A Ricardian model with a continuum of goods

Consider an economy in which there are two countries and a continuum of goods in indexed $z \in [0,1]$. Goods are produced using labor:

$$y_i(z) = \ell_i(z) / a_i(z).$$

where

$$a_1(z) = e^{\alpha z}$$
$$a_2(z) = e^{\alpha(1-z)}$$

Here $y_j(z)$ is the production of good z in country j and $\ell_j(z)$ is the input of labor. The stand-in consumer in each country has the utility function

$$\int_0^1 \log c_j(z) \, dz.$$

This consumer is endowed with $\overline{\ell}_i$ unites of labor where $\overline{\ell}_1 = \overline{\ell}_2 = \overline{\ell}$.

Definition of equilibrium: An equilibrium is

a price function $\hat{p}(z)$,

wage rates \hat{w}_1 , \hat{w}_2 ,

consumption functions $\hat{c}_1(z)$, $\hat{c}_2(z)$,

and production plans $\hat{y}_1(z)$, $\hat{\ell}_1(z)$, $\hat{y}_2(z)$, $\hat{\ell}_2(z)$ such that

• Given $\hat{p}(z)$, \hat{w}_j , the consumer in country j, j = 1, 2, chooses $\hat{c}^j(z)$ to solve

$$\max \int_0^1 \log c_j(z) dz$$
s.t.
$$\int_0^1 \hat{p}(z)c_j(z) dz \le \hat{w}_j \overline{\ell}_j$$

$$c_j(z) \ge 0.$$

- $\hat{p}(z) a_j(z)\hat{w}_j \le 0$, = 0 if $\hat{y}_j(z) > 0$, $j = 1, 2, z \in [0, 1]$
- $\hat{c}_1(z) + \hat{c}_2(z) = \hat{y}_1(z) + \hat{y}_2(z), z \in [0,1].$
- $\bullet \quad \int_0^1 \hat{\ell}_j(z) \ dz = \overline{\ell} \ , \ j = 1, 2 \ .$

Because of symmetry, we know that there is an equilibrium in which $\hat{w}_1 = \hat{w}_2 = 1$. This implies that the pattern of production, trade, and specialization is

Country 1 produces and exports the goods in the interval $[0, \overline{z}]$ while country 2 produces and exports the goods in the interval $(\overline{z},1]$.

The prices of the goods are

$$\hat{p}(z) = \begin{cases} e^{\alpha z} & z \in [0, \overline{z}] \\ e^{\alpha(1-z)} & z \in (\overline{z}, 1] \end{cases}.$$

The consumption levels are

$$\hat{c}_1(z) = \hat{c}_2(z) = \frac{\overline{\ell}}{\hat{p}(z)}.$$

The production plans are

$$\hat{y}_1(z) = \frac{2\overline{\ell}}{\hat{p}(z)}, \ \hat{\ell}_1(z) = 2\overline{\ell}, \ \hat{y}_2(z) = \hat{\ell}_2(z) = 0, \ z \in [0, \overline{z}]$$

$$\hat{y}_1(z) = \hat{\ell}_1(z) = 0, \ \hat{y}_2(z) = \frac{2\overline{\ell}}{\hat{p}(z)}, \ \hat{\ell}_2(z) = 2\overline{\ell}, \ z \in (\overline{z}, 1].$$

Model with tariffs

An equilibrium is

producer price functions $\hat{p}_1(z)$, $\hat{p}_2(z)$,

wage rates \hat{w}_1 , \hat{w}_2 ,

consumption functions $\hat{c}_1^1(z)$, $\hat{c}_2^1(z)$, $\hat{c}_1^2(z)$, $\hat{c}_2^2(z)$,

production plans $\hat{y}_{1}^{1}(z)$, $\hat{\ell}_{1}^{1}(z)$, $\hat{y}_{2}^{1}(z)$, $\hat{\ell}_{2}^{1}(z)$, $\hat{y}_{1}^{2}(z)$, $\hat{\ell}_{1}^{2}(z)$, $\hat{\ell}_{2}^{2}(z)$, $\hat{\ell}_{2}^{2}(z)$, and tariff revenues \hat{T}_{1} , \hat{T}_{2}

