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introduction

◦ why is there so much inequality?
◦ why are aggregate growth rates so stable?

I stuff grows, but not all at the same time

• a model of knowledge diffusion and growth with
1. randomness in individual discovery
2. randomness in who learns from whom
3. randomness in social learning delays
4. heterogeneity in ability to learn from others

I mechanism for growth and inequality:
—individual discoveries generate and preserve heterogeneity

—with selective replication, aggregate growth emerges
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issue 1: how does useful knowledge spread?

I two ways in which an idea can travel without scale effects
• st = number of senders

• rt = number of receivers

1. random meetings with imitation

st+1 − st = rt ×
st

rt + st
(CES with ε = 1/2)

2. assignment with random learning

st+1 − st = min{rt, st} (CES with ε = 0)

I will show: differences in ability magnified by (2)
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issue 2: multiplicity of balanced growth paths

• learning from others with delay
• productivity distribution with a thick right tail

I implies fast growth

—thick tail provides inexhaustible source of ideas to be copied

—growth rate pinned down by choice of initial distribution

I but, every initial distribution with
finite support implies the same long-run growth rate

I for this, randomness in individual discoveries is essential
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closely related models of idea flows

I Jovanovic and Rob 1989
B Kortum 1997
B Eaton and Kortum 1999
• Luttmer 2007: ideas embodied in firms, imitation by entrants
◦ Alvarez, Buera and Lucas 2008
◦ Lucas 2009
• Staley 2011
• Luttmer 2012 (JET : unique balanced growth path)
◦ Lucas and Moll 2014
◦ Perla and Tonetti 2014
• König, Lorenz, Zilibotti 2012
• Luttmer 2012 (Fed working paper, “Eventually, Noise and Imitation ...”)
• this paper, and Le 2014 (UMN senior thesis) for the Markov chain case
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outline of these slides

1. basic math of individual discovery and social learning

2. an analytically tractable economy

a. many balanced growth paths

b. how to predict outcomes

3. quantitative implications
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random imitation

• agents randomly select others at rate β and copy if “better”

DtP (t, z) = −βP (t, z)[1− P (t, z)]

I the unique solution is

P (t, z) =
1

1 +
(

1
P (0,z) − 1

)
eβt

—P (0, z) matters a lot. . .

I many logistic and log-logistic stationary solutions

P (0, z) =
1

1 +
(

1
P (0,0) − 1

)
e−(β/κ)z

implies P (t, z) = P (0, z − κt)

P (0, z) =
1

1 +
(

1
P (0,1) − 1

)
z−β/κ

implies P (t, z) = P (0, ze−κt)
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easy to construct these stationary solutions

DtP (t, z) = −βP (t, z)[1− P (t, z)] (*)

I P (t, z) = F (z − κt) yields

κDF (z) = βF (z)[1− F (z)] (1)

—exponential tail index

lim
z→∞

DF (z)

1− F (z)
=
β

κ

I P (t, z) = F (ze−κt) yields

κzDF (z) = βF (z)[1− F (z)] (2)

—power tail index

lim
z→∞

zDF (z)

1− F (z)
=
β

κ
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one-on-one knowledge transfer

median

p(
t,z

)

zx y

D
t
P(t,x) = ­ βP(t,x)

D
t
P(t,y) = ­ β[1­P(t,y)]

teachersstudents
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one-on-one knowledge transfer

• below-median student learns from above-median teacher at a rate β,

DtP (t, z) = −β min {P (t, z), 1− P (t, z)}

• implied median xt
1

2
= P (t, xt) = eβt [1− P (0, xt)] (!)

—which shows the role of the right tail

I the solution is

P (t, z) =



e−βtP (0, z) z ∈ (−∞, x0)

1
2

1/2

eβt[1−P (0,z)]
z ∈ (x0, xt)

1− eβt[1− P (0, z)] z ∈ (xt,∞)
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for future use

• density
p(t, z) = DzP (t, z)

• differentiate

DtP (t, z) = −β min {P (t, z), 1− P (t, z)}

with respect to z

I this yields

Dtp(t, z) =

 −βp(t, z), z < xt

+βp(t, z), z > xt

where

1

2
=

∫ xt

−∞
p(t, z)dz
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time lapse {p(j∆, z)}Jj=1

0

Gaussian initial conditions

0
z

double exponential initial conditions
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the obvious problem

• NO long-run growth if the initial distribution has bounded support

• for example, if the population is finite

• everyone learns the most useful knowledge eventually...

