Economettica, Vol. 48, Na. § (July, 1980)

AN INDEX THEOREM FOR GENERAL EQUILIBRIUM MODELS
WITH PRODUCTION'

By TiMoTaY J. KEHOE?

In this paper we prave a global index theorem for general equilibrium models with
activity analysis production technologies. We begin by constructing a single-valued
function whose fixed points are equivalent to the equilibria of such a model. We then
associate each fixed point with an index that is an integer determined by the local
properties of this function at that point. The glabal index theorem makes a statement about
the sum of all the indices of equilibria that implies conditions sufficient for uniqueness of
equilibrium.,

1. INTRODUCTION

IT1s wELL kNOWN that some variant of Brouwer’s fixed point theorem can be used
to prove the existence of equilibrium prices for a general model of economic
competition. However, simple existence proofs leave many questions
unanswered: For example, is the equilibrium price vector unique? If not, is it
locally unique? Does it vary continuously with the underlying parameters of the
model? Answers to such questions are intimately linked with this model’s
applicability to problems of comparative statics. Consequently, it is not surprising
to find that a large amount of effort has been devoted to analyzing these questions.
To provide complete answers, however, requires a more detailed set of assump-
tiors than those required for simple existence proofs. For this reason we adopt a
differentiable framework.

There have been many approaches to answering the question of when an
equilibrium is unique {(see Arrow and Hahn [1, Chapter 9] for a survey). Several
recent approaches have made use of a tool borrowed from the field of algebraic
topology, the fixed point index (Dierker [6, 7, 8], Mas-Colell {23, 24], and Varian
[32]). Researchers have recognized the close connection between this tool, when
cast in a differentiable framework, and the concept of regularity introduced by
Debreu [2] in response to the questions of local uniqueness and continuity. With
the notable exceptions of Fuchs [13], Mas-Colell [22, 23, 24], and Smale [27],
researchers have focused their attention on the pure exchange model that allows
no production. One reason for this focus has been that, in contrast to the pure

_exchange model, where the excess demand function has been the natural subject
of study, the model with production has had no obvious, single-valued, differen-
tiable function to investigate,
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Using a variant of a device due to Todd [31], we define a single-valued function
whose fixed points are equivalent to equilibria of a model with an activity analysis
production technology. We associate each fixed point of this function with an
index that is an integer determined by the local properties of the function at that
point. The global index theorem makes a statement about the sum of all the
indices of equilibria allowing us to establish conditions sufficient for uniqueness.

For “almost all” economies with differentiable consumer demand functions the
index of an equilibrium price vector is either +1 or —1 depending on the sign of
-J —E]

B ol

Here J is formed by deleting the first row and column from the Jacobian matrix of
demand functions; B is formed by deleting the first row from the matrix of
activities in use at equilibrium. The global index theorem states that the sum of all
the indices of equilibrium of an economy is equal to +1. Mas-Colell has indepen-
dently derived many of the results presented in this paper without directly utilizing
such a single-valued function. His approach, however, involves mathematical
machinery more complex than that employed here.

det [

2. THE MODEL

Let us begin by describing a simple version of the Walrasian model of economic
equilibrium. We assume that there is a finite number, #, of perfectly divisible
commodities. On the consumption side of the model responses of consumers to a
vector of nonnegative prices == (ary, ..., m,) are aggregated into a vector of
market excess demand functions &(z)=(£(7), ..., & (7). We take these
functions to be completely arbitrary except for the following assumptions:

AssumpTION 1 (Difterentiability): Each £ is a continuously differentiable
function defined, for the sake of simplicity, over the domain of all nonnegative
prices except the origin, R \{0}.

AssuMpTION 2 (Homogeneity): Each £ is homogeneous of degree zero; that is,
&(tm) = &{m) for all £>Q.

ASSUMPTION 3 (Walras's law): The vector function ¢ obeys Walras's law,
m'é(m)y=0. '

Several comments about these assumptions are in order. The homogeneity
assumption (Assumption 2) embodies the understanding that only relative prices
matter in 2 model where money plays no explicit role. Walras's law (Assumption
3) dictates that all income is spent. These two assumptions are standard and
completely general; the differentiability assumption (Assumption 1) is more
specific. It is this assumption, however, that is central to our differentiable
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approach to the study of equilibrium. Recent studies have suggested that assum-
ing excess demand to be a continuously differentiable, single-valued function,
rather than the more general upper-semi-continuous, set-valued correspondence,
is not overly restrictive {Debreu [3, 4] and Mas-Colell {21]). The central point of
these studies is that arbitrarily small perturbations in the underlying preferences
of individual consumers suffice to make aggregate excess demand a differentiable
function. Since we use the excess demand function, rather than consumers’
preferences, to specify the consumption side of the model, we shall not pursue this
issue. We should note, however, that Assumption 1 is further restrictive in
requiring £ to be continuous even at points where some m; = (0. The technique
usually employed to ensure that this property holds is to put bounds on the
consumption sets of individual consumers in a way that does not disturb the
equilibria of the economy. Alternatively, it is a relatively straightforward matter
to relax Assumption 1 utilizing only the concepts that we have defined here (see
Kehoe [18], pp. 62-65]). For the present, however, we shall ignore this minor
technical point. The above assumptions completely describe the consumption side
of the model. Indeed, if Assumption 1 is replaced by a weakened continuity
assumption, then Assumptions 1-3 fully characterize aggregate excess demand
functions under general conditions {McFadden, Mas-Colell, Mantel, and Richter
[20]).