such that

• Given $\hat{p}_1(z)$, $\hat{p}_2(z)$, \hat{w}_1 , the consumer in country 1 chooses $\hat{c}_1^1(z)$, $\hat{c}_2^1(z)$ to solve

$$\max \int_{0}^{1} \log (c_{1}^{1}(z) + c_{2}^{1}(z)) dz$$
s. t.
$$\int_{0}^{1} (\hat{p}_{1}(z)c_{1}^{1}(z) + (1+\tau)\hat{p}_{2}(z)c_{2}^{1}(z))dz \leq \hat{w}_{1}\overline{\ell}_{1} + \hat{T}_{1}$$

$$c_{i}^{1}(z) \geq 0.$$

Similarly for the consumer in country 2.

•
$$\hat{p}_{j}(z) - a_{j}(z)\hat{w}_{j} \le 0$$
, = 0 if $\hat{y}_{j}(z) > 0$, $j = 1, 2$, $z \in [0,1]$

•
$$\hat{c}_{i}^{1}(z) + \hat{c}_{i}^{2}(z) = \hat{y}_{i}(z), j = 1, 2, z \in [0,1]$$

•
$$\int_0^1 \hat{\ell}_j(z) dz = \overline{\ell}, \ j = 1, 2.$$

•
$$\hat{T}_i = \int_0^1 \tau \, \hat{p}_j \hat{c}_j^i(z) dz, \ i, j = 1, 2, \ i \neq j$$

Once again, because of symmetry, we know that there is an equilibrium in which $\hat{w}_1 = \hat{w}_2 = 1$.

There are two possibilities: either there is no trade in equilibrium or there is trade in trade in equilibrium.

First, τ is so large and/or α is so small that there is no trade in equilibrium because $(1+\tau) > e^{\alpha}$, which implies that $a_1(z)\hat{w}_1 < (1+\tau)a_2(z)\hat{w}_2$ and $(1+\tau)a_1(z)\hat{w}_1 > a_2(z)\hat{w}_2$ for all $z \in [0,1]$.

Second, if $(1+\tau) < e^{\alpha}$, then the pattern of production, trade, and specialization is

Country 1 produces the goods in the interval $[0,1-\overline{z}]$ and exports the goods in the interval $[0,\overline{z}]$. Country 2 produces the goods in the interval $[\overline{z},0]$ and exports the goods in the interval $[1-\overline{z},0]$. The goods in the interval $[\overline{z},1-\overline{z}]$ are not traded.

$$(1+\tau)e^{\alpha\overline{z}} = e^{\alpha(1-\overline{z})}$$
$$\log(1+\tau) + \alpha\overline{z} = \alpha(1-\overline{z})$$
$$\overline{z} = \frac{1}{2} - \frac{\log(1+\tau)}{2\alpha}.$$

The prices are

$$\hat{p}_1(z) = e^{\alpha z}, \ \hat{p}_2(z) = e^{\alpha(1-z)}$$

The consumption levels are

The consumption levels are

$$\begin{split} \hat{c}_{1}^{1}(z) &= \frac{\overline{\ell} + \hat{T}_{1}}{e^{\alpha z}}, \ \hat{c}_{2}^{1}(z) = 0, \ \hat{c}_{1}^{2}(z) = \frac{\overline{\ell} + \hat{T}_{2}}{(1+\tau)e^{\alpha z}}, \ \hat{c}_{2}^{2}(z) = 0, z \in [0,\overline{z}] \\ \hat{c}_{1}^{1}(z) &= \frac{\overline{\ell} + \hat{T}_{1}}{e^{\alpha z}}, \ \hat{c}_{2}^{1}(z) = 0, \ \hat{c}_{1}^{2}(z) = 0, \ \hat{c}_{2}^{2}(z) = \frac{\overline{\ell} + \hat{T}_{2}}{e^{\alpha(1-z)}}, \ z \in (\overline{z}, 1-\overline{z}] \\ \hat{c}_{1}^{1}(z) &= 0, \ \hat{c}_{2}^{1}(z) = \frac{\overline{\ell} + \hat{T}_{1}}{(1+\tau)e^{\alpha(1-z)}}, \ \hat{c}_{1}^{2}(z) = 0, \ \hat{c}_{2}^{2}(z) = \frac{\overline{\ell} + \hat{T}_{2}}{e^{\alpha(1-z)}}, z \in (1-\overline{z}, \overline{z}]. \end{split}$$