—someone had this knowledge already at some initial date
—the only question is: how does it diffuse?

I it can’t be all about catching up with some ancient geniuses
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the solution

• two independent standard Brownian motions B1,t, B2,t,

E [max {σB1,t, σB2,t}] = σ
√
t/π

• reset to max at random time τ j+1 > τ j

zτ j+1
= zτ j + σmax

{
B1,τ j+1

−B1,τ j, B2,τ j+1
−B2,τ j

}
• reset times arrive randomly at rate β

E
[
zτ j+1

− zτ j|zτ j
]

E
[
τ j+1 − τ j|zτ j

] =
1

1/β

∫ ∞
0

σ
√
t/πβe−βtdt =

1

2
σ
√
β

—can also show
E

[
zτ j+1

− zτ j
τ j+1 − τ j

zτ j

]
= σ

√
β

• large populations

trend = σ2

√
β

σ2/2
= σ

√
2β > σ

√
β . . .
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the economy

• dynastic preferences ∫ ∞
0

e−ρt ln(Ct)dt

• generations pass randomly at the rate δ,

1. replaced immediately

2. perfect inheritance of learning ability λ ∈ Λ

3. newborn individuals have no knowledge, begin as workers

4. can acquire knowledge and become managers

5. managers can quit and become workers again

B managerial knowledge then instantaneously obsolete

• complete markets. . . , interest rate rt = ρ + DCt/Ct
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production of consumption goods

• a manager with knowledge z and l units of labor produce

y =

(
ez

1− α

)1−α(
l

α

)α
—as in Lucas [1978]

• continuation as manager requires φ units of overhead labor

factor supplies

• there is a unit measure of managers and workers

• type distribution {M(λ) : λ ∈ Λ}

• workers supply one unit of labor

•Mt(λ, z) = time-t measure of type-λ managers with knowledge up to z
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factor prices and consumption

• managerial profit maximization

vte
z = max

l

{(
ez

1− α

)1−α(
l

α

)α
− wtl

}

so that v1−α
t wα

t = 1.

• consumption and wages

Ct =

(
Ht

1− α

)1−α(
1− (1 + φ)Nt

α

)α
, wt =

αCt
1− (1 + φ)Nt

where

Ht =
∑
λ∈Λ

∫
ezMt(λ, dz), Nt =

∑
λ∈Λ

Mt(λ,∞)
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knowledge creation and diffusion

• type-λ manager in state zt− matched with manager in state z̃t− > zt−,

dzt = µdt + σdBt + (z̃t− − zt−)+dJt

—Bt is a standard Brownian motion

—Jt is a Poisson process with arrival rate λ ∈ Λ

• type-λ workers can also learn from managers in state z at rate λ

I knowledge state does not affect learning speed
—learning ability λmay be determined in part by prior general education

I zt measures how useful knowledge is

—not how diffi cult it is to learn
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nature of the assignment problem

• pairwise matching of students and teachers
• everyone can be a student, every manager can be a teacher
• individuals characterized by (λ, z)

—learning ability λ ∈ Λ, a finite subset of (0,∞)

—type-λ workers know z = −∞,
—type-λ managers know z ∈ (bt(λ),∞)

• Vt(z|λ) is value of a manager,Wt(λ) = minz{Vt(z|λ)} is value of a worker

• expected gain of a match of the “student”(λ, zt−) and “teacher”(λ̃, z̃t−)

λ

[
Vt−(z̃t−|λ)− Vt−(zt−|λ)

]
when z̃t− ≥ zt−
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the market for students and teachers

• a manager in state z charges flow tuition Tt(z) ≥ 0

—when a student “gets it,”he or she enjoys a capital gain

• define “surplus”values,

St(λ) = sup
z̃
{λVt(z̃|λ)− Tt(z̃)}

I flow gains for type-λ managers in state z,

max {Tt(z), St(λ)− λVt(z|λ)}

I if Tt(z) = 0 for z low enough,

St(λ)− λWt(λ) ≥ 0
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equilibrium tuition schedules

• recall
St(λ) = sup

z̃
{λVt(z̃|λ)− Tt(z̃)}

—hence

Tt(z) ≥ λVt(z|λ)− St(λ), for all (λ, z)

with equality if type-λ students select teachers at z

I if there are teachers at z, market clearing requires

Tt(z) = max
λ∈Λ
{λVt(z|λ)− St(λ)}

I type-µ managers at z choose to teach if

Tt(z) ≥ St(µ)− µVt(z|µ)
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the “price system” {St(λ) : λ ∈ Λ}

Lemma 1 The tuition schedule can be taken to be of the form

Tt(z) = max
λ∈Λ

{
[λVt(z|λ)− St(λ)]+

}
,

without loss of generality.