The production technology is specified by an activity analysis matrix A with »
rows and m columns. Aggregate production is denoted by Ay where yisanm X 1
vector of nonnegative activity levels. We assume that A satisfies the following
assumptions:

AssSUMPTION 4 (Free disposal): A includes n free disposal activities, one for
each commaodity.

AsuMpTioN 5 {Boundedness): There are no outputs without any inputs,
{AyeR"|y =0, Ay =0}={0}.

Alternative forms of these assumptions are useful: The free disposal assumption
implies that the n X # matrix ~I is a submatrix of A. The boundedness assumption
implies that there is some vector s, strictly positive, such that 7' A= 0.

For our present purposes an economy is completely described by an excess
demand function representing the consumption side and an activity analysis
matrix representing the production side.

DEFINITION: An equilibrium of an economy (&, A) is a price vector # that
satisfies the following conditions: (a) #'A <0. (b) There exists j =0 such that
E(R)=Ay. (¢) Lo @i = 1.

The condition #'A =0 implies that at prices 7 no excess profits can be made,
£(#)= A{ requires that demand equal supply at equilibrium. This condition,
together with Walras’s law, implies that #' A7 =0. Thus profits are maximized by
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the aggregate production plan A7. Since Assumption 1 rules the vector # =0 out
of consideration, we use the homogeneity assumption (Assumption 2) and the free
disposal assumption (Assumption 4) to restrict our attention to the unit simplex

S={7TER"’7r,-;0, Y 1r,-=1}
i=1

when examining equilibrium positions. At this stage it might seem more appro-
priate to include the vector of activity levels y directly in the definition of
equilibrium. However, we shall soon impose conditions on {£, A) that would make
this addition superfluous.

We shall find it useful to consider whole spaces of economies. To do so, we must
specify some topological structure on the space of economies satisfying Assump-
tions 1-3 and on the set of activity analysis matrices satisfying Assumptions 4 and
5. A topology on a space is specified by defining a system of open sets. Recall that
in a metric space this is done by employing the concept of distance between two
points in that space. We now give the space of economies the structure of a metric
space: Let of < {-I}x R"“™ ™" be the space of activity analysis matrices that
satisfy Assumptions 4 and 5; here —1 is the submatrix of free disposal activities.
We endow «f with the standard topology on R™*"" ™™ by defining the metric

dat,ay=(3 ¥ @h-adp)
i=1f=n+1
for any A', A’ o2 Let @ be the space of C' functions satisfying Assumptions
1-3. We endow @ with the topology of uniform C' convergence on compacta.
Letting M be some compact subset of R;1{0}, we define the metric

ati 6‘5:

da (€', 2= sup [&l(m)—£] (m)|+ sup —( )——= ()

Lme M LjmeM

T

for any £', £*€ . Since we adopt Assumptions 1 and 2, we shall use § as the
compact domain on which maps ¢', £ are compared. (This topology is the same
as the Whitney C" topology if we restrict the domain of our maps to the com-
pact set S.) The space of economies & =% x o has the induced product topol-
ogy: For any (f A (nf A% e % we define the metric d[(£}, AY), (&2, A=
ds(£", £+ d(A", AY)

DPEFINITION: An economy (£, A) is an element of the metric space € = @ x «.

3. THE MAPPING

Let us now define a mapping of S into itself whose fixed points are equivalent to
equilibria of an economy (£, A). LcttingN be any nonempty, closed, subset of R",
we define the pro;ectlon map p” : R” > N by the rule that associates any pomt
g€ R" with the pomt p" (g) that is closest to g in terms of Euclidean distance. It is
well known that p~ is continuous if N is convex. Observe that our definition of
equilibrium implies that any equilibrium is an element of the nonempty, closed,
convex set S, ={reR"[r'A=<0,2/., m=1}c S
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e

3

FiGurg 1
DEerFINITION: For any economy (£, A)€ &, define the map g:5 - § by the rule

glm) = plm + £(mm)).
T+E (1)

FIiGure 2
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[t will sometimes be convenient to refer to g as g 4.

Note that, since g is the composition of two continuous maps, it too is
continuous. We shall apply Brouwer’s fixed point theorem to this map g to prove
the existence of an equilibrium price vector for g.

BROUWER'S FIXED POINT THEOREM: If f: M > M is a continuous map of some
nonempty, compact, convex set M < R" into itself, then f leaves some point fixed
that is, there exists % € M such that ¥ = f(£).

The motivation for our definition of g is clearly seen in the following theorem.

THBEOREM 1: Fixed points # = g(7) of the map g and equilibria of the economy
(&, A) € % are equivalent.

PRoOE: 7 =g(#) if and only if # is the unique solution to the quadratic
programming problem

min 3(p — 7 — £(#))(p — 7 — £(#))
subjectto p'A <0,
ple=1, where e=(1,...,1).

By the Kuhn-Tucker theorem there exist nonnegative ¥ =(§,..., .} and A
such that

p—F— LA+ A +Ae =0

and p'Ay = 0. But p = # implies that £(#) = AJ + ke. Applying Walras’s law, we
abtain

0=7'¢(7)
=HAf+#'Ae
=X
Therefore, since 7 € S4, the equilibrium conditions are satisfied. Q.ED.

Consequently, Brouwer’s theorem implies the existence of equilibrium and
hence the logical consistency of our model. The restriction of the domain of g to S,
while entirely natural for proving existence of equilibrium, would make our
discussion of regularity and index theory awkward. We want to study the
derivatives of g. To simplify matters, we define X to be a smooth (that is, ")
n-dimensional manifold with boundary, embedded in R” so thatitcontains § in its
interior and does not contain the origin. We now extend the domain of the map ¢
to X.

