ, w). Consider a measure of continuation utilities over R, Ψ. Then, applying

the policy functions to the measure Ψ, gives rise to a new measure over continuation utilities,

TΨ:

T (Ψ)(A) =

∫
w

∑
θ

π(θ)1{(θ,w);w′(θ,w)∈A}(w, θ)n(θ, w)dΨ(w) (23)

∀A : Borel Set in R

For a given measure of promised value today, Ψ, T (Ψ)(A) is the measure of agents with

continuation utility in the set A tomorrow. The overall population growth generated by Ψ

is given by

γΨ =

∫
R
∑

θ π(θ)n(θ, w)dΨ(w)

Ψ(R)
=
T (ψ)(R)

Ψ(R)

Now, suppose Ψ is a probability measure over continuation utilities. Ψ is said to be a

stationary distribution if:

T (Ψ) = γΨΨ

This is equivalent to having a constant distribution of per capita continuation utility along

a Balanced Growth Path in which population grows at rate γΨ.

To show that a stationary distribution exists, the first step will be to show that continu-

ation utility can be confined to a compact set. The key step in this argument, and one that

differentiates the endogenous fertility model from the usual case, is to show that continua-

tion utilities are bounded below. That is, even as promised utility, w, gets lower and lower,
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continuation utility, w′(w, θ), is bounded away from −∞.

To this end, we show that as w → −∞, the optimal allocation converges to c = 0, l = 1,

n = 0. The interesting thing about this allocation is that no incentive constraints are binding

and hence, the optimal allocation has properties similar to those in the full information case

– there is resetting of continuation utility for all types when w is low enough. Formally:

Proposition 6 Suppose that v is continuously differentiable10. Then there exists a wi ∈ R,

such that

lim
w→−∞

w′(w, θi) = wi

See Appendix A.7 for the proof.

The fact that, with utility unbounded below, the incentive problem is less severe for low

values of promised utility also holds in models with exogenous fertility. Loosely speaking, as

w gets smaller, the allocations look more and more similar to full information allocations,

whether fertility is endogenous or exogenous. What makes an endogenous fertility model

different from an exogenous one is the properties of full information allocations. We know

that with endogenous fertility, in a frictionless model continuation utility is bounded below

(by the shock-specific resetting values), while when fertility is exogenous, continuation utility

gets arbitrarily small. This immediately implies that there is no per-capita immiseration with

endogenous fertility.

From this, it follows immediately that continuation utility can be confined to a compact

set.

Corollary 3 Suppose that v is continuously differentiable. Then for all ŵ < 0, w′(w, θ) is

bounded below on (−∞, ŵ].

Since utility is unbounded below and η is negative, n(w, θi) must be positive. But, we

need more than this for the existence of a stationary distribution. We need to show that the

mapping Ψ→ T (Ψ)
γΨ

is continuous. For this, we need that n(w, θ) is continuous in w and that

γΨ is bounded away from 0. Finally, we need continuation utilities to lie in a compact set

(i.e., we need to bound w′ away from 0 as well) so that the relevant function maps a compact

set into itself. This can be shown to be true in certain special cases (see the Appendix), but

we have not yet shown it in complete generality.

Thus, to proceed, we first make the following assumption:

10The assumption about differentiability of the value function is an ad-hoc one. It is perhaps worth
mentioning that since v is weakly increasing, by a theorem from Lebesgue, the points of non-differentiability is
of measure zero. So we know that v is almost everywhere differentiable. The classical proof of differentiability
of the value function is due to Benveniste and Schienkman. Their proof requires convexity of the value
function, which we could not show.
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Assumption 6 There exists some w̄ < supc u(c) such that for any w ∈ (−∞, w̄], w′(w, θ)

belongs to (−∞, w̄] for all θ ∈ Θ.

Now, we are ready to prove our main result about existence of stationary distribution.

Let M([w,w]) be the set of regular probability measures on [w, w̄].

Theorem 4 If the solution to the functional equation implies a unique policy function

n(w, θ), for all (w, θ), then there exists a measure Ψ∗ ∈ M([w, w̄]) such that T (Ψ∗) =

EΨ∗(n) ·Ψ∗.

Proof. Since [w, w̄] is compact in R, by Riesz Representation Theorem (Dunford and

Schwartz (1958), IV.6.3), the space of regular measures is isomorphic to the space C∗([w, w̄]),

the dual of the space of bounded continuous functions over [w, w̄]. Moreover, by Banach-

Alaoglu Theorem (Rudin (1991), Theorem 3.15), the set {Ψ ∈ C∗([w, w̄]); ||Ψ|| ≤ k} is a

compact set in the weak-* topology for any k > 0. Equivalently the set of regular measures,

Ψ, with ||Ψ|| ≤ 1, is compact. Since non-negativity and full measure on [w, w̄] are closed

restrictions, we must have that the set

{Ψ : Ψ a regular measure on [w, w̄],Ψ([w, w̄]) = 1,Ψ ≥ 0}

is compact in weak-* topology.

By definition,

T (Ψ)(A) =

∫
[w,w̄]

n∑
i=1

πi1 {w′(w, θi) ∈ A}n(w, θi)dΨ(w).

The assumption that the policy function is unique implies that it is continuous by the

Theorem of the Maximum. It also follows from this that n is bounded away from 0 on [w, w̄]

(since otherwise utility would be −∞). From this, it follows that T is continuous in Ψ.

Moreover,

EΨ(n) =

∫
[w,w̄]

n∑
i=1

πin(w, θi)dΨ(w) ≥ n > 0.

is a continuous function of Ψ and is bounded away from zero.

Therefore, the function

T̂ (Ψ) =
T (Ψ)

EΨ(n)
:M([w, w̄])→M([w, w̄])

is continuous. Therefore, by Schauder-Tychonoff Theorem (Dunford and Schwartz (1958),
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V.10.5), T̂ has a fixed point Ψ∗ ∈M([w, w̄]).

This theorem immediately implies that there is a stationary distribution for per capita

consumption, labor supply and fertility. Moreover, since promised utility is fluctuating in

a bounded set, per capita consumption has the same property. This is in contrast to the

models with exogenous fertility where a shrinking fraction of the population will have an

ever growing fraction of aggregate consumption.

The resetting property at the top, has also important implications about intergenerational

social mobility. In fact, it makes sure that any smart parent will have children with a high

level of wealth - as proxied by continuation utility. Finally, there is a lower bound on how

much of this mobility occurs:

Remark 5 Suppose that w̄ = w0. Choose A > 0 so that n(w,θn)
n(w,θ)

≥ A for all w and θ. Suppose

that l(w, θn) > 0, for all w ∈ [w,w0], then for any Ψ ∈M([w, w̄]), we have:

T̂ (Ψ) ({w0}) ≥
πnA

1− πn + πnA
.

See Appendix A.10 for proof.

5.1 Special Cases

In this section, we examine what happens when there are only two possible productivity

shocks, θL < θH . We study two special cases given this assumption. In the first, we allow

for a general utility function for leisure and give sufficient conditions for the stationary

distribution to be unique. In the second, we assume that utility of leisure is linear and give

a global stability result.

5.1.1 A Uniqueness Result

We begin by allowing for general utility functions for leisure and assume that resetting

property at the top holds for every w < w0. For this case, using a direct constructive proof,

we show that the model implies a long-run distribution for per capita consumption and

characterize its properties. What is convenient about this example is that we can show that

if resetting holds at all w and assumption (6) with w = w0, the stationary distribution is

unique.

We know that w0 = w′(w, θH) is independent of w for all w ≤ w0. Hence, we can define
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the following set of promised values:

W = {wn|wn+1 = w′(wn, θL),∀n ≥ 0}

By Corollary 3, there is a lower bound w such that w ≤ w ≤ w0, for all w ∈ W .

Assumption 7 Assume that wj 6= wi if j 6= i.

Consider a distribution over W , Ψ = (ψ0, ψ1, · · · ) with
∑∞

i=0 ψi = 1. For Ψ to be a

stationary distribution, there must exist a γ such that the following conditions hold:

γψ0 = πH

∞∑
i=0

n(wi, θH)ψi (24)

γψj = πLn(wj−1, θL)ψj−1, j ≥ 1 (25)

Iterating on equation (25) implies the following:

ψm =

(
πL
γ

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)ψ0

Replacing in (24) implies the following equation:

γ = πH

(
n(w0, θH) +

∞∑
m=1

(
πL
γ

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)n(wm, θH)

)
(26)

Given that in the original problem, we must have n(w, θ) ≤ 1/b. This means that the right

hand side of the above equation is lower than
∑∞

m=0(πL/(bγ))m. Therefore, if we let γ →∞,

the right hand side converges to a finite number, πHn(w0, θH). Notice that the left hand side

is strictly increasing and the right hand side is strictly decreasing in γ. Moreover, at γ = 0

RHS is higher than LHS and at γ =∞, RHS is lower than LHS. Because of this, if we knew

that RHS was continuous, this would be sufficient to say that there is a γ satisfying equation

(26) and that it is unique. To handle this last technical detail, we proceed as follows – Define

γK as follows:

γK = πH

(
n(w0, θH) +

K∑
m=1

(
πL
γK

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)n(wm, θH)

)
.
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By definition, γK < γK+1. We know that n(w, θ) < 1
b
, therefore

γK < πH

(
1

b
+

K∑
m=1

(
πL
γK

)m(
1

b

)m+1
)
.

Suppose that πL
bγK

< 1 or πL
b
< γK . Then, the above inequality implies that

bγK < πH
1

1− πL
bγK

⇒ γK <
πH + πL

b
=

1

b
.