Lemma 2 Given numbers {St(λ) : λ ∈ Λ}, define

Tt(z) = max
λ∈Λ

{
[λVt(z|λ)− St(λ)]+

}
, S∗t (λ) = sup

z
{λVt(z|λ)− Tt(z)}

Then

Tt(z) = max
λ∈Λ

{
[λVt(z|λ)− S∗t (λ)]+

}
.

The S∗t (λ)/λ are weakly increasing in λ ∈ Λ.
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present values

I fix factor prices [vt, wt] and {St(λ) : λ ∈ Λ}

• type-λ workers
rtWt(λ) = wt + max {0, St(λ)− λWt(λ)} + DtWt(λ)

• type-λ managers

rtVt(z|λ) = vte
z − φwt + max {Tt(z), St(λ)− λVt(z|λ)} + DtVt(z|λ)

+µDzVt(z|λ) +
1

2
σ2DzzVt(z|λ) + δ [Wt(λ)− Vt(z|λ)]

—where
Tt(z) = max

λ∈Λ

{
[λVt(z|λ)− St(λ)]+

}
I piecewise linear!
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balanced growth

• conjecture that the cross-section of zt − κt is time invariant

—growth rate κ to be determined. . .

• managerial human capital and consumption

Ht = Heκt, Ct = Ce(1−α)κt

—interest rates rt = ρ + (1− α)κ

—factor prices,

[wt, vt] =
[
we(1−α)κt, ve−ακt

]
• value functions,

[Wt(λ), Vt(z + κt|λ), St(λ), Tt(z + κt)] = [W (λ), V (z|λ), S(λ), T (z)] e(1−α)κt
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bellman equations

• type-λ workers
ρW (λ) = w + max {0, S(λ)− λW (λ)}

—note

S(λ)− λW (λ) > 0 ⇔ W (λ) >
w

ρ
⇔ S(λ)

w
>
λ

ρ

• type-λ managers

ρV (z|λ) = vez − φw + max {T (z), S(λ)− λV (z|λ)}

+(µ− κ)DV (z|λ) +
1

2
σ2D2V (z|λ) + δ [W (λ)− V (z|λ)]

—where
T (z) = max

λ∈Λ

{
[λV (z|λ)− S(λ)]+

}
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ability rent scenarios

• if suffi ciently many fast learners

S(γ)− γW (γ) = S(β)− βW (β) = 0

• if not too many fast learners

S(γ)− γW (γ) > S(β)− βW (β) ≥ 0

—but if S(β)− βW (β) > 0 then

◦ all workers and some managers are students
◦ one-on-one teaching implies half the population is a teacher
◦ this would imply more than half the population is a manager

I from hereon, focus on the case

S(γ)− γW (γ) > S(β)− βW (β) = 0
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learning rates γ > β > 0

­2 ­1 0 1 2

102

103

z

V(z|β)

V(z|γ)

I note the log scale; next consider λV (z|λ)− S(λ)
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learning rates γ > β > 0

0

z

b(β) x(γ) yb(γ)

γV(z|γ) ­ S( γ)

S(γ) ­ γV(z|γ)
βV(z|β) ­ S( β)

I expected learning gains λV (z|λ)−S(λ) satisfy a single-crossing property
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the first equilibrium condition

• given “prices”[v, w, S(β), S(γ)], the Bellman equations determine

[W (β), V (z|β),W (γ), V (z|γ)] and implied thresholds

B indifferent slow learners scenario implies S(β)/w = βW (β)/w = β/ρ

B eliminate dependence on v/w,

eẑ = vez/w, V̂ (ẑ|λ) = [V (z|λ)− w/ρ] /w

I the Bellman equation therefore determines a curve

S(γ)

w
7→ v

w
×
[
eb(β), eb(γ), ex(γ), ey

]
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the first equilibrium condition