The tariff revenue in country 1 is

$$T_{1} = \int_{1-\overline{z}}^{1} \tau p_{2}(z) \frac{\overline{\ell} + T_{1}}{(1+\tau)p_{2}(z)} dz$$
$$\hat{T}_{1} = \hat{T}_{2} = \hat{T} = \frac{\tau \overline{z} \overline{\ell}}{1+\tau(1-\overline{z})}.$$

The production and labor levels are

$$\hat{y}_{1}(z) = \frac{(2+\tau)(\overline{\ell}+\hat{T})}{(1+\tau)\hat{p}_{1}(z)}, \ \hat{\ell}_{1}(z) = \frac{(2+\tau)(\overline{\ell}+\hat{T})}{(1+\tau)}, \ \hat{y}_{2}(z) = \hat{\ell}_{2}(z) = 0, \ z \in [0,\overline{z}]$$

$$\hat{y}_{1}(z) = \frac{\overline{\ell}+\hat{T}}{\hat{p}_{1}(z)}, \ \hat{\ell}_{1}(z) = \overline{\ell}+\hat{T}, \ \hat{y}_{2}(z) = \frac{\overline{\ell}+\hat{T}}{\hat{p}_{2}(z)}, \ \hat{\ell}_{2}(z) = \overline{\ell}+\hat{T}, \ z \in (\overline{z},1-\overline{z}]$$

$$\hat{y}_{1}(z) = \hat{\ell}_{1}(z) = 0, \ \hat{y}_{2}(z) = \frac{(2+\tau)(\overline{\ell}+\hat{T})}{(1+\tau)\hat{p}_{2}(z)}, \ \hat{\ell}_{2}(z) = \frac{(2+\tau)(\overline{\ell}+\hat{T})}{(1+\tau)}, \ z \in (1-\overline{z},1].$$

Check labor allocation:

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \overline{z} \frac{(2+\tau)(\overline{\ell}+\hat{T})}{(1+\tau)} + (1-\overline{z}-\overline{z})(\overline{\ell}+\hat{T})$$

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \frac{\overline{\ell}+\hat{T}}{(1+\tau)}(\overline{z}(2+\tau)+(1-2\overline{z})(1+\tau))$$

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \frac{\overline{\ell}+\hat{T}}{(1+\tau)}((1+\tau)+\overline{z}(2+\tau)-2\overline{z}(1+\tau))$$

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \frac{\overline{\ell}+\hat{T}}{(1+\tau)}(1+\tau(1-\overline{z}))$$

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \frac{\overline{\ell}+\hat{T}}{(1+\tau)}(1+\tau(1-\overline{z}))$$

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \frac{\overline{\ell}+\frac{\tau}{\ell}}{(1+\tau)}(1+\tau(1-\overline{z}))$$

$$\int_{0}^{1} \hat{\ell}_{1}(z)dz = \frac{\overline{\ell}(1+\tau(1-\overline{z})+\tau\overline{z})}{(1+\tau)} = \overline{\ell}.$$