This shows that γK is a bounded increasing sequence. Hence, there exists γ∗ such that

γK → γ∗ with γ∗ > γK . It needs to be shown that at γ∗, RHS of (26) exists. Suppose not

and that the sum is infinity. Define FK(γ) to be the RHS of (26) up to K-th term. FK(γ)

is a continuous and decreasing function. Therefore, γK = FK(γK) > FK(γ∗). Moreover,

FK(γ∗) → F (γ∗) and hence F (γ∗) ≤ γ∗. This means that RHS of (26) cannot be infinity

and (26) is satisfied at γ∗.

Now by Corollary 6 in the Appendix, we know that

∃ A > 0 ; n(w, θH) ≥ An(w, θL) ∀w ∈ [w,w]. (27)

Therefore, using (26), we will have

γ = πH

(
n(w0, θH) +

∞∑
m=1

(
πL
γ

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)n(wm, θH)

)
≥

πHA
∞∑
m=0

(
πL
γ

)m
n(wm, θL)n(wm−1, θL) · · ·n(w0, θL)

⇒
∞∑
m=0

(
πL
γ

)m+1

n(wm, θL)n(wm−1, θL) · · ·n(w0, θL) ≤ πL
AπH

.

Now define, ψ0 as

ψ0 =
1

1 +
∑∞

m=0

(
πL
γ

)m+1

n(wm, θL)n(wm−1, θL) · · ·n(w0, θL)

By the above inequality, we know that ψ0 exists and it is greater than zero. Moreover, we

can automatically define ψi’s using (25). Hence, the definition of γ, being the solution to

(26) together with the definition of ψ0, makes sure that Ψ satisfies (24)-(25) and hence, it is a
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stationary distribution. As it appears in the proof, in some sense, bounded relative fertility11

together with the resetting property at the top are the key elements of having a long-run

stationary distribution. First, every time any one receives a high shock, her promised value

is reset. Secondly, relatively, there are enough children being born by high types so that we

get stationarity. Moreover, the above proof shows that when the set of w’s is restricted to

W , the stationary distribution is unique.

5.1.2 Linear Utility of Leisure

In this section we restrict attention to the special case where utility is linear in leisure –

h(m) = m. Here, things simplify considerably. In the appendix, we show that both n(w, θ)

and w′(w, θ) are independent of w. Thus, in the two shock case, there are only two relevant

values for continuation utility, w0 = w′(w, θH) and w1 = w′(w, θL). Correspondingly, let

ni = n(w, θi).

Given this property for the policy function w′, for any Ψ, T (Ψ) has mass concentrated

on the set W = {w0, w1}. Because of this, for the purpose of characterizing the stationary

distribution, we can summarize T by the two by two matrix:[
πHnH πLnL

πHnH πLnL

]
.

As can be seen from this, the population growth rate is given by γ∗ = πHnH + πLnL.

Hence, T̂ as defined above is given by:[
1

γ∗
πHnH πLnL

πHnH πLnL

]
.

Thus, for any initial distribution Ψ0, T̂ (Ψ0) = Ψ∗ where Ψ∗(w0) = πHnH
γ∗

and Ψ∗(w1) =
πLnL
γ∗

and population grows at rate γ∗.

5.1.3 Stability

The example with linear utility of leisure is useful because it shows that in some cases,

global stability can be guaranteed. It also shows a difficulty with showing this property in

general. The first step to prove global stability in a Markov chain is to prove that there

is a unique invariant distribution for a irreducible and acyclical Markov chain. Since our

transition function T̂ is not Markov, we cannot use the standard method of proving global

stability. In fact, the stationary distribution might not be unique. Intuitively, there may be

11A high type’s number of kids relative to the low type’s
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more than one population growth rate (γ∗) that is consistent with stationarity even though

T is both acyclic and irreducible. If this is true, there may be two (or more) pairs, (Ψ∗1, γ
∗
1)

and (Ψ∗2, γ
∗
2) that are stationary – T̂ ∗1 = T

γ∗1
and T̂ ∗2 = T

γ∗2
– where both T̂ ∗1 and T̂ ∗2 are acyclic

and irriducible.12 We suspect that some progress can be made on this problem in some cases.

For example, in the two shock example given above, we showed (in section 5.1.1) that there

is a unique stationary distribution, but we have not yet shown that it is globally stable. A

key assumption in that argument is that there are no cycles in the sequence {wn}. Indeed,

if this assumption does not hold, the stationary distribution together with the population

growth rate is not necessarily unique.

6 Implementation

In this section, we focus on implementing the efficient allocations described above through

decentralized decision making with taxes. We break this discussion into two components.

In the first, we specialize to a two period example so as to explicitly characterize how tax

implementations are used to alter private fertility choices. In the second, we discuss the

’wedges’ that appear in agents first order conditions – i.e., how do these differ from the full

information efficient allocation.

6.1 A Two Period Example

To highlight that feature of the model that is new here – fertility choice – we restrict attention

to a two period example. We assume that there is a one time shock, realized in the first

period. For simplicity, we will assume that consumption of children is fixed at c2.

The constrained efficient allocation c∗1(θ), l∗(θ), n∗(θ) solves the following problem

12Mathematically, stationary distributions correspond to pairs of eigen vectors and eigen values for the
linear operator T , (Ψ, γ). When T is the Markov transition matrix for an irreducible and acyclic chain, there
is one positive eigen value (which has value 1), and the associated eigen vector is the the unique invariant
distribution. For us, even when T is irreducible and acyclic, there may be two positive eigen values, each
corresponding to stationary distributions. These eigen values then correspond to the associated population
growth rates.
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max
∑
i=H,L

πi [u(ci) + h(1− li − bni) + βnηi u(c2)]

s.t.
∑
i=H,L

πi

[
ci +

1

R
nic2

]
≤
∑
i=H,L

πiθili +RK0

u(cH) + h(1− lH − bnH) + βnηHu(c2) ≥

u(cL) + h(1− θLlL
θH
− bnL) + βnηLu(c2).

Now suppose that we want to implement the above allocation with a tax in first period

of the form T (y, n). Then the consumer’s problem is the following:

max u(c1) + h(1− l − bn) + βnηu(c2)

s.t. c1 + k1 ≤ Rk0 + θl − T (θl, n)

nc2 ≤ Rk1

It can be shown that if T is differentiable and if y is interior for both types Tn(θH l
∗
H , n

∗
H) =

0, Ty(θH l
∗
H , n

∗
H) = 0 – there are no (marginal) distortions on the decisions of the agent with

the high shock. Thus, what we need to do is to characterize the types of distortions that are

used to get the low type to choose the correct allocation.

It is well known that, even in the simple case in which there is no fertiliy choice, the

constrained efficient allocation cannot be implemented by a continously differentiable tax

function. (This is also true in our ennvironment.) However, there exists continous and

piecewise differentiable tax functions which implement the constrained efficient allocation.

Next, we construct the analog of this for our environment.

Let ūL (resp. ūH) be the level of utility received at the socially efficient allocation by the

low (resp. high) type, and define two versions of the tax function:

ūL = u(y − TL(y, n)− 1

R
nc2) + h(1− y

θL
− bn) + βnηu(c2),

ūH = u(y − TH(y, n)− 1

R
nc2) + h(1− y

θH
− bn) + βnηu(c2).

TL, is designed to make sure that the low type always gets utility ūL if they satisfy their

budget constraint with equality while TH , is defined similarly.13

13The assumption for fixed c2 is added in order to simplify the above definitions. We can modify the above
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We will build the overall tax code, T (y, n), by using TL as the effective tax code for the

low type and TH as the one for the high type. Given this, it follows that the distortions, at

the margin, faced by the two types are described by the derivatives of TL (TH) with respect

to y and n.

Proposition 7 If the allocation is interior,

1. The tax function

T (y, n) = max{TL(y, n), TH(y, n)}

implements the efficient allocation.

2. There are no distortions in the decisions of the high type – ∂T
∂y

(y∗H , n
∗
H) = ∂TH

∂y
(y∗H , n

∗
H) =

0 and ∂T
∂n

(y∗H , n
∗
H) = ∂TH

∂n
(y∗H , n

∗
H) = 0.

3. At the choice of the low type, (y∗L, n
∗
L), T is differentiable from below with ∂T

∂y−
(y∗L, n

∗
L) =

∂TL
∂y

(y∗L, n
∗
L) > 0 and ∂T

∂n−
(y∗L, n

∗
L) = ∂TL

∂n
(y∗L, n

∗
L) > 0.

Proof. See Appendix.

The new finding here is that the planner chooses to tax the low type at the margin for

having more children – ∂TL
∂n

(y∗L, n
∗
L) > 0. In the Mirrlees model without fertility choice, for

incentive reasons, the planner wants to make sure that the low type consumes more leisure

(relative to consumption) than he would in a full information world – this makes it easier

to get the high type to truthfully admit his type. This is accomplished by having a positive

marginal labor tax rate for the low type. Here, there is an additional incentive effect that

must be taken care of. This is for the planner to make sure that the low type doesn’t use too

much of his time free from work raising children. This would also make it more appealing

to the high type to lie. To offset this here, the planner also charges a positive tax rate on

children for the low type. These two effects taken together ensure that the low type has low

consumption and fertility and high leisure thereby separating from the high type.