LEMMA 1: Let £ be any function satisfying Assumption 1 and let X < R" be
defined as above. £ can be extended to a C" map with domain X.
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Proor: We demonstrate our contention by constructinga C' map £*:R"* > R"™
that satisfies £%(mr) = £(m) for all e X n RY. There are two steps in this con-
struction. First, we deal with the relatively minor technical problem of £ being
undefined at the origin. Second, we follow Saigal and Simon {26} in extending £ to
a C' map on all R”,

Since X is compact and does not contain 0e R", the continuous function [rr|]
achieves a minimum « >0 on X, Let 8 be such that ||7||=a >8>0 for all me X.
Take a smooth function §; R"™ - R that satisfies

6(my=1 if Jx]<8,
8(m=0 if ||a|=a,
0<@(m)=<1 if B<l|r]<a.

The construction of such a function, known as a bump function, is a standard
exercise (see Hirsch [17, pp. 41-42]). We define £°(m) = (1 — 8(m))¢(wr) for all
xe R0} and £%7)=0 for m=0. Note that £° is C', maps R? into R", and
agrees with £ on X " R%.

Now extend £° to a C' map on all R" employing the following recursive

procedure; Given ¢ defined on {7 € R"|m =0, ..., m, =0}, define & on {me
R"|mz1 =0, ..., m =0} by the rule
E Ny m)if m=0,
fi(ffla e M) = “f{_l(ﬂl, vy Ti—le T Wi Wity - - oy ‘Fn)
+26 Yy, L i1, 0, Terrs o ooy M) if 7 <0.
Note that £° extends ¢ " and is C". Therefore £* = £" extends £° to all Ig.
LE.D.

We shall use this lemma to assume that g is defined on X (although there is no
reason to expect that £ satisfies Assumptions 2 and 3 at points not in X n R%).

4. REGULAR ECONOMIES

When studying fixed points of g we want to rule out certain degenerate
situations. For this purpose we employ the notion of regular economy introduced
by Debreu. References for the technical concepts employed in this and
subsequent sections are the books on differential topology by Milnor [25],
Guillemin and Pollack {16], and Hirsch [17].

DEerFINITION: Consider a C' map f: M - N from a smooth manifold of dimen-
sion m to a smooth manifold of dimension 1. A point x € M is a regular paint it
Df, : T(M), - T(N)y has rank »n; in other words, is onto. A point ye N is a
regular value if every point x for which f{x) = y is a regular point. Points in A that
are not regular points are critical points ; points in N that are not regular values are
critical values.
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By convention, any point y for which the set £ '(y) is empty is a regular value.
Also, if m < n, then clearly every point x € M is a critical point. We extend these
concepts to maps such as g that are not everywhere differentiable by requiring that
the map Df, exist at a point x for x to be a regular point.

In the following analysis we focus our attention on economies (£, A) for which 0
is a regular value of the map (g —71): X > R" where [ is the identity map on R".
Unfortunately, the map g defined in the previous section is not everywhere
difterentiable. The projection map p*+ has kinks because of the boundary of S,.
Consequently, g is only piecewise differentiable. As we shall see, however, g is a
smooth map on any open set I/ = X such that all points in the image g(IJ) are
contained in the same face of S4. To ensure that g is differentiable at every
equilibrium, let us make the following nondegeneracy assumptions on (£, A):

ASSUMPTION 6: No column of A can be expressed as a linear combination of
fewer than r other columns.

AssuMPTION 7: Let B{#) denote the submatrix of A whose columns are all the
activities earning zero profit at 7. At every equilibrium # all §, are strictly positive
in the equation f(‘l’?’] = Ebeg(,ﬁ-) )’}\bb

We now turn our attention to finding an expression for Dg;—I for an
equilibrium # of some economy (¢, A) satisfying Assumptions 1-7.

LEMMA 2: Let p be the map that projects any point g € R" into the nonempty set
{xfx'C =c'}. If the columns of C are linearly independent, then p is a smooth
function with Jacobian matrix Dp, =1 —C(C'C)"C’ forail ge R",

The proof of this result is a straightforward application of the Kuhn-Tucker
theorem. Of course, I — C(C’C) ™' C" is simply the orthogonal projection into the
null space of €, as anyone familiar with least squares regression techniques would
expect.

We want to apply this lemma to g — I. Note that, at any fixed point #, #'B{#) =
0 and Assumption 6 imply that B(#) has fewer than n columns and these are
linearly independent. Let C =[e B(#)]; the columns of C are linearly independent
since 7'e = 1 while #'B(#)=0.

THEOREM 2: Let (£, A) be any economy satisfying Assumptions 1-7. The map g
is differentiable in some open neighborhood of every fixed point #, and the Jacobian
matrix Dg  — I equals (I — C(C'C)'\CYI+D¢;) -1

PrRoOF: By Assumption 7 any activity a’ not in B{(#) at equilibrium # is such
that #'a’ = g(#)'a’ <0. Therefore # has an open neighborhood IJ such that
glmya'<0forall ;e U by the continuity of g. Lemma 2 implies that, if all the
constraints g(«) B{#) =<0 are satisfied with equality, then g(=) varies smoothly
with . Note, however, that §, >0 for b B(#) implies that there is an open
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neighborhood V < U of # where g(#)'B{#)=0. Using the chain rule, we can
differentiate g to obtain

Dg,—I=(I-C(C'CY"CYI +D¢g,) -1
for all me V. Q.E.D.

DEFINITION: An economy {£, A) e € that satisfies Assumptions 6 and 7 and has
Dg . — I nonsingular at every equilibrium is a regular economy. The set of regular
economies is denoted % <& Economies that are not regular are critical
economies.

