PROBLEM SET \#2

1. Consider a two sector growth model in which the representative consumer has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log \left(c_{1 t}^{a_{1} c_{2} c_{1} a_{1}}\right) .
$$

Here $0<\beta<1, a_{1} \geq 0, a_{2} \geq 0$, and $a_{1}+a_{2}=1$. Investment is produced according to

$$
k_{t+1}-(1-\delta) k_{t}=d x_{1 t}^{a_{1}} X_{2 t}^{a_{1}} .
$$

Feasible consumption/investment plans satisfy

$$
\begin{aligned}
& c_{1 t}+x_{1 t}=\phi_{1}\left(k_{1 t}, \ell_{1 t}\right)=k_{1 t} \\
& c_{2 t}+x_{2 t}=\phi_{2}\left(k_{2 t}, \ell_{2 t}\right)=\ell_{2 t} .
\end{aligned}
$$

where

$$
\begin{aligned}
& k_{1 t}+k_{2 t}=k_{t} \\
& \ell_{1 t}+\ell_{2 t}=\ell_{t} .
\end{aligned}
$$

The initial value of k_{t} is $\bar{k}_{0} . \ell_{t}$ is equal to 1 . (In other words, all variables are expressed in per capita terms.)
a) Carefully define a competitive equilibrium for this economy.
b) Reduce the equilibrium conditions for this economy to two difference equations in k_{t} and c_{t}, and a transversality condition. Here $c_{t}=d c_{1 t}^{a_{1}} c_{2 t}^{a_{1}}$ is aggregate consumption.
c) Suppose now that there is a world made up of m different countries all with the same technologies and preferences, but different endowments, $\bar{L}^{j} \bar{k}_{0}^{j}$ and \bar{L}^{j}. (That is, there is a measure \bar{L}^{j} of consumers, each of whom is endowed with 1 unit of labor in every period and \bar{k}_{0}^{j} units of capital in period 0.) Suppose that there is no international borrowing or lending. Define an equilibrium for the world economy. Prove that in this equilibrium the variables $c_{i t}=\sum_{j=1}^{m} \bar{L}^{j} c_{i t}^{j} / \sum_{j=1}^{m} \bar{L}^{j}, k_{t}=\sum_{j=1}^{m} \bar{L}^{j} k_{t}^{j} / \sum_{j=1}^{m} \bar{L}^{j}, p_{i t}$, r_{t}, and w_{t} satisfy the equilibrium conditions for the equilibrium in part a where $\bar{k}_{0}=\sum_{j=1}^{m} \bar{L}^{j} \bar{k}_{0}^{j} / \sum_{j=1}^{m} \bar{L}^{j}$.
d) State and prove versions of the factor price equalization theorem, the StolperSamuelson theorem, the Rybczynski theorem, and the Heckscher-Ohlin theorem for this particular world economy.
e) Consider the case where $\delta=1$. Let $z_{0}=c_{0} /\left(\beta r_{0} k_{0}\right)$ and $z_{t}=c_{t-1} / k_{t}, t=1,2, \ldots$. Transform the two difference equations from part b into two difference equations in k_{t} and z_{t}. Show that

$$
\frac{k_{t}^{i}-k_{t}}{k_{t}}=\frac{z_{t}}{z_{t-1}}\left(\frac{k_{t-1}^{i}-k_{t-1}}{k_{t-1}}\right)=\frac{z_{t}}{z_{0}}\left(\frac{\bar{k}_{0}^{i}-\bar{k}_{0}}{\bar{k}_{0}}\right) .
$$

f) Suppose again that $\delta=1$. Let $s_{t}=c_{t} / y_{t}$ where $y_{t}=p_{1 t} k_{t}+p_{2 t}=d k_{t}^{a_{1}}$. Transform the two difference equations from part b into two difference equations in k_{t} and s_{t}. Show that

$$
\frac{y_{t}^{i}-y_{t}}{y_{t}}=\frac{s_{t}}{s_{t-1}}\left(\frac{y_{t-1}^{i}-y_{t-1}}{y_{t-1}}\right)=\frac{s_{t}}{s_{0}}\left(\frac{y_{0}^{i}-y_{0}}{y_{0}}\right)
$$

where $y_{t}^{i}=p_{1 t} y_{1 t}^{i}+p_{2 t} y_{2 t}^{i}=r_{t} k_{t}^{i}+w_{t}$.
g) Suppose that $\delta=1$, but that the utility function is