6.2 Distortionary Wedges

In this section we discuss some of the properties of the socially efficient allocation charac-

terized in the previous sections and how it differs from the full information allocation. We

definition to allow for variable c2. In that formulation, given (y, n), Tθ is defined as how much present value
should be taken away from each type so that he is indifferent between deviating to (y, n) accompanied by
optimal saving and no deviation.
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focus on the distortions that are present in the leisure-consumption margin, the intertemporal

margin and the fertility-leisure margin.

1. The Consumption-Leisure margin: For a type (w, θ), we have:

u′(c(w, θ)) =
h′ (1− l(w, θ)− bn(w, θ))

(1− τl(w, θ))θ

where τl(w, θ) – the ’wedge’ in the consumption-leisure margin – is related to the

multipliers on the incentive constraints. Because of our assumption that only downward

incentive constraints can bind, it can be shown that τl(w, θ) > 0. In this sense, the

distortion to the consumption-leisure margin that we find here is the same as that in

a standard model without fertility choice. Intuitively, the planner taxes labor income

of the lower types to make it easier to separate them from higher types – i.e., to relax

incentive constraints.

2. The Intertemporal margin: From the Inverse Euler Equation, we have:

E

 1

Nt+1(θt)η−1u′
(
Ct+1(θt+1)
Nt+1(θt)

) |θt
 =

βR

Nt(θt−1)η−1u′
(

Ct(θt)
Nt(θt−1)

) .
Using Jensen’s Inequality, we have:

1

E
[
Nt+1(θt)η−1u′

(
Ct+1(θt+1)
Nt+1(θt)

)
|θt
] < βR

Nt(θt−1)η−1u′
(

Ct(θt)
Nt(θt−1)

) ,
or,

Nt(θ
t−1)η−1u′

(
Ct(θ

t)

Nt(θt−1)

)
< βRE

[
Nt+1(θt)η−1u′

(
Ct+1(θt+1)

Nt+1(θt)

)
|θt
]
.

This can be rewritten as:

Nt(θ
t−1)η−1u′

(
Ct(θ

t)

Nt(θt−1)

)
= β(1− τk(θt))RE

[
Nt+1(θt)η−1u′

(
Ct+1(θt+1)

Nt+1(θt)

)
|θt
]

where (1− τk(θt)) is the wedge in the intertemporal Euler Equation. 14 When there is

14This ’wedge’ has multiple implementations using taxes. In some of these the tax on capital income is state
contingent from saver’s perspective, i.e., τk(θt, θt+1), while in others it is not, i.e., τk(θt). See Kocherlakota
(2005) for a discussion.
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no private information, it follows, as usual, that τk(θ
t) = 0. With private information,

it follows, from above, that τk(θ
t) > 0. Intuitively, the planner dissuades agents from

saving at their normal level to reduce wealth, and hence, incentive problems, in the

future.

This is the same as what is found in Golosov et al. (2003). It has a slightly different

interpretation here since a period corresponds to a generation. Because of this, it

should be interpreted as a distortion in the decision to leave bequests (as in Farhi and

Werning (2007)). Thus, we find that the ’tax’ on aggregate bequests (B) is positive

here. To be added – ∂2T
∂B∂n

>< 0?

3. The Fertility-Consumption margin: When there is no private information, the trade-off

between fertility and leisure is captured in equation 13:

ηβ (n(w, θ))η−1w′ =
1

R
v(w′(w, θ))u′(c(w, θ)) + bh′ (1− l(w, θ)− bn(w, θ)) .

When information is private, it can be shown that:

ηβ (n(w, θ))η−1w′ >
1

R
v(w′(w, θ))u′(c(w, θ)) + bh′ (1− l(w, θ)− bn(w, θ)) .

Thus, this can be rewritten as:

ηβ (n(w, θ))η−1w′ = (1 + τn(w, θ))
1

R
v(w′(w, θ))u′(c(w, θ)) + bh′ (1− l(w, θ)− bn(w, θ))

where 1 + τn(w, θ) is tax rate on the total increase in future expenditures that comes

with increasing dynasty size by one (i.e., on children, their children, their children’s children,

etc.).

Hence, generalizing what we saw in the two period example, in general, the planner uses

a positive tax on fertility.

7 Numerical Examples

In this section we solve an example numerically to illustrate some of the results presented in

previous sections. We also explore some properties of optimal social contract that we have

not established formally.

Individuals have CRRA preferences over consumption and leisure
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u(c) =
c1−σ

1− σ
, and h(m) = φ

m1−σ

1− γ
in which m = 1− l− bn is leisure, l is hours worked and n is number of kids for each parent.

For this example we asssume the following values for parameters: β = 0.3, R = 4,

σ = 1.5, φ = 0.5, b = 0.41 and η = −2. We assume two levels of productivity shocks

{θL, θH} = {2, 6}. Shocks are i.i.d across generations and dynasties and the probability of

the high shock is πH = 0.1.

7.1 Endogenous fertility: private information vs. full information

Figure 1 shows the allocation in the economy in which fertility choice is endogenous. We have

presented the allocation rule for both the full information and private information economies.

The graphs highlight a few points.

1. If curren promised utility to the parent is high enough, it is efficient to have the low

ability type work zero hours. This holds both under full information and private

information. Furthermore, if current promised utility to the parent is even higher, it

is efficient to have both types work zero hours. At this level of promised utility (and

higher levels) the utility is delivered in a first best fashion.

2. For all levels of current promised utility such that hours are positive, the fertility

allocation is monotone increasing in current promised utility (full information and

private information). For levels of current promised utility such that hours are zero,

fertility decreases with current promised utility.

3. For all levels of current promised utility such that hours are positive, promised utility

to children under full information is independent of current promised utility of the

parent (this is formally established in previous sections).

4. For all levels of current promised utility such that hours are positive, promised utility

to the high skilled parents’ children under private information is independent of current

promised utility of the parent (this is formally established in previous sections).

5. For all levels of current promised utility such that hours are positive, promised utility

to the low skilled parents’ children under private information information is monotone

decreasing in current promised utility of the parent.

6. For all levels of current promised utility that hours is zero, promised utility to the kids

is monotone increasing in current promised utility of the parent.
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It is important to note here that incentives are provided both by the level of promised

utility to the children and the number of children. In other words the future utility that is

promised to a parent is n(w, θ)ηw′(w, θ). This promised utility is always monotone increasing

in the current utility promised to the parent. Figure 2 illustrates this. Also note that, under

full information, the future utility promised to the high skilled parents is always lower than

the one promised to low skilled parents (for full info the blue line lies below the red line).

Also, it appears that under full information, future promised utility to the parents have

higher variance.
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Figure 1: Optimal consumption, hours, fertility and promised utility allocations. Allocations
in private information economy are plotted in thicker line. The blue indicates high shock
and red indicates low shock. The dashed line in panel (b) is the 45 degree line.

39



We can use the procedure outlined in section 5 to compute the growth rate of population,

γ and the stationary distribution of promised utility, Ψ. For full the information economy the

stationary distribution has support WFI = {−9.1607,−4.6591,−3.1255} and the frequency

distribution is given by ψFI = {0.8998, 0.058, 0.0421}. The growth rate of population is

γFI = 1.0624.

For the private information economy the stationary distribution has support

WPI = {−11.5428,−9.5892,−9.5837,−9.5836,−9.5833,−9.4970,−4.6938,−3.0826} and the

frequency distribution is ψPI = {0.1495, 0.0927, 0.0660, 0.3581, 0.0782, 0.1089, 0.0858, 0.0607}.
The growth rate of population is γPI = 1.0355. Figure 3 shows the stationary distributions.

7.2 Endogenous fertility vs. exogenous fertility

In this section we compare the efficient allocation under private information in the benchmark

model (with fertility choice) to the allocation that comes out of a standard Mirrleesian

environment. The functional forms and parameters are the same as previous section. We

compare the case where η = 0 (exogenous fertility) to the case where η = −2.

Figure 4 shows the consumption, hours and promised utility (to the kids) allocations.

Figure 5 plots the future promised utility to the parents for both environments, i.e.

n(w, θ)ηw′(w, θ). Note that in the standard dynamic Mirrleesian environment, η = 0 and

future promised utility to the parent is the same as utility promised to the each kid.
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Figure 2: Future promised utility to the parents. Allocations in private information economy
are plotted in thicker line. The blue indicates high shock and red indicates low shock.
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Figure 3: Stationary distribution. Panel (a) shows the frequency and panel (b) shows the
CDF. Stationary distribution in private information economy is plotted in blue. The red
graph is the stationary distribution under full information.
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42



!50 !40 !30 !20 !10 0
!180

!160

!140

!120

!100

!80

!60

!40

!20

0

Current promised utility, w

n(
w

,!
)"

w
# (w

,!
)

Future utility promised to each parent, n(w,!)"w#(w,!)

 

 

High shock ! Endogenous Fertility
Low shock ! Endogenous Fertility
High shock ! Exogenous Fertility
Low shock ! Exogenous Fertility
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Appendix

A Proofs

A.1 Proof of Proposition 1

We first prove part 4.