To justify this terminology, we note that Theorem 2 implies that ( is a regular
value of g—1I if (£, A) is a regular economy. As we shall see, the conditions that
define a regular economy are satisfied by almost all economies in . Of course, the
sense of the phrase “almost all” has been made more precise. We shall also
demonstrate that these conditions for regularity are equivalent to those given by
Debreu [2] for the special case of a pure exchange economy with all equilibria
strictly positive.
Another useful concept is that of the equilibrium price correspondence.

DerINITION: The equilibrium price correspondence 1 . € 8 associates with
any economy the set of its equilibrium price vectors.

THEOREM 3: [T is an upper-semi-continuous, point-to-set correspondence.

ProOF: Let (£, A')> (£, A) and 7' » 7 where ' € [T(¢', A'). We want to show
that e [T(£, A). Let us define the production set Y(A)={Ay|y =0}. We can
rephrase our equilibrium conditions as [7(¢, A)={recS|m'A=< 0, £(m)e Y(A)}
Now, if all A’ satisfy Assumptions 4 and 5, A’ > A implies Y(A')»> Y(A). (We
can use the closed convergence topology for nonempty, closed subsets of R” to
make precise the notion of convergence of sets.) ¢ (') is jointly continuous in £*
and 7', where ¢ varies in the topology of uniform C ! convergence on compacta;
a"A' is likewise jointly continuous in #' and A', Therefore we have 7" A’ >
7 A<Qand £ (') > £(@r). Since Y(A')» Y(A)and &' (7)€ Y(A'), £(m)e Y(A).
Thus 7 € [T{£, A). Q.E.D.

One immediate consequence of this theorem is that for any economy (£, A) the set
of equilibria T(£, A) is a closed subset of the compact set §; therefore II(¢, A) is
compact. In the case of a regular economy, the inverse function theorem applied
to g — I at # implies that the equilibria are isolated. Thus any economy (£, A}€ R
has only a finite number of equilibria.

THEOREM 4: The equilibrium correspondence IT is continuous on R and the
number of equilibria is locally constant,
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ProoF; We model our proof after that of Dierker [7, 8] for the pure exchange
model. Let (£, A) be a regular econorny The set H(.f, A}=(g—I)"'(0) consists of
a finite number of equilibria a', ..., 7" Each 7' has a neighborhood that is
mapped diffeomorphically by g — I onto a neighborhood of 0. We make use of the
following result from Dierker [7]:

LEMMA: Let z map a neighborhood of w e X diffeomorphically onto a neighbor-
hood of O € R" and 2(m) = 0. There exist a neighhorhood V of m and £ > 0 such that
every C' funcaon Z maps V diffeomorphically onto some neighborhood of 0
provided the C" distance of 2|V and z|V is less than «.

It follows that each =' has a neighborhood V, such that (g~-I):V,>R"isa
d1ﬂeomorph1sm onto a neighborhood of the origin if £ is ¢’ close to g on V. Let
8= 8w and g = gz 4 for some (f, A) € . We have no trouble with the differen-
tiability of g since we can choose V, small enough for g|V; to be C* by Theorem 2.
The topology on & is fine enough for us to find a nelghborhood Y& of (£ A)
such that (£, A}e 9 implies that |V} is smooth and had C' distance less than &
from g|V.

Let each V; be smail enough so that Vi~ V.= (J for i #i'. Recall that I7 is
upper-semi-continuous. The set |J;_ el (Wi, where ¢l (V:}is the closure of V, isa
compact subset of X, implying that I A c U, 1 Vifor all (g, A]e 4. Thus the
number of equilibria is locally constant. Furthermore, the correspondence I7 can
be considered as the union of k single-valued functions on %. They are continuous
since IT is upper-semi-continuous. QE.D.

When the economy under investigation is regular this theorem provides us with
answers to the questions of local uniqueness and continuity posed earlier,

5. THE GLOBAL INDEX THEOREM

We are concerned with fixed points of the map g defined on the manifold X.
Ailthough g is not everywhere differentiable, if the economy (£ A) satisfies
Assumptions 6 and 7 and has Jocally unique equilibria, we can smooth g without
disturbing its fixed points. Although this operation is not strictly necessary to
derive the results that follow, carrying it out simplifies our exposition.

LEMMA 3: Let g : X > X be defined as previously. If (£, A€ & satisfies Assump-
tions 6 and 7 and if the fixed points of g are isolated, then for any £ > 0 there exist a
C' map g*: X » X and an open set V < X containing {me Xlg(m)=m} thatsattsfy
@) lg*(m)—g(m)ll<c forall me X; (b} g*(m) =g(7m) forall me V; (c) g*(#) =
implies #e V.

PrRoOF: We make use of the following well known theorem (see, for example,
Dieudonne [10, p. 133]):
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n({E) 4]

(£,A)
FiGurre 3

WEIERSTRASS APPROXIMATION THEOREM: Let X € R" be a compact set and
g:X > R" be a continuous map. For any £ >0 there exists a polynomial map
h:X - R"such that |h(m)—g(m)|<e forall me X.