$$
\sum_{t=0}^{\infty} \beta^{t} \log \left(a_{1} c_{1 t}^{b}+a_{2} c_{2 t}^{b}\right)^{1 / b}
$$

and that the production function for investment is

$$
k_{t+1}=d\left(a_{1} x_{1 t}^{b}+x_{2 t}^{b}\right)^{1 / b} .
$$

Explain the importance of the results in parts a-g in this world.
2. Suppose again that $\delta=1$, that $c_{t}=d c_{1 t}^{a_{1}} c_{2 t}^{a_{2}}$ and that $k_{t+1}=d x_{1 t}^{a_{1}} x_{2 t}^{a_{2}}$. Now suppose that

$$
\begin{gathered}
c_{1 t}+x_{1 t}=\phi_{1}\left(k_{1 t}, \ell_{1 t}\right)=\theta_{1} \ell_{1 t}^{1-\alpha_{1}} k_{1 t}^{\alpha_{1}} \\
c_{2 t}+x_{2 t}=\phi_{2}\left(k_{2 t}, \ell_{2 t}\right)=\theta_{2} \ell_{2 t}^{1-\alpha_{2}} k_{2 t}^{\alpha_{2}} .
\end{gathered}
$$

a) Let $F(k, \ell)$ be the maximum value of

$$
\begin{gathered}
\max d y_{1 t}^{a_{1}} y_{2 t}^{a_{2}} \\
\text { s.t. } y_{1}=\theta_{1} \ell_{1}^{1-\alpha_{1}} k_{1}^{\alpha_{1}} \\
y_{2}=\theta_{2} \ell_{2}^{1-\alpha_{2}} k_{2}^{\alpha_{2}} \\
k_{1}+k_{2}=k \\
\ell_{1}+\ell_{2}=\ell \\
k_{j}, \ell_{j} \geq 0 .
\end{gathered}
$$

Show that $F(k, \ell)$ has the form $D k^{A} \ell^{1-A}$.
b) Suppose now that there is a world made up of m different countries all with the same technologies and preferences, but different endowments, $\bar{L}^{j} \bar{k}_{0}^{j}$ and \bar{L}^{j}. Suppose that there is no international borrowing or lending and there are no international capital flows. Define an equilibrium for the world economy.
c) Using the answers to parts a and b, show that necessary and sufficient conditions for the integrated equilibrium approach to work for all $t=T, T+1, \ldots$, is that

$$
\kappa_{1} k_{t} \geq k_{t}^{i} \geq \kappa_{2} k_{t} \text { for all } i=1, \ldots, m \text { and all } t=T, T+1, \ldots
$$

For some $\kappa_{1}, \kappa_{2}>0$.
d) Suppose that, in some period T,

$$
\kappa_{1} k_{T} \geq k_{T}^{i} \geq \kappa_{2} k_{T} \text { for all } i=1, \ldots, m
$$

Use the answers to parts a, b, and c and the answer to part f of question 3 to calculate analytical expressions for the equilibrium values of the variables in part b for all $t=T, T+1, \ldots$. [Hint: You can show that $\kappa_{1} k_{t} \geq k_{t}^{i} \geq \kappa_{2} k_{t}$ for all $i=1, \ldots, m$ and all $t=T, T+1, \ldots$.
3. Find data to calculate the bilateral real exchange rate between two countries who have a bilateral trade relation that is important to at least one of the countries. Find data on the prices of traded goods in these two countries. Calculate a decomposition of the bilateral real exchange rate of the form

$$
r e r_{t}=r e r_{t}^{T}+r e r_{t}^{N},
$$

where $r e r_{t}$ is the natural logarithm of the bilateral real exchange rate and $r e r_{t}^{T}$ is the logarithm of the bilateral real exchange rate for traded goods. Calculate the correlation
between $r e r_{t}$ and $r e r_{t}^{N}$ in levels, in 1 year differences, and in 4 year differences. Calculate ratio of the standard deviations of rer $_{t}$ and $r e r_{t}^{N}$ in levels, in 1 year differences, and in 4 year differences. Calculate a variance decomposition of $r e r_{t}$ in terms of $\operatorname{rer} r_{t}^{T}$ and $r e r_{t}^{N}$ in levels, in 1 year differences, and in 4 year differences.