Define G(C,N) = Nηu
(
C
N

)
. We then have

GC(C,N) = Nη−1u′
(
C

N

)
GN(C,N) = ηNη−1u

(
C

N

)
−Nη−2Cu′

(
C

N

)
GCC(C,N) = Nη−2u′

(
C

N

)
GCN(C,N) = (η − 1)Nη−2u′

(
C

N

)
−Nη−3Cu′′

(
C

N

)
GNN(C,N) = η(η − 2)Nη−2u

(
C

N

)
− 2(η − 1)Nη−3Cu′

(
C

N

)
+Nη−4C2u′′

(
C

N

)
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For strict concavity of G, we must have GCC < 0, GCCGNN −G2
NC > 0. This implies that

GCC(C,N) = Nη−2u′′
(
C

N

)
< 0

GCCGNN −G2
CN = (η − 1)

(
ηu

(
C

N

)
u′′
(
C

N

)
− (η − 1)u′

(
C

N

)2
)
> 0

The first inequality implies that u(c) is a concave function. As for the second inequality,

notice that when η is greater than 1, then since u′′ < 0, the term in the brackets is negative

which contradicts the inequality. Therefore, we have - replacing c for C
N

:

η < 1 , ηu(c)u′′(c)− (η − 1)u′(c)2 < 0

Now, we can rewrite (8) as follows:

η
u(c2(θ))

u′(c2(θ))
− c2(θ) = bθR

taking derivative of the left hand side with respect to c2 gives the following:

η
u′(c)2 − u′(c)u′′(c)

u′(c)2
− 1 =

(η − 1)u′(c)2 − ηu(c)u′′(c)

u′(c)2
> 0

where the inequality is from above. Therefore c2(θ) is increasing in θ and independent of

W0.

Equations (3) and (4), imply that c1(θ), n(θ), and m(θ)-leisure, are positively correlated.

Hence the binding feasibility implies that they are strictly increasing in W0 and l(θ) =

1−m(θ)− bn(θ) is st. decreasing in W0.

Moreover, since by (2), c1(θ) is independent of θ, equation (4) implies that n(θ) is negatively

correlated with c2(θ) and hence n(θ) is st. decreasing in θ. Also by equation (3), leisure is

decreasing in θ and therefore, labor supply is increasing in θ. �
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A.2 Proof of Corollary 2

Proof. We know from above that V (N,W ) = Nv(N−ηW ). Strict concavity of V (N,W )

implies that VWW > 0, VNN > 0, VWWVNN > V 2
WN . We have

VWW = N1−2ηv′′(N−ηW ) = N1−2ηv′′(w)

VWN = (1− η)N−ηv′(N−ηW )− ηN−2ηWv′′(N−ηW ) = N−η ((1− η)v′(w)− ηwv′′(w))

VNN = η(η − 1)N−η−1Wv′(N−ηW ) + η2N−2η−1W 2v′′(N−ηW )

= ηN−1w ((η − 1)v′(w) + ηwv′′(w))

After some algebra, we have

VWWVNN − V 2
WN = N−2η ((η − 1)v′(w) + ηwv′′(w)) (1− η)v′(w)

Therefore, the strict convexity of V (·, ·) implies that:

v′′(w) > 0

(η − 1)v′(w) + ηwv′′(w) =
d

dw
(ηwv′(w)− v(w)) > 0

v′(w) > 0

A.3 Proof of Proposition 2

Proof.

1. We have shown the results for w′(·, ·) above. (18) immediately implies that c(w, θ)

is independent of θ. Now, by increasing θ, w′(w, θ) goes up as well as v′(w′(w, θ))

since v is concave. Because, c(w, θ) is independent of θ, (16) implies that n(w, θ)η−1 is

increasing in θ, and since η < 1, we have that n(w, θ) is st decreasing in θ. (15) implies

that leisure is st. decreasing in θ and since fertility is decreasing, hours worked will be

increasing in θ.

2. Convexity of v(w) and (18) implies that c(w, θ) is increasing in w. An increase in w,

causes a decrease in marginal utility of consumption and (16) implies that fertility is

increasing in w. Moreover, (15) means that leisure is increasing in w and therefore

hours worked is decreasing in w.

45



A.4 Closed Form Solutions for Fertility

A.4.1 Two Period Example

Now if we assume that utility from consumption is CRRA, u(c) = c1−σ

1−σ , then (8) becomes

η + σ − 1

1− σ
c2(θ) = bRθ ⇒ c2(θ) =

1− σ
σ + η − 1

bRθ

Equation (3) then implies that

n(θ) =

((
(1− σ)bR

(σ + η − 1)

)σ
c−σ1

) 1
η−1

θ
σ
η−1

The above equation implies that fertility is a constant elasticity function of productivity, an

observation that is in accordance with the data15.

A.4.2 Fully Dynamic Version

To gain more intuition about how the model works, it is worth looking at the sequence

problem directly and characterize its solution. Here, we will focus on problem (P1’)16. The

problem is the following:

max
∞∑
t=0

βt
∑
θt

π(θt)Nη
t (θt−1)

(
u

(
Ct(θ

t)

Nt(θt−1)

)
+ h

(
1− Lt(θ

t)

Nt(θt−1)
− bNt+1(θt)

Nt(θt−1)

))
(P1’)

s.t.
∞∑
t=0

1

Rt

∑
θt∈Θt+1

π(θt)
(
Ct(θ

t)− θtLt(θt)
)
≤ K0

N0(θ−1) = N−1 : given

Notice that N does not appear in the constraint set since we are looking at total allocations

for each cohort with the same history. Assuming that the multiplier for feasibility constraint

15See Jones and Tertilt (2008)
16Solving (P1) instead of (P1’) is more complicated since each fertility level appears in infinitely many

terms.
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is λ, we will have the following equations:

βtRtNη−1
t u′

(
Ct
Nt

)
= λ (28)

βtRtNη−1
t h′

(
1− Lt

Nt

− bNt+1

Nt

)
= θtλ (29)

βt+1ηNη−1
t+1 Et

{
u

(
Ct+1

Nt+1

)
+ h

(
1− Lt+1

Nt+1

− bNt+2

Nt+1

)}
= bβtNη−1

t h′
(

1− Lt
Nt

− bNt+1

Nt

)
+βt+1Nη−2

t+1 Et

{
Ct+1u

′
(
Ct+1

Nt+1

)
− (Lt+1 + bNt+1)h′

(
1− Lt+1

Nt+1

− bNt+2

Nt+1

)}
(30)

The above equations have the same interpretation as (15)-(18). Now assume that u(c) =
c1−σ

1−σ , h(m) = ψm1−σ

1−σ
17. Combining (28) and (29) leads the following:

1

θt
βtRtNη−1

t h′(mt) = βt+1Rt+1Nη−1
t+1 u

′(ct+1)

Then (30) becomes the following:

βt+1Nη−1
t+1 Et

{
η(u(ct+1) + h(mt+1))− ct+1u

′(ct+1) + (1−mt+1)h′(mt+1))
}

= bβt+1RNη−1
t+1 θtu

′(ct+1)

and hence

η
c1−σ
t+1

1− σ
− c1−σ

t+1 + Et

{
ηψ

m1−σ
t+1

1− σ
+ ψ(1−mt+1)m−σt+1

}
= bRθtc

−σ
t+1

From the trade-off between leisure and consumption we have that ψm−σt+1 = θt+1c
−σ
t+1 and

η + σ − 1

1− σ
ct+1 + Et

η + σ − 1

1− σ
ct+1θ

1−1/σ
t+1 ψ1/σ + Etθt+1 = bRθt

Therefore,

ct+1(θt) =

(
1− σ

η + σ − 1

bR

1 + ψ1/σEθ1/σ

)
︸ ︷︷ ︸

A

θt −
1− σ

η + σ − 1

ψ

1 + ψ1/σEθ1/σ︸ ︷︷ ︸
B

and for fertility we have

nt(θ
t) =

(
1

βR

) 1
η−1
(

Aθt −B
Aθt−1 −B

) σ
η−1

17we will use m for leisure onward.
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A.5 Efficient Allocation is not Incentive Compatible

In this section, we show that the efficient allocation with full information does not satisfy

the incentive compatibility constraints for the maximization problem in section 4.

Intuitively, from intra-family risk sharing, equation (15), we know that per capita con-

sumption among siblings is equal. Moreover, efficiency requires that leisure is decreasing in

productivity, equation (16). It is therefore sufficient to show that future utility for a low

productivity agent is higher than a high productivity agent.

This is shown below.

One intuition for this comes from the curvature properties of the cost function, v(w). In

the unconstrained efficient allocation, the planner equates per capita marginal cost n(θ)1−ηv′(w′(θ))

across various types. We know from Corollary 2 that v′(·) has a curvature higher than 1−η
η

.

Therefore, for a given relative fertility ∆ > 1, equating per capita marginal cost implies that

relative promised utility is at most ∆η which implies that n(θ)ηw′(θ) has the same direction

as n(θ) does. Hence, overall promised value, n(θ)ηw′(θ), is higher for lower productivity

agents.

Formally, consider the efficient allocation, which is the solution to the dynamic program-

ming problem (P4). From (16) and (18), we have that

n(θ)1−ηv′(w′(θ)) = n(θ′)1−ηv′(w′(θ′)),∀θ, θ′ (31)

Moreover, from Corollary (2), we know that

wv′′(w)

v′(w)
>

1− η
η
⇒ v′′(w)

v′(w)
>

1− η
η

1

w

If we assume that θ > θ′, then w′(θ) > w′(θ′) and we can integrate the above equation to

obtain that

log

(
v′(w′(θ))

v′(w′(θ′))

)
=

∫ w′(θ)

w′(θ′)

v′′(w)

v′(w)
dw >

1− η
η

log

(
w′(θ)

w′(θ′)

)
and therefore

v′(w′(θ))

v′(w′(θ′))
>

(
w′(θ)

w′(θ′)

) 1−η
η

Combining the above with (31), we get the following inequality

(
n(θ′)

n(θ)

)1−η

=
v′(w′(θ))

v′(w′(θ′))
>

(
w′(θ)

w′(θ)

) 1−η
η

⇒ n(θ′)ηw′(θ′) > n(θ)ηw′(θ) (32)

Moreover, from proposition 1, we know that c(θ) does not depend on θ and leisure is de-
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creasing in θ. Therefore 1− l(θ)− bn(θ) < 1− l(θ′)− bn(θ′) < 1− θ′l(θ′)/θ − bn(θ′), when

θ > θ′. These properties together with (32) gives us the following inequality

u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ) ≤

< u(c(θ′)) + h(1− θ′l(θ′)

θ
− bn(θ′)) + βn(θ′)ηw′(θ′),∀θ > θ′

which means that under the efficient allocation, agents with higher productivity would like

to pretend to be low productivity. So the unconstrained efficient allocation is not incentive

compatible. �

A.6 Sufficient Condition for Slackness of Upward Incentive Con-

straints

In this section, we give sufficient conditions for slackness of upward incentive constraints.