The set {re Xlg(fr)_= 7} consists of a finite number of points ', ..., 7. By
Theorem 2, for each * we can find some «; > 0 such that g(#) is differentiable on
some open ball U; < X centered at 7' with radius o,. Choose ay, ..., a, small

enough so that UJ; A U.= & for i #{". For each 7' choose some B: such that
a; > 8;>0. Let V, be the open ball centered at «* with radius 8. Note that the set
V= U:(=1 V. contains {7 € X|g(m)=#} and that g is differentiable on the set
U=J, U. Let 8:R" > R be a smooth function such that °(x) =1 if |=' —
7ll<B, 8'(m)=0 if |r' —7[=a, and 0<8'(m)<1 if B;<[r' —7||<aw Let
8:R"> R be the smooth function #(r)=3{, ' (r). Note that 8(r)=1 for
mecl(V), 8(m)=0for me X\U, and 0< 8{(m}<1 for me U\cl (V).
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We are now ready to construct a map g* satisfying the conditions of the lemma.
The continuous function ||g () — (| achieves a minimum 8 >> 0 on the compact set
X\V. By the above theorem there exists a smooth map 4:X — R" such that
(lh(m) —g{m)|=<e <& forall w € X Since g maps X into S4, thatis, maps X into its
interior, we can choose £ small enough so that & : X » X. Define the map
g¥ X > X as g*(m) = 6(m)g(m)+ (1 — 8(m))h(x). Note that g* is C' and agrees
with g on V. Also note that, for any 7 € X\V, [|g*(m) —g(m)|| = ¢ and |g(#)}— #[[=
8> ¢ implies that g{w) # . Hence g* is the map that we desire. QED.

We now present the formula for computing the local Lefschetz number of an
isolated fixed point 7 of the map g. Actually, the local Lefschetz number of an
isolated fixed point is a purely topological concept, which requires only the
continuity of g in order to be defined. However, in keeping with our differentiable
approach to the study of equilibria, we shall concern ourselves only with cases
where g is differentiable at its fixed points. The above formula indicates that, if
(£, A)e & satisfies Assumptions 6 and 7 and has locally unique equilibria, then, for
our purposes, we can assume that g 4, is C".

For a C' map g: X » X we compute the local Lefschetz number of an isolated
fixed point # as follows: Take a small closed ball B containing # and no other
fixed point. The rule n(w) =[g{7) — 7]/||g(sr) — ={ defines a smooth map from the
boundary of B, dB, to the unit sphere, 2. The local Lefschetz number is defined to
be the degree of this map v, which can be any integer. Intuitively, the degree of ©
measures the number of times ¢ wraps around X, taking orientation into account.
To be more specific, we choose some regular value y of ¢ and count the number of
points in its preimage »~'(y), adding +1 for every point 7€ »~*(y) such that
nonsingular linear map Dv,: T(dB), » T(X), preserves orientation and adding
-1 for every point € o~ '( y) such that Dy, reverses orientation. It is well known
that this calculation is independent of the regular value y and the ball B and that a
regular value always exists (see Hirsch [17, p. 124]).

In the special case where # is a regular point of g—1I this reduces to the
following rule (see Hirsch [17, p. 122]): L.(g)=+1 if Dg;—1I preserves orien-
tation. Lg(g)=-1 if Dgsz—I reverses orientation. Thus L:{g)=
sgn(det [Dg,—I) when Dg; — I is nonsingular. Here we define the funciion sgn:
R ->{-1,0, +1} by the rule

-1 if x<0,
sgnix)=¢ O if x=0,

+1 if x>0.

THEOREM 5: Let (£, A)e € be any economy that satisfies Assumptions 6 and 7
and has locally unique equilibria. 2, .oy Lo (g)=(=1)".

Proaor: This theorem is a special case of a major theorem in algebraic topology,
the Lefschetz fixed point theorem (see Dold [11] and Guillemin and Pollack [16,
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pp. 119-130]). Saigal and Simon [26] prove a version particularly suitable to our
purposes. The basic idea is that, if g: X » X is a C' map with isolated fixed points
and if we calculate the local Lefschetz number L :(g) of a fixed point # as above,
there is a global Lefschetz number L{g) =X .- L-(g) that is a homotopy
invariant. In fact, L(g) is independent of g: it depends anly on the manifold X.
Let ¢ be the map ¢:X - X that maps every point into the constant x =
(1/n,...,1/n). Since X is convex, we are able to construct the homotopy
G: X x[0,1]» X by defining G(m, t)=(1—1t)c(m)+1tg(w). Note that ¢ is a
smooth map and ¥ is the unique fixed point of ¢. Therefore L{c) = L:{c). Since

L{g) is a homotopy invariant, L(g) = L{c) = L;(¢}=sgn (det [-T]) = (—1)".
QED.

Note that this theorem implies the existence of an equilibrium for (£, A). Figure
4 illustrates this result for the case where g maps the unit interval into itself. Here
2rgom L.(g)=L{g)=-1.

Although we can compute the local Lefschetz number of a fixed point whenever
it is isolated, we shall have little use for it except when (£, A) is a regular economy.

1
-1
g(m)
+1
-1
Q ” 1

FIGURE 4

DerFINITION: For any economy (£, A) € & satisfying Assumptions 6 and 7, if an
equilibrium # is such that [(f — C(C'C)*C")D¢ ; — I is nonsingular, then index
(#) is defined as (—1)" sgn (det [(I - C(C'C) ' CYD¢x —1T)).

The advantage of this concept of index is that it ¢an be calculated without
reference to the map g. Note that, if (¢, A) is regular, then index (#) = (—1)"L #(g).
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However, we leave index (#) undefined in cases where # might not be a regular
value of g— 1.

Let us now state our central result, which is an immediate consequence of
Theorem 5 and the definitions of index (#) and regular economy.

THEOREM 6: If (¢, A) satisfies Assumptions 1-T and is a regular economy, then
index (#) is defined and equal to +1 or —1 at every equilibrium # and
2 rermea) index (m)=+1.