1.5 2 2.5 2.75
1

2

3

4

S(γ)/w

veb(γ)/w

veb(β)/w

vex(γ)/w

vey/w

1+φ

= γ/ρ
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KFE intuition for dxt = µdt + σdBt

• without noise, f (t, x) = f (0, x− µt) implies

Dtf (t, x) = −µDxf (0, x− µt) = −µDxf (t, x)

• without drift, random increments make population move downhill

—CDF satisfies
DtF (t, x) =

1

2
σ2Dxf (t, x)

—differentiate
Dtf (t, x) =

1

2
σ2Dxxf (t, x)

I combine and add random death at rate δ

Dtf (t, x) = −µDxf (t, x) +
1

2
σ2Dxxf (t, x)− δf (t, x)
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stationary densities

• forward equations (θ = µ− κ)

δm(β, z) = −θDm(β, z)+
1

2
σ2D2m(β, z)+

 βm(β, z), z ∈ (b(β), x(γ))
β[m(β, z) + m(γ, z)], z ∈ (x(γ), y)

0, z ∈ (y,∞)

and

δm(γ, z) = −θDm(γ, z)+
1

2
σ2D2m(γ, z)+

 −γm(γ, z), z ∈ (b(γ), x(γ))
0, z ∈ (x(γ), y)

γ[m(β, z) + m(γ, z)], z ∈ (y,∞)

• students assigned to teachers by construction

—but the number of type-λ workers choosing to study is left implicit
—market clearing condition for type-γ students will determine scale

I piecewise linear!
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market clearing conditions

• supplies M(λ) of type-λ individuals are given

• supplies of type-λ students and teachers

M(β)−
∫ ∞
b(β)

m(β, z)dz ≥
∫ y

b(β)

m(β, z)dz +

∫ y

x(γ)

m(γ, z)dz

M(γ)−
∫ ∞
x(γ)

m(γ, z)dz =

∫ ∞
y

[m(β, z) + m(γ, z)]dz

—these conditions depend only on [y − b(β), y − b(γ), y − x(γ)]

—hence, function only of S(γ)/w

I not all type-β workers choose to study when S(β)− βW (β) = 0

I the type-γ condition determines the scale of m
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­0.5 0 0.5 1 1.5 2
0

0.5

1

1.25

­0.5 0 0.5 1 1.5 2
0

0.5

1

z­y

m(β,z)

m(γ,z)

m(β,z)+m( γ,z)

m(β,z)/[m( β,z)+m( γ,z)]
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the magnification effect– intro

• fast social learners accumulate knowledge more quickly

—overrepresented in the right tail
—even in economy with random assignment

• competitive assignment

—sorting: fast learners assigned to most knowledgeable teachers
—this magnifies the advantage of fast learners

I with two types, β < γ

1. right tail indices of m(β, z) and m(γ, z) do not depend on β

2. an infinitesimal gap γ − β implies

—very different outcome distributions

—infinitesimal ex ante utility differences
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right tails behave like e−ζz

• with ζ determined by root(s) of a characteristic equation
I right tail slow learners

δm(β, z) = −(µ− κ)Dm(β, z) +
1

2
σ2D2m(β, z)

⇒ ζβ =
κ− µ
σ2

+

√(
κ− µ
σ2

)2

+
δ

σ2/2

I right tail fast learners

δm(γ, z) = −(µ− κ)Dm(γ, z) +
1

2
σ2D2m(γ, z) + γ[m(β, z) + m(γ, z)]

⇒ ζγ,± =
κ− µ
σ2
±

√(
κ− µ
σ2

)2

− γ − δ
σ2/2

—where γ > δ > 0
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growth, inequality, the magnification effect

• recall

ζβ =
κ− µ
σ2

+

√(
κ− µ
σ2

)2

+
δ

σ2/2

ζγ,± =
κ− µ
σ2
±

√(
κ− µ
σ2

)2

− γ − δ
σ2/2

• need ζγ,± to be real
κ− µ
σ2

≥

√
γ − δ
σ2/2

(KPP)

I will argue (KPP) should hold with equality, and thence

κ = µ + σ2 × ζγ, ζγ =

√
γ − δ
σ2/2

(!)

and

ζβ = ζγ +

√
γ

σ2/2
(!!)
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relation to Luttmer (2007)