That is we show that if the efficient allocation satisfies certain constraint, then downward

incentive constraints are sufficient. We summarize the sufficient conditions in the following

lemma:

Lemma 1 Suppose an allocation (c(θ), l(θ), n(θ), w′(θ)) satisfies the following:

1. l(θ)θ is increasing in θ ,

2. 1− l(θ)− bn(θ) ≤ 1− θ′l(θ′)
θ
− bn(θ′), for all θ > θ′

3. Local downward incentive constraints are binding:

u(c(θi)) + h(1− l(θi)− bn(θi)) + βn(θi)ηw′(θi) =

u(c(θi−1)) + h(1− θi−1l(θi−1)
θi

− bn(θi−1)) + βn(θi−1)ηw′(θi−1)

Then, incentive compatibility holds for any θ, θ′.

Proof. By part 3 of the assumption, we have

u(c(θi−1)) + βn(θi−1)ηw′(θi−1)− u(c(θi))− βn(θi)
ηw′(θi) =

= h(1− l(θi)− bn(θi))− h(1− θi−1l(θi−1)

θi
− bn(θi−1))

By part 2 and 3 of the assumption we have

1

θi−1

(θil(θi)− θi−1l(θi−1)) ≥ 1

θi
(θil(θi)− θi−1l(θi−1)) ≥ b(n(θi−1)− n(θi))
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Hence, for any x ∈ [1/θi, 1/θi−1]

x(θil(θi)− θi−1l(θi−1)) ≥ b(n(θi−1)− n(θi))

⇒ 1− xθi−1l(θi−1)− bn(θi−1) ≥ 1− xθil(θi−1)− bn(θi)

Therefore, using part 1 and concavity of h(·),

−h′(1− xθi−1l(θi−1)− bn(θi−1))θi−1l(θi−1) ≥ −h′(1− xθil(θi−1)− bn(θi))θil(θi)

Integrating both sides from 1/θi to 1/θi−1, we get

h(1−l(θi−1)−bn(θi−1))−h(1− θi−1l(θi−1)
θi

−bn(θi−1)) ≥ h(1− θil(θi)
θi−1

−bn(θi))−h(1−l(θi)−bn(θi))

Therefore,

u(c(θi−1)) + βn(θi−1)ηw′(θi−1)− u(c(θi))− βn(θi)
ηw′(θi) ≥

≥ h(1− θil(θi)

θi−1

− bn(θi))− h(1− l(θi−1)− bn(θi−1))

Hence, the local upward incentive constraints are satisfied.

Now, we will show that other upward incentive constraints are satisfied . To illustrate

we show the argument for i and i + 2 and a similar inductive argument works for higher

differences. By condition 2, we know that:

1

θi+2

(θi+2l(θi+2)− θi+1l(θi+1)) ≥ b(n(θi+1)− n(θi+2))

and therefore,

1

θi
(θi+2l(θi+2)− θi+1l(θi+1)) ≥ 1

θi+1

(θi+2l(θi+2)− θi+1l(θi+1)) ≥ b(n(θi+1)− n(θi+2))

Hence, for any x ∈ [1/θi+1, 1/θi],

1− xθi+1l(θi+1)− bn(θi+1) ≥ 1− xθi+2l(θi+2)− bn(θi+2)
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and we have,

h′(1− xθi+1l(θi+1)− bn(θi+1)) ≤ h′(1− xθi+2l(θi+2)− bn(θi+2))

⇒ −h′(1− xθi+1l(θi+1)− bn(θi+1))θi+1l(θi+1) ≥ −h′(1− xθi+2l(θi+2)− bn(θi+2))θi+2l(θi+2)

So,

h(1− θi+1l(θi+1)
θi

− bn(θi+1))− h(1− l(θi+1)− bn(θi+1))

≥ h(1− θi+2l(θi+2)
θi

− bn(θi+2))− h(1− θi+2l(θi+2)
θi+1

− bn(θi+2)) (33)

Rewriting local IC’s for i, i+ 1 and i+ 1, i+ 2:

u(c(θi)) + βn(θi)
ηw′(θi)− u(c(θi+1))− βn(θi+1)ηw′(θi+1) ≥

≥ h(1− θi+1l(θi+1)

θi
− bn(θi+1))− h(1− l(θi)− bn(θi)) (34)

u(c(θi−1)) + βn(θi+1)ηw′(θi+1)− u(c(θi+2))− βn(θi+2)ηw′(θi+2) ≥

≥ h(1− θi+2l(θi+2)

θi+1

− bn(θi+2))− h(1− l(θi+1)− bn(θi+1)) (35)

Summing over inequalities (33)-(34), we get:

u(c(θi−1)) + βn(θi)
ηw′(θi)− u(c(θi+2))− βn(θi+2)ηw′(θi+2) ≥

≥ h(1− θi+2l(θi+2)

θi
− bn(θi+2))− h(1− l(θi)− bn(θi))

which is the upward incentive constraint for i, i+ 2. The rest of the upward and downward

incentive constraints can be proved in a similar way.

A.7 Proof of Proposition 6

We first prove the following lemma:

Lemma 2 Suppose Assumptions 3 and 4 hold, then the value function and the policy func-

tions satisfy the following properties:
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lim
w→−∞

v(w) = −
∑
i

πiθi

lim
w→−∞

c(w, θi) = 0

lim
w→−∞

n(w, θi) = 0

lim
w→−∞

l(w, θi) = 1

Proof. Consider the following set of function:

S =

{
v̂; v̂ ∈ C(R−), v̂: weakly increasing lim

w→−∞
v̂(w) = −

∑
i

πiθi

}
Moreover define the following mapping on S as

T v̂(w) = min
∑
j

πj

[
cj − θjlj +

1

R
nj v̂(w′j)

]
s.t.

∑
j

πj
[
u(cj) + h(1− lj − bnj) + βnηjw

′
j

]
≥ w

u(cj) + h(1− lj − bnj) + βnηjw
′
j ≥

u(ci) + h(1− θili
θj
− bni) + βnηiw

′
i, ∀j > i

cj, lj, nj ≥ 0

1 ≥ lj + bnj

We first show that the solution to the above program has the claimed property for the

policy function and that T v̂ satisfies the claimed property. Then, since S is closed and T

preserves S, by Contraction Mapping Theorem we have that the fixed point of T belongs to

S.

Now, suppose the claim about policy function for fertility, does not hold. Then there

exists a sequence wn → −∞ such that for some i, n(wn, θi)→ n̄i > 0. For each j 6= i, define

n̄j = lim infn→∞ n(wn, θj), then we must have

lim inf
n→∞

T v̂(wn) ≥
∑
j

πj[−θj(1− bn̄j) +
1

R
n̄j

[
−
∑
k

πkθk

]
Note that by Assumption 4, we have
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bθj >
1

R

∑
k

πkθk, ∀j

and therefore, if n̄j ≥ 0, we must have

−θj + bn̄jθj −
1

R
n̄j
∑
k

πkθk ≥ −θj

with equality only if n̄j = 0. This implies that

lim inf
n→∞

T v̂(wn) > −
∑
j

πjθj

since n̄i > 0.

Now,we construct a sequence of allocation and show that the above cannot be an optimal

one. Consider a sequence of numbers εm that converges to zero. Define

cm(θi) = u−1(−εηm)

nm(θi) = (n− i)
1
η εm

w′m(θi) = w̃ < 0

If h is bounded above and below, define

lm(θi) = 1− εm − bnm(θi)

By construction,

cm(θi) → 0

nm(θi) → 0

lm(θi) → 1

Moreover,

u(cm(θj)) + βnm(θj)
ηw′m(θj)− u(cm(θi))− βnm(θi)

ηw′m(θi) = βw̃εηm(i− j), ∀j > i

This expression converges to ∞ and therefore, since h is bounded above and below for m

large enough, the allocations are incentive compatible.
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When, h is unbounded below, since the utility of deviation is bounded away from −∞,

it is possible to construct a sequence for lm that converges to 1. Find lm(θi) such that

h(1− lm(θi)− bnm(θi)) =
1

2
w̃εηm

Hence, we have:

u(cm(θj)) + h(1− lm(θj)− bnm(θj)) + βnm(θj)ηw′m(θj)− u(cm(θi))− βnm(θi)ηw′m(θi)

= w̃εηm(i− j +
1
2

)

converges to ∞. Moreover, by definition lm(θi) converges to 1 and nm(θi) converges to zero

and therefore the deviation value for leisure, h(1− θilm(θi)
θj
− bnm(θi)) , converges to h(1− θi

θj
).