6. CALCULATION OF THE INDEX

To apply our results to specific economic models, we need to develop
alternative expressions for the index (7). One way to do this is to manipulate the
matrix [Dg; — C(C'C) ' C' D¢ 5 — C(C'CY '] without changing the sign of the
determinant. Elementary operations with this property can be found in any
standard text on linear algebra; our reference is Gantmacher [14]. However, to
the writer’s knowledge, the following useful result in linear algebra is not found
elsewhere.

LEMMA 4: Let Cbe ann x k matrix of full column rank k =sn andletJheann x n
matrix. The determinant of (I — C(C'C)""C'YI +J)— I has the same sign as

J C
al’, ]
et c 0

ProOOF: (I-C(C'CY ' CYI+T)—I=T—-C(C'CYC'T-C(C'C)'C". The
determinant of this matrix equals that of
[J— ceeytcr-cerey e Oj‘
I+ AN
Adding the last row pre-multiplied by C(C'C)™ " to the first, we do not change the
determinant of this matrix. We now have
J cee)y™! ]
det [C’J TN S

Subtracting the first row pre-multiplied by C’ from the last, we are left with
T C(C"C]"]
e |
e o
Note that €' C is positive definite and hence has a positive determinant. The sign

of the above expression therefore remains unchanged when the matrix is post-
multiplied by

o cel
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where [ is n X n:
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(2Tl el

C 0
We can use this lemma to calculate index () of any regular equilibrium # of an
economy that satisfies Assumptions 1-7;

JC}

o o QED.

[ Dé e B(#)
index {#)=(—1)"sgn |det| e 0 0
 B'(#Y 0 0
[0 ¢ 0
=(—1)"sgn idet| e D¢; B(#)
(0 B'(#) O
An alternative expression is
D¢z +E  —B(#
index (7) = sgn(det[ I;iﬁ) E O(ﬂ')])
where E is an n ¥ n matrix whose every element is unity. To see why this is so, note
that
N 1 e’ 0
—_ .+ —
det [ g‘?g‘) £ BO(’”)] —(-1)"detl0 Dés—E B(#).
7 0 B(# 0

If we post-multiply the second column of the final matrix by # and subtract from
the first column, we do not change the determinant. The homogeneity assumption
(Assumption 2), when differentiated, implies that D¢ o = 0 for any < RT\{0}.
Also e'# =1 and B'(#)# = 0. Thus we are left with

0 e 0 0 e’ 0
(—1)"det| ¢ D&;—FE B(F)| =(—-1)"det| e D¢ B(#)|.
0  B'(#F) 0 0 B'(m ]

Let the matrix J be formed by deleting from Dé; all rows and columns i for
which #; = 0 and then deleting any one more row and column. Let B be formed by
deleting from B(#) the columns corresponding to disposal activities, all rows i for
which #; =0, and the same additional row as that deleted from I}¢; Note that
Walras’s law (Assumption 3}, when differentiated, implies that (D£;)'s =
—¢(#)=—B(#)ys. Using this observation and matrix manipulations similar to
those above, we can easily demonstrate that

-J —BD
B 0

if more than one 7 is strictly positive; index (#) = +1 otherwise.

index (#) = sgn (det [
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Now, if A = —I (the case of the pure exchange model) and if &{7)> 0 for any =
such that m; =0, then any equilibrium # is strictly positive and index (#) =
sgn (det [—J)). Such is the situation analyzed by Dierker [6, 7, 8] and Varian [32],
who calculate the same expression for the index. Moreover, since Assumptions 6
and 7 are satisfied by any economy (£, —I), if det [—J] # 0 at any equilibrium, then
(¢, —1I) is regular. This concept of regularity is therefore equivalent to that of
Debreu [2]. Thus this formulation of index (7) allows us to compare our results
with those previously known for pure exchange economies. Even for these
economies our results are more general than those given elsewhere; we allow
some prices to be zero at equilibrium.

One other point is worth mentioning. For the sake of clarity, we have defined
the map g on the » manifold X. However, since g(X) < 8,4, we could have well
worked with the # —1 manifold X n{re R"[2]_, =, = 1}. Many writers find it
more elegant to work with an # — 1 manifold in this type of model, identifying S
with its natural projection into the last  — 1 price coordinates. Although this is
less trivial than it might seem, we can use the homogeneity assumption (Assump-
tion 2) and Walras’s law (Assumption 3) to drop the first coordinate from
consideration. In this setting the natural definition for index (7), at least when 7 I8
strictly positive, becomes (—1)"""sgn (det (F-B(B'B)"'B'J-B(A'B)'B'.
Rather than going through the derivation of this, which requires some work, we
simply note that, by Lemma 4, this is equivalent to the expression for the index
that we have already derived.

7. GENERICITY OF REGULAR ECONOMIES

The value of the global index theorem depends on how common a situation
regularity is in the space of economies. Intuitively, we view economies that are not
regular, critical economies, as somehow degenerate. Thus we might hope that
such economies form a very small subset of £. In fact this is the case,

DEFINITION: A property that holds for some subset ¥ of a topological space %
is a generic property of 4 if ¥ is open and dense in 4.

We shall argue that the property of regularity is generic, in other words, that 2 is
open and dense in €.