A Heckscher-Ohlin Model with a Continuum of Goods

Suppose now that goods are produced using both capital and labor:

$$y_{j}(z) = k_{j}(z)^{\alpha(z)} \ell_{j}(z)^{1-\alpha(z)},$$

where $\alpha(z) = z$, $z \in [0,1]$. Notice that production technologies are now identical across countries. Endowments, however, are different. Specifically,

$$\overline{\ell}_1 = \overline{k}_2 > \overline{\ell}_2 = \overline{k}_1.$$

Definition of equilibrium: An equilibrium is

a price function $\hat{p}(z)$,

factor prices \hat{r}_1 , \hat{w}_1 , \hat{r}_2 , \hat{w}_2 ,

consumption functions $\hat{c}_1(z)$, $\hat{c}_2(z)$,

and production plans $\hat{y}_1(z)$, $\hat{k}_1(z)$, $\hat{\ell}_1(z)$, $\hat{y}_2(z)$, $\hat{k}_2(z)$, $\hat{\ell}_2(z)$ such that

• Given $\hat{p}(z)$, \hat{w}_i , the consumer in country j, j = 1, 2, chooses $\hat{c}_1(z)$ to solve

$$\max \int_0^1 \log c_j(z) dz$$
s.t.
$$\int_0^1 \hat{p}(z)c_j(z) dz \le \hat{r}_j \overline{k}_j + \hat{w}_j \overline{\ell}_j$$

$$c_j(z) \ge 0.$$

- $\hat{p}(z)\alpha(z)\hat{k}_{j}^{\alpha(z)-1}\hat{\ell}_{j}^{1-\alpha(z)} \hat{r}_{j} \le 0, = 0 \text{ if } \hat{y}_{j}(z) > 0, \ j=1,2, \ z \in [0,1]$ $\hat{p}(z)(1-\alpha(z))\hat{k}_{j}^{\alpha(z)}\hat{\ell}_{j}^{-\alpha(z)} \hat{w}_{j} \le 0, = 0 \text{ if } \hat{y}_{j}(z) > 0, \ j=1,2, \ z \in [0,1]$
- $\hat{c}_1(z) + \hat{c}_2(z) = \hat{y}_1(z) + \hat{y}_2(z), z \in [0,1].$
- $\bullet \quad \int_0^1 \hat{\ell}_j(z) \ dz = \overline{\ell} \ , \ j = 1, 2 \ .$

Because of symmetry, we know that there is an equilibrium on which $\hat{r}_1 = \hat{w}_2$ and $\hat{w}_1 = \hat{r}_2$. There are two possibilities: either $\hat{r}_1 = \hat{w}_2 > \hat{w}_1 = \hat{r}_2 = 1$ or $\hat{r}_1 = \hat{w}_2 = \hat{w}_1 = \hat{r}_2 = 1$. If $\hat{r}_1 = \hat{w}_2 > \hat{w}_1 = \hat{r}_2 = 1$, then country 1 specializes in all of the goods less capital intensive then a specific level \overline{z} , that is all $z \leq \overline{z}$, and country 2 specializes in all goods more capital intensive than the same \overline{z} , that is all $z > \overline{z}$. Because of symmetry, $\overline{z} = 1/2$. The graph looks like that for the Ricardian model without tariff:

On the other hand, if $\hat{r}_1 = \hat{w}_2 = \hat{w}_1 = \hat{r}_2 = 1$, then the structure of production and trade is indeterminate.

We use the first-order conditions for firm z in country j to obtain

$$\ell_{j}(z) = \left(\frac{r_{j}(1-z)}{w_{j}z}\right)^{z} y_{j}(z)$$

$$k_{j}(z) = \left(\frac{w_{j}z}{r_{j}(1-z)}\right)^{1-z} y_{j}(z)$$

$$p(z) = \frac{r_{j}^{z}w_{j}^{1-z}}{z^{z}(1-z)^{1-z}}.$$

To see which of the two cases that we are in, we suppose that $\hat{r}_1 = \hat{w}_2 = \hat{w}_1 = \hat{r}_2 = 1$. Let us calculate the demand for labor in country 1 under the assumption that that country 1 produces all of the goods $z \le 1/2$. If this amount of labor is less than $\overline{\ell}$, then we know that we are in the other case, where $\hat{r}_1 = \hat{w}_2 > \hat{w}_1 = \hat{r}_2 = 1$.