This implies that for m large enough

u(cm(θj)) + h(1− lm(θj)− bnm(θj)) + βnm(θj)ηw′m(θj)− u(cm(θi))− βnm(θi)ηw′m(θi)

≥ h(1− θilm(θi)
θj

− bnm(θi))

and for m large enough the allocation is incentive compatible.

Therefore, The utility from the constructed allocation is the following:

ŵm = εηn

[
−1 + β

∑
Aηj w̃

]
+
∑
k

πj[h(1− lm(θj)− bnm(θj))]

It is clear that ŵm’s converge to −∞ and the allocation’s cost converges to −
∑

j πjθj.

Now since ŵmand wnconverge to −∞, there exists subsequences ŵmk and wnk such that

ŵmk ≥ wnk and therefore by optimality:

∑
j

πj

[
cmk(θj)− θjlmk(θj) +

1

R
nmk(θj)v̂(w̃)

]
≥ T v̂(wnk)

and therefore,

−
∑
k

πkθk ≥ lim inf
n→∞

T v̂(wn) > −
∑
k

πkθk

and we have a contradiction. This completes the proof.

Since h is unbounded below, given the above lemma for w ∈ R− low enough, allocations

should be interior and since v is differentiable, positive lagrange multipliers λ, µ(i, j)|i>j

54



must exists such that

u′(c(w, θi))

πiλ(w) +
∑
j<i

µ(i, j;w)−
∑
j>i

µ(j, i;w)

 = πi

βn(w, θi)η−1

πiλ(w) +
∑
j<i

µ(i, j;w)−
∑
j>i

µ(j, i;w)

 = πi
1
R
v′(w′(w, θi))

h′(1− l(w, θi)− bn(w, θi))

πiλ(w) +
∑
j<i

µ(i, j;w)


−
∑
j>i

µ(j, i;w)
θi
θj
h′(1− θil(w, θi)

θj
− bn(w, θi)) = πiθi

{
−bh′(1− l(w, θi)− bn(w, θi)) + βηn(w, θi)η−1w′(w, θi)

}πiλ(w) +
∑
j<i

µ(i, j;w)


−
∑
j>i

µ(j, i;w)
{
−bh′(1− θil(w, θi)

θj
− bn(w, θi)) + βηn(w, θi)η−1w′(w, θi)

}
= πi

1
R
v(w′(w, θi))

By Lemma 2, we must have:

lim
w→−∞

c(w, θj) = 0

lim
w→−∞

n(w, θj) = 0

lim
w→−∞

l(w, θj) = 1

Then for every ε > 0, there exists W such that for all w < W , we have u′(c(w, θj)) >
N
ε
, h′(1− l(w, θj)− bn(w, θj)) >

N
ε

. This implies that

λ(w) =
∑
j

πj
u′(c(w, θj))

<
ε

N

πnλ(w) +
∑
j<n

µ(n, j;w) =
πn

u′(c(w, θn))
<

ε

N

⇒ µ(n, j;w) <
ε

N

In addition,

πn−1λ(w) +
∑
j<n−1

µ(n− 1, j;w)− µ(n, n− 1;w) =
πn−1

u′(c(w, θn−1))
<

ε

N

⇒ µ(n− 1, j;w) <
2ε

N
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By an inductive argument, we have

µ(i, j;w) <
aiε

N

where an−1 = 1, an−2 = 2, an−i = an−1 + · · · + an−i+1 + 1. If we pick N so that a1 < N , we

have that

µ(i, j;w) < ε, ∀w < W

Moreover, by substituting first order conditions, we get

πibθi ≥ πi
1

R
ηv′(w′(w, θi))w

′(w, θi)− πi
1

R
v(w′(w, θi))

= πibθi − b
∑
j>i

(
1− θi

θj

)
µ(i, j)h′(1− θil(w, θi)

θj
− bn(w, θi))

> πibθi − bε
∑
j>i

(
1− θi

θj

)
h′(1− θil(w, θi)

θj
− bn(w, θi))

Since hours converges to 1, the term multiplied by ε in the above expression is bounded away

from ∞. This implies that

lim
w→−∞

w′(w, θi) = wi

where wi satisfies 18

ηv′(wi)wi − v(wi) = bRθi

�

18Notice that by assumption 4, w̄i ∈ R, since bRθi + v(−∞) > 0. In addition, it can be shown that
v′(w)w → 0 as w → −∞.
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A.8 Proof of Corollary 3

By Proposition 6, we know that

lim
w→−∞

w′(w, θi) = wi

This implies that there exists a wε such that

∀w ≤ wε, |w′(w, θi)− wi| < ε

By assumption 6, wi < w̄. Now define,

w = min

{
wε, w1 − ε, w2 − ε, · · · , wn − ε, inf

w∈[wε,w],i
w′(w, θi)

}
Notice that since w′ is a continuous function that is always in R and the infimum is taken over

a compact set, w is well-defined. Pick ε > 0 small enough so that infw∈[wε,w],iw
′(w, θi) < wj−ε

for all j. Then by definition of wε we must have

w′(w, θi) ∈ [w, w̄], ∀w ∈ [w, w̄]

�

Since utility is unbounded below and η is negative, n(w, θi) must be positive. Hence we

can have the following corollary:

Corollary 6 For all w ∈ [w, w̄], we must have n(w, θi) ≥ n and n(w,θn)
n(w,θi)

≥ A, for all i ∈
{1, · · · , n} and for some n, A > 0.

A.9 Assumption 6

Here we show that, under some additional assumptions, Assumption 6 can be shown to hold

from primitives.

Suppose there are I types Θ = {θ1, . . . , θI} and θi+1 > θi for all 1 < i ≤ I. We break the

proof into few lemmas.

Throughout this section, we make two additional assumptions:

1. V (N,W ) is convex;
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2. If l(θ) = 0 for some θ, then l(θ′) = 0 for all θ′ < θ;

3. If all local downward incentive constraints are satisfied, all downward incentive con-

straints are satisfied.

Consider the following problem:

v(w) = min
c(θ),l(θ),n(θ)

∑
θ∈Θ

π(θ)

(
c(θ)− θl(θ) +

1

R
n(θ)v(w′(θ))

)
s.t.

∑
θ∈Θ

π(θ) (u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ)) ≥ w

u(c(θi)) + h(1− l(θi)− bn(θi)) + βn(θi)
ηw′(θi) ≥

u(c(θi−1)) + h

(
1− θi−1l(θi−1)

θi
− bn(θi−1)

)
+ βn(θi−1)ηw′(θi−1)

Lemma 3 For any w such that l(w, θI) > 0 we have w′(w, θi) < w′(w, θI) for all i < I.

Proof. Let λ and µi be multipliers on promise keeping and incentive constraints. For now

suppose l(w, θi) > 0 for all i. First order conditions are (we suppress the dependence of the

allocation on w, it plays no role in the following arguments):(
λ+

µI
π(θI)

)
h′(1− l(θI)− bn(θI)) = θI (36)(

λ+
µi
π(θi)

)
h′(1− l(θi)− bn(θi))−

µi+1

π(θi)

θi
θi+1

h′
(

1− θil(θi)

θi+1

− bn(θi)

)
= θi (37)

v′(w′(θI)) =

(
λ+

µI
π(θI)

)
βRn(θI)

η−1 (38)

v′(w′(θi)) =

(
λ+

µi
π(θi)

− µi+1

π(θi)

)
βRn(θi)

η−1 (39)
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(
λ+

µI
π(θI)

)
ηβRn(θI)

η−1w′(θI) = v(w′(θI)) (40)

+Rb

(
λ+

µI
π(θI)

)
h′(1− l(θI)− bn(θI))(

λ+
µi
π(θi)

− µi+1

π(θi)

)
ηβRn(θi)

η−1w′(θi) = v(w′(θi)) (41)

+Rb

(
λ+

µi
π(θi)

)
h′(1− l(θi)− bn(θi))

− µi+1

π(θi)
Rbh′

(
1− θil(θi)

θi+1

− bn(θi)

)
for 1 < i < I.

Combining these equations we can get the following two equations

ηw′(θI)v
′(w′(θI))− v(w′(θI)) = RbθI (42)

ηw′(θi)v
′(w′(θi))− v(w′(θi)) = Rb

(
λ+

µi
π(θi)

)
h′(1− l(θi)− bn(θi)) (43)

− µi+1

π(θi)
Rbh′

(
1− θil(θi)

θi+1

− bn(θi)

)
Since ηwv′(w)− v(w) is increasing in w, to establish the claim of the lemma it is enough

to show that the right hand side of the equation (43) is smaller that RbθI . But notice that(
λ+

µi
π(θi)

)
h′(1− l(θi)− bn(θi))−

µi+1

π(θi)
h′
(

1− θil(θi)

θi+1

− bn(θi)

)
<(

λ+
µi
π(θi)

)
h′(1− l(θi)− bn(θi))−

µi+1

π(θi)

θi
θi+1

h′
(

1− θil(θi)

θi+1

− bn(θi)

)
= θi

< θI

And this finishes the proof for the case in which l(w, θi) > 0 for all i.