It should be noted that genericity as defined above is stronger than the usual
concept. Mathematicians often speak of some subset ¥ of a space ¥ as being
residual if it contains the intersection of a countable number of open dense sets.
For example, the set of irrational numbers is a residual subset of the reals. A
property that holds for a residual subset of 4 is then called a generic property. An
open dense set is, of course, residual, but a residual set, although dense, is not
necessarily open. We shall insist on the stronger definition, however. This is to
ensure that the set of critical economies is not dense in . The set of irrational
numbers is not open; its complement, the set of rational numbers, is dense on the
real line.
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The difficult half of proving that regularity is a generic property of & is proving
that & is dense in &; Theorem 4 already implies that it is open. Qur approach can
be motivated by an argument reminiscent of the counting of equations and
variables by Walras. OQur equilibrium conditions can be expressed as a system of
# + k variables in n +k + 1 equations

B'# =0,
£(7) = BY,
e'd =1,

where B is the n x k matrix of activities B{#). Walras's law implies that one of the
1 equations in £(#) = By can be eliminated. The conditions that ensure regularity
also ensure that the equilibrium pair (41, §) is a locally uniqgue solution to this
system that is stable under small perturbations. If either Assumption 6 or the
non-zero determinant condition does not hold, we may not have enough
independent equations for the equilibrium to be totally unique. If, on the other
hand, Assumption 7 does not hold, then we may have too many independent
equations for a solution to exist. If we do not have as many independent equations
as variables, then it is intuitively plausible that some very slight perturbation in the
underlying parameters of the economy could make the equations independent,
Similarly, if there are not as many independent variables as equations, then some
slight perturbation of the system could make a solution impossible. What we need
is freedom to make perturbations in a sufficient number of directions.

The proof that the set of matrices satisfying Assumption 6 is open and desnse in
#f is trivial; we omit it here. We can demonstrate that & is dense in € by proving
that for any economy (¢°, A) that satisfies Assumption 6, but not Assumption 7 or
not the non-zero determinant condition, there is another economy (£', A) that is
regular with dg(£°, ¢') < ¢ for any £ > 0. We reduce the problem from one in the
infinite dimensional vector space & to the finite dimensional vector space R" by
parameterizing any excess demand function £ 4 with a perturbation vector
v € R". Define the function &(m, v) = (6y(m, 0), ..., 8.(m, v)),

& satisfies Assumptions 1-3, and therefdre so does £+ 8§ if £ does. For any
economy (£, A) we consider the family of economies {(£,, A) € &|&,(7) = £(m) +
&(m v), v € R"}. Our goal is to demonstrate that the set of regular econormies is
dense in this n parameter family. If it is, the topology on & is such that for any
£>0 we can find a £ >0 such that ||v]|<e’ implies that 4[(¢, A), (£, A)]<e.
Consequently, if regular economies are dense in this # parameter family, they are
dense in &.
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In R" the concept of density is related to that of Lebesgue measure. Recall that
a get of I/ < R" has Lebesgue measure zero if it is possible to cover I/ with a
countable number of rectangular solids with arbitrarily small volume. The
complement in R" of a set with Lebesgue measure zero has full Lebesgue
measure. This concept of Lebesgue measure is easily extended to manifolds using
local parameterizations (see Guillemin and Pollack [16, pp. 204-205]). It is well
known that a set of full Lebesgue measure is dense (see Milnor (26, pp. 10-11]). A
theorem in differential topology that is a direct consequence of Sard’s theorem is
particularly suited to our purpose (Guillemin and Pollack [16, pp. 67—69]).

TRANSVERSALITY DENSITY THEOREM: Let M, V, and N be smooth manifolds
without boundary where dim M = m, dim N = n, and m < n, and let y € N. Suppose
that F:-Mx V>N is a C' map such that, for every (x,v)e M XV, rank
DF,(x, v)=n. Thesetof v € Vfor which F(x, v) = y implies that rank DF . (x, v) = n
has full Lebesgue measure.

Befare applying this theorem to our problem, let us develop a few preliminary
concepts. For any n x k matrix B,0<k=<n—1, let

Kg={xeR"|B'x=0,e'x=1},
O ={xeR"|B'x=0,e'x =0}

FIGURE 5

Note that, at any equilibrium # of an economy (£ A)e &, both Kp¢s and
Kpint X are smooth and without boundary. Consider the C' map (7%
(Kpsynint X)» Opgesy defined by the rule 2 (m)=p e (r+£(n))—m =
poﬂ(ﬂ(f(fr)). If (£, A) satisfies Assumptions 6 and 7, then fs(*) agreeswith g — [ in
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some neighborhood of # on Kpe:y. At an equilibrium #, f2%(#)=0. The
derivative map D2 T(Kgipnint X); » T(Opes)e maps Og,, into itself; on
Ogay DF2" =(I - C(C'C) C") D¢

For any economy (¢, A) we focus our attention on all possible maps f® where B
is some n X k submatrix of A,0<k <n—1, such that Kz n Sz # &. Obviously,
every equilibrium # is such that # e K and f7(#) = 0 for some such B, namely
B(#). The converse, however, does not necessarily hold; in addition to # & Ky
and f2(#) = 0 the condition # ¢ S is needed for # to be an equilibrium. We now
parameterize our maps f° with the perturbation vector s € R” by defining the C'!
map F?:(Kgz nint X)X R" = Oy by the rule F®{z, v} =p(g(m)+8(m, v)).

To apply the transversality density theorem, we must demonstrate that for all
(m, v)€ (Kg nint X)x R" the derivative map DF% : R" » Op hasrank n —k — 1,
in other words, is onto. DFZ (m, v)=(I -C(C'C)"'C")Dé, where C =[¢RB).
Now

‘.’71_1 R Tn
Dé,(m, v)=
my e T 1
has rank n —1 since D§,.(sr, v)e =0 but the (n —1)x(n—1) matrix formed by

deleting any row and column j for which #;>0 is nonsingular. Letting p =
rank (I — C(C'C) ' C")D§,, we note that

_ ] =1
p+k+1-—rank[u cerey Cps, CJ

0 I
= rank [ Da, C]
eyte'ps, I
[D&, C]
=rank
0 0

=rank[D8, ¢ B]

Clearly, rank[D8, ¢ B]=n since D8, has rank n—1, D8.e =0, and ¢'e = n.
However, (I - C(C'C) ' C")\ D5, maps into Og, implying that g =n —k — 1.

