INTERNATIONAL FINANCE GPEM - UNIVERSITAT POMPEU FABRA

PROBLEM SET #2

1. Consider a two sector growth model in which the representative consumer has the utility function

$$\sum_{t=0}^{\infty} \beta^{t} \log(c_{1t}^{a_{1}} c_{2t}^{a_{1}}).$$

Here $0 < \beta < 1$, $a_1 \ge 0$, $a_2 \ge 0$, and $a_1 + a_2 = 1$. Investment is produced according to

$$k_{t+1} - (1 - \delta)k_t = dx_{1t}^{a_1} x_{2t}^{a_1}.$$

Feasible consumption/investment plans satisfy

$$c_{1t} + x_{1t} = \phi_1(k_{1t}, \ell_{1t}) = k_{1t}$$

$$c_{2t} + x_{2t} = \phi_2(k_{2t}, \ell_{2t}) = \ell_{2t}$$

where

$$k_{1t} + k_{2t} = k_t$$
$$\ell_{1t} + \ell_{2t} = \ell_t$$

The initial value of k_t is \overline{k}_0 . ℓ_t is equal to 1. (In other words, all variables are expressed in per capita terms.)

a) Carefully define a competitive equilibrium for this economy.

b) Reduce the equilibrium conditions for this economy to two difference equations in k_t and c_t , and a transversality condition. Here $c_t = dc_{1t}^{a_1} c_{2t}^{a_1}$ is aggregate consumption.

c) Suppose now that there is a world made up of *m* different countries all with the same technologies and preferences, but different endowments, $\overline{L}^j \overline{k}_0^{\ j}$ and \overline{L}^j . (That is, there is a measure \overline{L}^j of consumers, each of whom is endowed with 1 unit of labor in every period and $\overline{k}_0^{\ j}$ units of capital in period 0.) Suppose that there is no international borrowing or lending. Define an equilibrium for the world economy. Prove that in this equilibrium the variables $c_{it} = \sum_{j=1}^{m} \overline{L}^j c_{it}^j / \sum_{j=1}^{m} \overline{L}^j$, $k_t = \sum_{j=1}^{m} \overline{L}^j k_t^j / \sum_{j=1}^{m} \overline{L}^j$, p_{it} , r_t , and w_t satisfy the equilibrium conditions for the equilibrium in part a where $\overline{k}_0 = \sum_{i=1}^{m} \overline{L}^j \overline{k}_0^j / \sum_{i=1}^{m} \overline{L}^j$.

d) State and prove versions of the factor price equalization theorem, the Stolper-Samuelson theorem, the Rybczynski theorem, and the Heckscher-Ohlin theorem for this particular world economy.

e) Consider the case where $\delta = 1$. Let $z_0 = c_0 / (\beta r_0 k_0)$ and $z_t = c_{t-1} / k_t$, t = 1, 2, ...Transform the two difference equations from part b into two difference equations in k_t and z_t . Show that

$$\frac{k_{t}^{i}-k_{t}}{k_{t}}=\frac{z_{t}}{z_{t-1}}\left(\frac{k_{t-1}^{i}-k_{t-1}}{k_{t-1}}\right)=\frac{z_{t}}{z_{0}}\left(\frac{\overline{k_{0}^{i}}-\overline{k_{0}}}{\overline{k_{0}}}\right).$$

f) Suppose again that $\delta = 1$. Let $s_t = c_t / y_t$ where $y_t = p_{1t}k_t + p_{2t} = dk_t^{a_1}$. Transform the two difference equations from part b into two difference equations in k_t and s_t . Show that

$$\frac{y_t^i - y_t}{y_t} = \frac{s_t}{s_{t-1}} \left(\frac{y_{t-1}^i - y_{t-1}}{y_{t-1}} \right) = \frac{s_t}{s_0} \left(\frac{y_0^i - y_0}{y_0} \right)$$

where $y_t^i = p_{1t} y_{1t}^i + p_{2t} y_{2t}^i = r_t k_t^i + w_t$.

g) Suppose that $\delta = 1$, but that the utility function is

$$\sum_{t=0}^{\infty} \beta^{t} \log(a_{1}c_{1t}^{b} + a_{2}c_{2t}^{b})^{1/b}$$

and that the production function for investment is

$$k_{t+1} = d(a_1 x_{1t}^b + x_{2t}^b)^{1/b}.$$

Explain the importance of the results in parts a-g in this world.

2. Suppose again that $\delta = 1$, that $c_t = dc_{1t}^{a_1}c_{2t}^{a_2}$ and that $k_{t+1} = dx_{1t}^{a_1}x_{2t}^{a_2}$. Now suppose that

$$c_{1t} + x_{1t} = \phi_1(k_{1t}, \ell_{1t}) = \theta_1 \ell_{1t}^{1-\alpha_1} k_{1t}^{\alpha_1}$$

$$c_{2t} + x_{2t} = \phi_2(k_{2t}, \ell_{2t}) = \theta_2 \ell_{2t}^{1-\alpha_2} k_{2t}^{\alpha_2}.$$

a) Let $F(k, \ell)$ be the maximum value of

$$\max dy_{1t}^{a_1} y_{2t}^{a_2}$$

s.t. $y_1 = \theta_1 \ell_1^{1-\alpha_1} k_1^{\alpha_1}$
 $y_2 = \theta_2 \ell_2^{1-\alpha_2} k_2^{\alpha_2}$
 $k_1 + k_2 = k$
 $\ell_1 + \ell_2 = \ell$
 $k_j, \ell_j \ge 0.$

Show that $F(k, \ell)$ has the form $Dk^{A}\ell^{1-A}$.

b) Suppose now that there is a world made up of *m* different countries all with the same technologies and preferences, but different endowments, $\overline{L}^{j}\overline{k}_{0}^{j}$ and \overline{L}^{j} . Suppose that there is no international borrowing or lending and there are no international capital flows. Define an equilibrium for the world economy.

c) Using the answers to parts a and b, show that necessary and sufficient conditions for the integrated equilibrium approach to work for all t = T, T + 1, ..., is that

$$\kappa_1 k_t \ge k_t^i \ge \kappa_2 k_t$$
 for all $i = 1, ..., m$ and all $t = T, T + 1, ..., m$

For some $\kappa_1, \kappa_2 > 0$.

d) Suppose that, in some period T,

$$\kappa_1 k_T \ge k_T^i \ge \kappa_2 k_T$$
 for all $i = 1, ..., m$.

Use the answers to parts a, b, and c and the answer to part f of question 3 to calculate analytical expressions for the equilibrium values of the variables in part b for all t = T, T + 1, ... [Hint: You can show that $\kappa_1 k_t \ge k_t^i \ge \kappa_2 k_t$ for all i = 1, ..., m and all t = T, T + 1, ...]

3. Find data to calculate the bilateral real exchange rate between two countries who have a bilateral trade relation that is important to at least one of the countries. Find data on the prices of traded goods in these two countries. Calculate a decomposition of the bilateral real exchange rate of the form

$$rer_t = rer_t^T + rer_t^N$$
,

where rer_t is the natural logarithm of the bilateral real exchange rate and rer_t^T is the logarithm of the bilateral real exchange rate for traded goods. Calculate the correlation

between rer_t and rer_t^N in levels, in 1 year differences, and in 4 year differences. Calculate ratio of the standard deviations of rer_t and rer_t^N in levels, in 1 year differences, and in 4 year differences. Calculate a variance decomposition of rer_t in terms of rer_t^T and rer_t^N in levels, in 1 year differences, and in 4 year differences.