Now consider the case in which the non-negativity constraint on hours is binding for

some types. Let 1 ≤ j < I and suppose for all types θi ,1 ≤ i ≤ j we have l(w, θi) = 0,

and for all types θi, i > j we have l(w, θi) => 0.Then all types θi, 1 ≤ i ≤ j receive the

same allocations and therefore µi = 0 for 1 ≤ i ≤ j. The equations (43) and (37) for type θj

change to

ηw′(θj)v
′(w′(θj))− v(w′(θj)) = Rb

(
λ− µj+1

π(θj)

)
h′(1− bn(θj))
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and (
λ− µj+1

π(θj)

θj
θj+1

)
h′(1− bn(θi)) > θi

Suppose w′(θj) > w′(θI), then

Rb

(
λ− µi+1

π(θj)

)
h′(1− bn(θj)) = ηw′(θj)v

′(w′(θj))− v(w′(θj)) > RbθI

and therefore

h′(1− bn(θj)) >
θI

λ− µj+1

π(θj)

>
θI

λ+ µI
π(θI)

= h′(1− bn(θI)− l(θI))

Hence

1− bn(θj) < 1− l(θI)− bn(θI)

On the other hand w′(θj) > w′(θI) implies(
λ− µi+1

π(θj)

)
n(θj)

η−1 =
v′(w′(θj))

βR
>
v′(w′(θI))

βR
=

(
λ+

µI
π(θI)

)
n(θI)

η−1

and therefore

n(θI) > n(θj)

Then l(θI) has to be negative which is contradiction. Therefore, we must have w′(w, θj) <

w′(w, θI) for all w such that l(w, θI) > 0. Since l(w, θi) = 0 for all i < j, we also know that

w′(w, θi) = w′(w, θj) < w′(w, θI) for all i < j.

Next we will find the promised utility at which the non-negativity for the the type θI

just binds. At this point, type θL also works zeros hours and therefore both types receive

the same allocations.

Let ĉ and n̂ be the solution to the following equations

θIu
′(ĉ) = h′(1− bn̂)

v′(wI) =
βRn̂η−1

u′(ĉ)
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in which wH is the solution to the following equation

ηwIv
′(wI)− v(wI) = RbθI

Define

ŵ = u(ĉ) + h(1− bn̂) + βn̂ηwI

Note that w′(ŵ, θI) = w′(ŵ, θi) = wI for all i.

Next we show that for w > ŵ, both types work zero hours and w′(w, θ) > wI for all θ.

Then we prove the claim of the proposition for two cases on wI > ŵ and wI < ŵ.

Lemma 4 If w > ŵ, then l(w, θI) = 0.

Proof. Suppose otherwise and consider the following equations

w = u(c) + h(m) + βnηwI

and

θHu
′(c) = h′(m)

v′(wH) =
βRnη−1

u′(c)

in which m = 1− l − bn. Note that

u′(c)
∂c

∂w
− h′(m)

∂m

∂w
+ βwHηn

η−1 ∂n

∂w
= 1

θHu
′′(c)

∂c

∂w
= h′′(m)

∂m

∂w

v′(wH)u′′(c)
∂c

∂w
= βRη − 1nη−2 ∂n

∂w

The last two equations imply that ∂c
∂w

, ∂n
∂w

and ∂m
∂w

must have the same sign. The only way

that this can be consistent with the first equation is that all have positive sign. If ∂m
∂w

> 0

and ∂n
∂w

> 0, then we must have ∂l
∂w

< 0. Evaluating this at w = ŵ implies that l(w, θ) < 0

for w > ŵ. This implies that for w > ŵ the non-negativity binds.

Next, we show that if wI > ŵ the claim in the proposition is satisfied.
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Lemma 5 If wI > ŵ, then there exist ŵ ≤ w∗ ≤ 0 such that w′(w∗, θ) = w∗.

Proof. Recall that that since l(w, θ) ≥ 0 is binding, both types work zero and receive the

same allocations. Therefore, the incentive constraint is slack. The first order conditions for

type θI are

λh′(1− bn(θI)) > θI

and

v(w′(θI)) +Rbλh′(1− bn(θI)) = ληβRn(θI)
η−1w′(θI)

therefore

ηw′(θI)v
′(w′(θI))− v(w′(θI)) = Rbλh′(1− bn(θI)) > RbθI

This implies, w′(w, θH) > wH > ŵ. Define the function w′ε(·, θ) : [ŵ,−ε]→ [ŵ,−ε] as

w′ε(·, θ) =

w′(·, θ) if w′ε(·, θ) ≤ −ε

−ε if w′ε(·, θ) > −ε

This function must have a fixed point w∗ε ∈ [ŵ,−ε]. We know that w′(·, θ) = limε→0w
′
ε(·, θ).

Then, either a ŵ < w∗ < 0 exists such that w′(w∗, θ) = w∗ or limw→0w
′(w, θ) = 0. (Note

that because no one works all types receive the same allocations).

So far we have established that if wI > ŵ, then we can choose w = w̄ = w∗ and the

proposition is proved.

Now suppose wI ≤ ŵ. Then, by Lemma 3, w(w, θ) ≤ wI ≤ ŵ for all w. Let w̄ = ŵ.

Then, using this along with Corollary 3, it follows that w′(w, θ) ∈ [w, w̄] for any w ∈ [w, w̄],

that is w′ maps the compact set [w, w̄] into itself – i.e., Assumption 6 is satisfied.
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A.10 Proof of Remark 5

Since l(w, θn) > 0 for all w ∈ [w,w0], resetting property at the top holds. Therefore, by

definition

EΨ(n) ·Ψ ({w0}) = πn

∫
S

n(w, θn)dΨ(w)

EΨ(n) =

∫
S

n∑
i=1

πin(w, θi)dΨ(w)

≤ πn

∫
S

n(w, θn)dΨ(w)

+(1− πn)A−1

∫
S

n(w, θn)dΨ(w)

= (πn + (1− πn)A−1)

∫
S

n(w, θn)dΨ(w)

Therefore,

Ψ ({w0}) ≥
πnA

1− πn + πnA

�
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A.11 Implementation

A.11.1 Distortions

The constrained efficient allocation c∗1(θ), l∗(θ), n∗(θ) solves the following problem

max
∑
i=H,L

πi [u(ci) + h(1− li − bni) + βnηi u(c2)]

s.t.
∑
i=H,L

πi

[
ci +

1

R
nic2

]
≤
∑
i=H,L

πiθili +RK0

u(cH) + h(1− lH − bnH) + βnηHu(c2) ≥

u(cL) + h(1− θLlL
θH
− bnL) + βnηLu(c2).

Assuming it is interior, it satisfies the following first order conditions:

u′(c∗H)(πH + µ) = λπH

u′(c∗L)(πL − µ) = λπL

h′(1− l∗H − bn∗H)(πH + µ) = λθHπH

h′(1− l∗L − bn∗L)πL − µ
θL
θH
h′(1− θLl

∗
L

θH
− bn∗L) = λθLπL[

−bh′(1− l∗H − bn∗H) + βηn∗η−1
H u(c2)

]
(πH + µ) = λ

1

R
πHc2[

−bh′(1− l∗L − bn∗L) + βηn∗η−1
L u(c2)

]
πL

−
[
−bh′(1− θLl

∗
L

θH
− bn∗L) + βηn∗η−1

L u(c2)

]
µ = λ

1

R
πLc2

Now suppose that we want to implement the above allocation with a tax in first period

of the form T (y, n). Then consumer’s problem is the following:

max u(c1) + h(1− l − bn) + βnηu(c2)

s.t. c1 + k1 ≤ Rk0 + θl − T (θl, n)

nc2 ≤ Rk1

As a first step, we assume that T is differentiable and that y is interior for both types.

Then the FOCs are the following:
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u′(c1) = λ1

h′(1− l − bn) = λ1θ(1− Ty(θl, n))

Rλ1 = λ2

−bh′(1− l − bn) + βηnη−1u(c2) = λ2c2 + λ1Tn(θl, n)

Comparing the FOC’s for the planner with these, we see immediately that Tn(θH l
∗
H , n

∗
H) =

0, Ty(θH l
∗
H , n

∗
H) = 0 – there are no (marginal) distortions on the decisions of the agent with

the high shock. Moreover, from the FOC’s of the planner’s problem we get:

[
−bh′(1− l∗L − bn∗L)πL + bh′(1− θLl

∗
L

θH
− bn∗L)µ

]
1

πL − µ

+βηn∗η−1
L u(c2) =

1

R
u′(c∗1)c2.

We know that

1− θLl
∗
L

θH
− bn∗L > 1− l∗L − bn∗L

⇒ h′(1− θLl
∗
L

θH
− bn∗L)µ < h′(1− l∗L − bn∗L)µ

bh′(1− θLl
∗
L

θH
− bn∗L)µ− bh′(1− l∗L − bn∗L)πL < bh′(1− l∗L − bn∗L)µ− bh′(1− l∗L − bn∗L)πL[

−bh′(1− l∗L − bn∗L)πL + bh′(1− θLl
∗
L

θH
− bn∗L)µ

]
1

πL − µ
< −bh′(1− l∗L − bn∗L).

Hence,

1

R
u′(c∗1)c2 − βηn∗η−1

L u(c2) < −bh′(1− l∗L − bn∗L).

By FOC of the consumer problem,we have

0 < Tn(θLl
∗
L, n

∗
L) = −bh′(1− l∗L − bn∗L)− 1

R
u′(c∗1)c2 + βn∗η−1

L u(c2).

Finally, we turn to Ty(θLl
∗
L, n

∗
L). From above, we have:
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h′(1− l∗L − bn∗L)πL − µ
θL
θH
h′(1− θLl

∗
L

θH
− bn∗L) = λθLπL

h′(1− l∗L − bn∗L)

[
πL − µ

θL
θH

]
< λθLπL

h′(1− l∗L − bn∗L)

[
πL − µ

θL
θH

]
< θLu

′(c∗L)(πL − µ)

h′(1− l∗L − bn∗L) < θLu
′(c∗L)

(πL − µ)[
πL − µ θL

θH

]
h′(1− l∗L − bn∗L) < θLu

′(c∗L)

Thus, from the FOC’s of the agent’s problem, we see that Ty(θLl
∗
L, n

∗
L) > 0.