We first demonstrate that, for almost all © € R", the economy (£,, A) satisfies
Assumption 7. Let B* be any # x k*, n = k* = k, submatrix of A that has B as a
submatrix. Obviously, there are only a finite number of such combinations of
matrices B and B* for any economy (£, A). Kg-int X is an n —k*—1 sub-
manifold of the n —k — 1 manifold Kz nint X. We restrict FZ to domain (Kg»
int X'} x R", As a consequence of the transversality density theorem, for almost all
peR" FP(n, v)=0implies thatrank DF2 =n -k —1. However, k* > k implies
rank DFE <n—k*-1<n—k—1. Thus, for almost all v R”, there is no 7 e
Kz rnint X such that F2(m, v) = 0. Intuitively, although F?® takes (Kg+ nint X)x
R"into Og, the image FE(Kp+~int X, s)isa very small subset of Og for any fixed
v € R" Indeed, for a set U of full Lebesgue measure in R", the image F? (Kg+
int X, U) does not contain 0. We can repeat this same argument for all possible
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combinations B and B”*. The intersection of a finite number of sets of full
Lebesgue measure also has full Lebesgue measure.

Now, if we apply the transversality density theorem to F® 1 (Kg Aint X} x R" >
Og, we establish that, for almost all » € R*, F®(s, v)=0 implies that rank
DF2 =y —k —1. Thus, for almost all & & R7if 7 is an equilibrium of (£,, A), then
DFZ? =(I - C(C'CY "C')DE; hasrank n —k — 1. Let x € R™ be such that

(I—C(C'CY ' CNDesx — C(C'C) M C'x =0,

Since the columns of (I — C(C'C) *C")Dé; and those of C(C'C)™' C are ortho-
gonal and rank C(C'C) 'C'=k +1,

{xe R*"(I - C(C'CY ' C"\DEsx = 0} A {x e R*|C(C'C) 1 C'x = 0} = {0},
Pre-multiplying the above equation by {f — C(C'C)™*C") gives us

(I -C(C'C) ' C)Degsx = 0.
On the other hand, pre-multiplying by C(C’'C)™'C’ produces

CC'CYy I C'e =0,

Together these imply that [(/ — C(C'C) ' C\De; — C(C'C) ' is nonsingular.
Again using the fact that the intersection of a finite number of sets of full Lebesgue
measure also has full Lebesgue measure, we have proven the following theorem.

THEOREM 6: The set of regular economies R is open and dense in &.

8. EXTENSIONS AND CONCLUSIONS

The above treatment of genericity of regular economies is rough in the sense
that the perturbation of excess demand functions, while entirely natural for
economies where all commaodities eater into consumers’ final demands, is not
always appropriate in economies where production plays an important role, In
such economies there are likely to be primary commodities which are inelastically
supplied as inputs to the production process and intermediate commodities which
are only produced in order to produce other commodities. [t is possible to extend
our argument to such situations, but there are several minor technical prob-
lems. First, we must explicitly deal with the possibility of excess demand being
unbounded at some points on the boundary of RZ in order to deal properly with
primary commodities. Second, we must slightly alter our definition of regularity to
deal with the possibility of prices of intermediate commaodities being undefined at
equilibria where no production takes place.

Another direction in which our discussion can be extended is production
technologies with smooth production functions. [t is relatively easy to exploit the
properties of the profit functions in such a technology to show that our mapping
and index theorem carry over when we substitute for activities the input-output
vectors of the production functions used at equilibrium.
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These matters are discussed in more detail in the writer’s dactoral dissertation
(Kehoe [18]). Also discussed there are conditions that may be placed on the
structure of an economic model such that the index theorem implies uniqueness of
equilibrium. We remark briefly on two sets of such conditions, one dealing with
the praduction side of the economy alone, the other dealing with the consumption
side alone. First, if we can impose conditions on (£, A) that ensure that there are
always n — 1 activities in use at equilibrium, then

_ED =sgn (det [B'B]) = +1

r—7
index (#) =sgn (dct |_ B 0

at every equilibrium. The global index theorem then implies that there is a unique
equilibrium. Recall that the conditions of the nonsubstitution theorem of input-
output analysis imply that there are always # — 1 activities in use at equilibrium.
Second, if the excess demand function £ is such that J is always negative definite,
then there is a unique equilibrium if the production technology is such that (£, A)
satisfies Assumptions 4-7. This can be seen by noting that

index (#) = sgn (det [JE_i' OB]) =sgn (det[—J]det[-B'J "B))=+1
at every equilibrium. It is interesting to note that it has been shown by Kihlstrom,
Mas-Colell, and Sonnenschein [19] that negative definiteness of J implies that the
weak axiom of revealed preference holds for £, a condition previously known to
imply uniqueness.

A final remark should also be made with regard to the necessity of the
conditions we have established for uniqueness of equilibrium. Conditions such as
gross substitutability in £ are neither necessary nor sufficient for index {#) to be
positive. Constructing an economy with gross substitutes and with an equilibrium
with index (#)= —1 is fairly easy. Such an equilibrium cannot be unique. This
observation suggests that nonuniqueness of equilibrium may be a less pathological
situation than is sometimes thought.

Weslevan University

Manuscript received February, 1979, revision received September, 1979.
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