• entrepreneurs try to copy randomly selected incumbents

δm(z) = −(µ− κ)Dm(z) +
1

2
σ2D2m(z) + (γE/N)m(z), z > b

—success rate of entrepreneurs = γ

—number of entreprepreneurs = E

—number of incumbent firms = N

• stationarity requires

κ ≥ µ + σ2

√
(γE/N)− δ

σ2/2

• if with equality, m(z) = ζ(z − b)e−ζ(z−b), where

ζ =

√
(γE/N)− δ

σ2/2

I E/N endogenous, will depend on subjective discount rate
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the second equilibrium condition

• the number of managers

N =

∫ ∞
b(β)

m(β, z)dz +

∫ ∞
b(γ)

m(γ, z)dz

• implied factor supplies

L = M(β) + M(γ)− (1 + φ)N

He−y =

∫ ∞
b(β)

ez−ym(β, z)dz +

∫ ∞
b(γ)

ez−ym(γ, z)dz

1. recall from the Bellman equations

S(γ)

w
7→ v

w
×
[
eb(β), eb(γ), ex(γ), ey

]
2. Cobb-Douglas

vey

w
=

1− α
α

L

He−y

I (1) and (1)+(2): two ways to map S(γ)/w into vey/w
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the fixed point

0 0.2 0.4 0.6

1

2

3

4

(S(γ)/w) ­ γ/ρ

veb(γ)/w

veb(β)/w

vey/w

vex(γ)/w

φ = 1

φ = 0

 ((1 ­ α)/α)L/(He ­y )

• solid: φ = 1; dots: φ = 0
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ability rents
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W(γ)/w
(S(γ)/w)/γ
1/ρ
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(round) numbers used for these diagrams

technology
α φ

0.60 1

ability distribution
M(γ)/[M(β) + M(γ)]

0.10

rates
ρ δ β γ σ

0.04 0.04 0.05 0.06 0.10
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implications

• tail indices

ζγ =
κ− µ
σ2

=

√
γ − δ
σ2/2

=

√
0.06− 0.04

(0.1)2/2
= 2

ζβ = ζγ +

√
γ

σ2/2
= 2 +

√
0.06

(0.1)2/2
≈ 5.5

• growth
κ− µ = σ2ζγ = (0.1)2 × 2 = 0.02

• value of a worker

W (β)

w
=

1

ρ
= 25

W (γ)

w
=

1

ρ

(
1 +

S(γ)− γW (γ)

w

)
= 25× (1 + 0.103) ≈ 27.8

• managers
[N(β), N(γ)] ≈ [0.011, 0.055] (M(β) + M(γ))
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some measures of inequality

• for Pareto

ln(top share) =

(
1− 1

ζ

)
× ln(top percentile)

I Piketty et al. income shares by percentile,

10% 1% .1%
1964 32%→ ζ = 1.98 10%→ ζ = 2.00 2.0%→ ζ = 2.31
2004 48%→ ζ = 1.47 22%→ ζ = 1.49 8.8%→ ζ = 1.54

I Cagetti and De Nardi report top 1% owns 30% of wealth in SCF
—this implies ζ = 1.35
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earnings growth

• cross-sectional variance of log earnings

age 25 : 0.60

age 60 : 1.05

—US social security records (Guvenen et al. [2015])
—if pure random walk:

annual standard deviation =

√
.45

35
≈ 0.11

• continuous part of managerial earnings growth in the model has σ = 0.10

annual standard deviation ≈
√

(1− 0.066)× 0 + 0.066× (0.1)2 ≈ 0.026

—the γ, β and δ shocks will have to do the heavy lifting. . .
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an empirical diffi culty

• income distribution:

ζ = 2 in the 1960s, ζ = 1.5 now

• employment size distribution of firms:

ζ = 1.06

I these are very different distributions

I need to abandon Cobb-Douglas, or Lucas [1978]
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Lorenz curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percentile

sh
ar

e

managerial knowledge capital

ζ = 2.0
ζ = 1.5
ζ = 1.1
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but what determines κ?