A.11.2 Defining of Tax Function

Begin by defining the levels of utilities for the two types that are obtained at the socially

efficient allocation:

ūL = u(c∗1L) + h(1− y∗L
θL
− bn∗L) + βn∗ηL u(c2);

ūH = u(c∗1H) + h(1− y∗H
θH
− bn∗H) + βn∗ηH u(c2);

We define two versions of the tax function. The first, TL, is designed to make sure that

the low type always gets utility ūL if they satisfy their budget constraint with equality. The

second, TH , is defined similarly:

ūL = u(y − TL(y, n)− 1

R
nc2) + h(1− y

θL
− bn) + βnηu(c2);

ūH = u(y − TH(y, n)− 1

R
nc2) + h(1− y

θH
− bn) + βnηu(c2);

It can be shown that the locus of the points TH(y, n) = TL(y, n) is downward sloping in

(y, n) space.

Next we show that TL(y∗L, n
∗
L) = TH(y∗L, n

∗
L). We know that at the constrained efficient

allocation, type θH is indifferent between the allocations (c∗1H , y
∗
H , n

∗
H , c

∗
2) and (c∗1L, y

∗
L, n

∗
L, c
∗
2).

66



Hence we have the following equality:

ūH = u(c∗1H) + h(1− y∗H
θH
− bn∗H) + βnηHu(c2) = u(c∗1L) + h(1− y∗L

θH
− bn∗L) + βn∗ηL u(c2)

replace for c∗1H and c∗1L from budget constraints, we also get

ūH = u(y∗H − TH(y∗H , n
∗
H)− 1

R
n∗Hc2) + h(1− y∗H

θH
− bn∗H) + βnηHu(c2)

= u(y∗L − TL(y∗L, n
∗
L)− 1

R
n∗Lc2) + h(1− y∗L

θH
− bn∗L) + βn∗ηL u(c2)

Moreover, from the definition of TH we know that

ūH = u(y∗L − TH(y∗L, n
∗
L)− 1

R
n∗Lc2) + h(1− y∗L

θH
− bn∗L) + βn∗ηL u(c2)

Hence, the last two equalities imply that TL(y∗L, n
∗
L) = TH(y∗L, n

∗
L).

We can also show that TH(y∗H , n
∗
H) > TL(y∗H , n

∗
H). This follows from the fact that type

θL strictly prefers the allocation (c∗1L, y
∗
L, n

∗
L, c
∗
2) to (c∗1H , y

∗
H , n

∗
H , c

∗
2), i.e.:

ūL = u(c∗1L) + h(1− y∗L
θL
− bn∗L) + βn∗ηL u(c2)

> u(c∗1H) + h(1− y∗H
θL
− bn∗H) + βn∗ηH u(c2)

replace for c∗1H and c∗1L from budget constraints, we also get

ūL = u(y∗L − TL(y∗L, n
∗
L)− 1

R
n∗Lc2) + h(1− y∗L

θL
− bn∗L) + βn∗ηL u(c2)

> u(y∗H − TH(y∗H , n
∗
H)− 1

R
n∗Hc2) + h(1− y∗H

θL
− bn∗H) + βn∗ηH u(c2)

By definition of TLwe have

ūL = u(y∗H − TL(y∗H , n
∗
H)− 1

R
n∗Hc2) + h(1− y∗H

θL
− bn∗H) + βn∗ηH u(c2)

Hence, we have that TH(y∗H , n
∗
H) > TL(y∗H , n

∗
H).
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A.11.3 Proof of Proposition 7

Given the tax funtion, the consumer’s problem is the following:

maxc1,y,n u(c1) + h(1− y

θ
− bn) + βnηu(c2)

s.t. c1 +
1

R
nc2 ≤ y − T (y, n)

We know that T (y∗H , n
∗
H) = TH(y∗H , n

∗
H). Hence, type θH can afford (c∗1H , y

∗
H , n

∗
H) and

u(c∗1H , y
∗
H , n

∗
H ; θH) = ūH . Let (c1, y, n) be any allocation that satisfy c1 + 1

R
c2 = y − T (y, n).

Then,

c1 +
1

R
nc2 = y −max{TL(y, n), TH(y, n)} ≤ y − TH(y, n)

But by definition of TH , u(c1, y, n) can be at most ūH .

Using similar argument we can show that type θH can afford (c∗1L, y
∗
L, n

∗
L) and u(c∗1L, y

∗
L, n

∗
L; θL) =

ūL. Moreover, any allocation that satisfy the budget constraint has utility at most ūL.

The differnitbaility of T and properties of marginal taxes follows form the discussion

above.
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B Linear Utility of Leisure

The problem becomes the following - h(m) = ψm:19

V (N,W ) = min
Ci,Li,Ni,W ′i

n∑
i=1

π(θi)

[
Ci − θiLi +

1

R
V (Ni,W

′
i )

]
(P5)

s.t
n∑
i=1

π(θi)

[
Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bNi

N

))
+ βW ′

i

]
≥ W

Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bN

′
i

N

))
+ βW ′

i ≥

Nη

(
u

(
Cj
N

)
+ ψ

(
1− θjLj

θiN
− b

N ′j
N

))
+ βW ′

j

∀i, j.

Notice that the set of reports is not restricted to lower reports since we can prove that general

incentive compatibility is equivalent to local downward constraints being binding and output

being increasing, a similar approach to Thomas and Worrall (1990). Notice that adding the

IC constraint where j pretends to be i and the reverse implies that:

θiLi
θjN

+
θjLj
θiN

≥ Li
N

+
Lj
N

Therefore, if θi > θj, then θiLi ≥ θjLj which mean output is increasing.

Moreover, if we assume that local downward IC constraints are binding and output is in-

creasing, it can be easily shown that the local upward constraints are satisfied and summing

over local incentive constraints gives the general ones. We also assume that output being

increasing is not binding so we can neglect it. Therefore the functional equation becomes

the following:

V (N,W ) = min
Ci,Li,N ′i ,W

′
i

n∑
i=1

π(θi)

[
Ci − θiLi +

1

R
V (N ′i ,W

′
i )

]
s.t

n∑
i=1

π(θi)

[
Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bN

′
i

N

))
+ βW ′

i

]
≥ W

Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bN

′
i

N

))
+ βW ′

i ≥

Nη

(
u

(
Ci−1

N

)
+ ψ

(
1− θi−1Li−1

θiN
− b

N ′i−1

N

))
+ βW ′

i−1

19Assume that Θ = {θ1 < θ2 < ... < θn}. We will index allocations by i instead of θ.
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Let −λN1−η be the lagrange multiplier on promise-keeping constraint and −µiN1−η be the

multiplier for i-th IC constraint. Then the first order condition for hours worked is the

following:

πnθn = (λπn + µn)ψ

πiθi = (λπi + µi −
θiµi+1

θi+1

)ψ, i = 2, · · · , n (44)

π1θ1 = (λπ1 −
θ1µ2

θ2

)ψ (45)

We can define µ1 = µn+1 = 0 and (44) holds for i = 1, ..., n. If we divide the i-th equation

by θi and sum over all i’s, the µi’s will cancel and we have

λ =
1

ψ
∑

i
πi
θi

=
1

ψ E 1
θ

(46)

Therefore,

µi =
1

ψ
θi
∑
j≥i

πj −
θi
∑

j≥i
πj
θj

ψ
∑

j
πj
θj

= θi

∑
j
πj
θj

∑
j≥i πj −

∑
j≥i

πj
θj

ψ
∑

j
πj
θj

Since θi’s increasing, all the µi’s are positive.

The first order conditions with respect to consumption are:

πi = (λπi + µi − µi+1)u′
(
Ci
N

)
Obviously, we need consumption to be increasing as well as marginal utility to be positive.

This gives us a condition on distribution of θi. Moreover, we can see that consumption is

independent of state variable (N,W ).

The first order conditions with respect to N ′i ,W
′
i are the following:

πi
1

R
VN(N ′i ,W

′
i ) = −b(λπi + µi − µi+1)ψ (47)

πi
1

R
VW (N ′i ,W

′
i ) = N1−η(λπi + µi − µi+1)β (48)

Now for every i, define after-tax-productivity as follows:

θ̃i = ψ
λπi + µi − µi+1

πi

Notice that we have u′(Ci/N)θ̃i = ψ and θ̃i does not depend on the state variables. From

before, we know that there exists a function v(·) such that V (N,W ) = Nv(N−ηW ). There-
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fore,

VN(N,W ) = v(w)− ηwv′(w), VW (N,W ) = N1−ηv′(w)

where w = N−ηW . Hence, from (48) we have that:

ηw′iv
′(w′i)− v(w′i) = bRθ̃i

N ′1−ηi v′(wi) = βRN1−ηθ̃i

The above, implies that ni = N ′i/N,w
′
i are also independent of the state. Moreover, from

the Envelope condition we have that:

VW (N,W ) = λN1−η =
N1−η

ψ
∑

i
πi
θi

= N1−ηv′(w)

Therefore, v(·) is a linear function and we must:

v(w) = A+
w

ψ
∑

i
πi
θi

⇒ V (N,W ) = AN +
WN1−η

ψ
∑

i
πi
θi

Notice that to satisfy assumption 2, we need Nηh(M
N

) to be concave and therefore, to have

Nη−1M be weakly concave, we must have η = 1. In this case V (N,W ) is linear in (N,W )

and therefore weakly convex.
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