$$\ell_{1}(z) = \left(\frac{(1-z)}{z}\right)^{z} y_{1}(z)$$

$$p(z) = \frac{1}{z^{z} (1-z)^{1-z}}$$

$$c_{1}(z) = \frac{\overline{k_{1}} + \overline{\ell_{1}}}{p(z)}$$

$$c_{2}(z) = \frac{\overline{k_{2}} + \overline{\ell_{2}}}{p(z)},$$

which imply that

$$y_{1}(z) = c_{1}(z) + c_{2}(z) = \frac{\overline{k_{1}} + \overline{\ell_{1}} + \overline{k_{2}} + \overline{\ell_{2}}}{p(z)} = z^{z} (1 - z)^{1 - z} \left(\overline{k_{1}} + \overline{\ell_{1}} + \overline{k_{2}} + \overline{\ell_{2}}\right)$$
$$\ell_{1}(z) = \left(\frac{(1 - z)}{z}\right)^{z} z^{z} (1 - z)^{1 - z} \left(\overline{k_{1}} + \overline{\ell_{1}} + \overline{k_{2}} + \overline{\ell_{2}}\right) = (1 - z) \left(\overline{k_{1}} + \overline{\ell_{1}} + \overline{k_{2}} + \overline{\ell_{2}}\right).$$

The total demand for labor in country 1 is

$$\int_0^{1/2} (1-z) \left(\overline{k_1} + \overline{\ell_1} + \overline{k_2} + \overline{\ell_2} \right) dz = \left(\overline{k_1} + \overline{\ell_1} + \overline{k_2} + \overline{\ell_2} \right) \left(z - \frac{z^2}{2} \right) \Big|_0^{1/2} = \frac{3}{8} \left(\overline{k_1} + \overline{\ell_1} + \overline{k_2} + \overline{\ell_2} \right).$$

$$\overline{\ell}_1 < \frac{3}{8} \left(\overline{k}_1 + \overline{\ell}_1 + \overline{k}_2 + \overline{\ell}_2 \right),$$

then we know that we are in the case where $\hat{r}_1 = \hat{w}_2 > \hat{w}_1 = \hat{r}_2 = 1$. Since $\overline{k}_2 = \overline{\ell}_1$ and $\overline{\ell}_2 = \overline{k}_1$, this condition is

$$\overline{\ell}_1 < \frac{3}{4} \left(\overline{k}_1 + \overline{\ell}_1 \right)$$

$$\overline{\ell}_1 < \frac{1}{3} \overline{k}_1.$$

If $\overline{\ell}_1 < \frac{1}{3}\overline{k}_1$, let us solve for $\hat{w}_2 = \hat{r}_1 = r$

$$p(z) = \frac{r^{z}}{z^{z}(1-z)^{1-z}}$$

$$y_{1}(z) = c_{1}(z) + c_{2}(z) = \frac{2(r\overline{k_{1}} + \overline{\ell_{1}})}{p(z)} = \frac{2z^{z}(1-z)^{1-z}(r\overline{k_{1}} + \overline{\ell_{1}})}{r^{z}}$$

$$\ell_{1}(z) = \left(\frac{r(1-z)}{z}\right)^{z} \frac{2z^{z}(1-z)^{1-z}(r\overline{k_{1}} + \overline{\ell_{1}})}{r^{z}}$$

$$\ell_{1}(z) = 2(1-z)(r\overline{k_{1}} + \overline{\ell_{1}})$$

$$\int_{0}^{1/2} 2(1-z)(r\overline{k_{1}} + \overline{\ell_{1}}) dz = 2(r\overline{k_{1}} + \overline{\ell_{1}})\left(z - \frac{z^{2}}{2}\right)\Big|_{0}^{1/2} = \frac{3}{4}(r\overline{k_{1}} + \overline{\ell_{1}}).$$

Solving for $\hat{w}_2 = \hat{r}_1 = r$, we obtain

$$\frac{3}{4} \left(r \overline{k}_1 + \overline{\ell}_1 \right) = \overline{\ell}_1$$

$$\hat{w}_2 = \hat{r}_1 = r = \frac{\overline{\ell}_1}{3\overline{k}_1}.$$