• simplify to δ = 0 and β = γ, and take z to be state without de-trending

• forward equation

Dtp(t, z) = −µDzp(t, z) +
1

2
σ2Dzzp(t, z) +

{
−γp(t, z) z < xt
+γp(t, z) z > xt

—where xt is the median

• then the right tail
R(t, z) = 1− P (t, z)

satisfies

DtR(t, z) = −µDzR(t, z) +
1

2
σ2DzzR(t, z) + γmin {1−R(t, z), R(t, z)}

• in the case of random imitation

replace min{1−R,R} by (1−R)R
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this is a new interpretation of an old equation

Dtf (t, z) =
1

2
σ2Dzzf (t, z) + γf (t, z)[1− f (t, z)]

• R.A. Fisher “The Wave of Advance of Advantageous Genes”(1937)

—f (t, z) is a population density at the location z

—γf (t, z)[1− f (t, z)] logistic growth of the population at z

—random migration gives rise to a “diffusion”term 1
2σ

2Dzzf (t, z)

• Cavalli-Sforza and Feldman (1981)

—Cultural Transmission and Evolution: A Quantitative Approach
—Section 1.9 applies Fisher’s interpretation to memes (Dawkins [1976])

• these interpretations differ from random copying (f is a density)

—Staley (2011) also has the random copying interpretation
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an important theorem of KPP

• can construct stationary distribution for z − κt, for any

κ ≥ µ + σ2

√
γ

σ2/2

I Kolmogorov, Petrovskii, and Piskunov 1937
—and McKean 1975, Bramson 1981, many others

if support P (0, z) bounded then P (t, z − κt) converges for κ = µ + σ2

√
γ

σ2/2

• right tail R(t, z) ∼ e−ζz, where

ζ =
κ− µ
σ2
−

√(
κ− µ
σ2

)2

− γ

σ2/2
=

√
γ

σ2/2
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reaction-diffusion right tail (γ = β)

• forward equation for the right cumulative distribution

DtR(t, z) = −µDzR(t, z) +
1

2
σ2DzzR(t, z) + γQ(R(t, z))

—random imitation
Q(R) = (1−R)R

—random learning

Q(R) = min{1−R,R}

• stationary solutions R(t, z) = R(z − κt)

DR(z) = −f (z), Df (z) =
−(κ− µ)f (z) + γQ(R(z))

σ2/2

I study phase diagram for Q(0) = Q(1) = 0, DQ(0) > 0, and DQ(1) < 0
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the stationary distribution given some κ ≥ µ + σ2
√

γ
σ2/2

0 1
0

0.5

R

f

 (1­R)R

 min[1­R,R]
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linearize ODE near R(z) = 0

• random imitation
∂R(1−R)

∂R R=0
= 1

and thus

0 ≈ −(µ− κ)DR(z) +
1

2
σ2D2R(z) + γR(z)

• random learning
min{R, 1−R} = R near R = 0

and thus

0 = −(µ− κ)DR(z) +
1

2
σ2D2R(z) + γR(z)

I same characteristic equation, with solutions e−ζz

ζ =
κ− µ
σ2
±

√(
κ− µ
σ2

)2

− γ

σ2/2
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summary on growth and inequality

• stationary distributions indexed by κ ≥ µ + σ2
√

γ
σ2/2

• these have tail indices

ζ =
κ− µ
σ2
−

√(
κ− µ
σ2

)2

− γ

σ2/2

—initial conditions with thicker tail ⇒ faster growth

• initial conditions with bounded support select thinnest tail,

κ = µ + σ2ζ, ζ =

√
γ

σ2/2

—individual discovery more noisy ⇒ faster growth and a thicker tail

—more frequent learning ⇒ faster growth and a thinner tail

• Luttmer (2007)
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a misleading continuity

• a small-noise limit for the tail index

ζ =
1

σ2

(
κ− µ−

√
(κ− µ)2 − 2γσ2

)
↓ γ

κ− µ as σ2 ↓ 0

—same tail index as in economy without individual discovery
—but this is for fixed κ > µ

• and KPP implies κ = µ + σ2
√

γ
σ2/2

—hence
lim
σ2↓0

ζ = lim
σ2↓0

√
γ

σ2/2
=∞

I thin, as in the bounded support example
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accessible stationary distributions
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stationary distributions (yellow)

accessible from initial distributions
with bounded support
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concluding remarks

• small noise limit gives echo chamber, not logistic solution
• many stationary distributions and associated growth rates

—initial conditions with bounded support select one
—convergence question open for economy with fixed costs

1. random imitation

—more entry can increase growth rate,
—because there is no congestion as there is in teaching

2. one-on-one teaching

—hardwires flow into right tail, independent of entry cost parameters

κ = µ + σ2ζγ ζγ =

√
γ − δ
σ2/2

ζβ = ζγ +

√
γ

σ2/2

—the magnification effect
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