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REGULARITY AND INDEX THEORY FOR ECONOMIES WITH
SMOGTH PRODUCTION TECHNOLOGIES

By Timotuy J. KeHokr'

Using smooth. profit functions to characterize production possibilities, we extend the
concepts of regularity and fixed point index to economiies with very general technologies,
involving both constant and decreasing returns. To prove the genericity of regular
economies we rely on an approach taken by Mas-Colell that utilizes the topological
cancept of transversality. We also generalize the index theorem given by Kehoe. Cur
results shed new light an the question of when an economy has a unique equilibrium.

. INTRODUCTION

DiIrFERENTIAL TOPOLOGY HAS, over the past decade, provided economists with a
unified framework for studying both the local and global properties of solutions
to general equilibrium models. Debreu [1} initiated this line of research with his
introduction of the concept of a regular economy, a model whose equilibria are
locally unique and vary continuously with the underlying economic parameters.
Dierker [2] pointed out the close connection of this concept with that of the fixed
point index, a concept ideally suited to the study of existence and uniqueness of
equilibria. Both of these studies focused attention on pure exchange econories
that allow no production. More recently a number of different researchers,
among them Fuchs [§, 6], Mas-Colell [13, 14, 15], Smale [19], and Kehoe [9, 10,
11}, have extended these concepts to models with production. In all of these
studies the concepts of genericity and transversality have played an important
role 1 ruling out degenerate situations.

The approach taken in this paper is in the spirit of Mas-Colell [15] and Kehoe
[10], who emphasize the development of a formula for computing the index of an
equilibrium and the connection between this formula and theorems dealing with
the uniqueness of equilibrium. Both of these writers model the production side of
an ecopomy as an activity analysis technology. Unfortunately, the results ob-
tained by Mas-Colell and Kehoe are not immediately applicable to economies
with more general production technologies. It is true, of course, that any
constant-returns technology can be approximated in a continuous manner by an
activity analysis technology. Furthermore, any decreasing-returns technology can
be represented as a constant-returns technology with certain nonmarketed factors
of production. As we shall see, however, the differentiable nature of our ap-
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with Andreu Mas-Colell. Sidney Winter taught me the importance of the concept of duality in
characterizing production technologies. Franklin Fisher, David Levine, and an anonymous referee
provided helpful suggestions. Above all, [ am grateful to Herbert Searf, who introduced me to index
thearems and encauraged me to apply them to production economies.
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proach makes an activity analysis approximation to a smooth production tech-
nology unsuitable.

Using smooth profit functions to characterize production possibilities, we are
able to extend the concepis of regularity and fixed point index to economiss with
very general technologies, involving both constant and decreasing returns. To
prove the genericity of regular economies we rely on an approach taken by
Mas-Colell [15], which utilizes in an elegant and insightful manner the topologi-
cal concept of transversality. We also generalize the index theorem given by
Kehoe [18]. Our results shed new light on the question of when an economy has a
unique equilibrium. Providing a satisfactory answer to this question is crucial to
the applicability of general equilibrium models in comparative statics exercises.

2. ECONQMIES WITH SMOOTH PROFIT FUNCTIONS

We initially deal with constant-returns production technologies; we later treat
decreasing returns as a special case. The model is identical to that in Kehoe [10]
except for its description of the production technelogy. The consumption side of
the model is completely described by an aggregate excess demand function £.

Assumption 1 (Differentiability): £: R2\{0} > R"is C.

AssumpTioN 2 (Homogeneity): £ is homogeneous of degree zero; £(tw) = &(7)
for all ¢ > 0.

ASSUMPTION 3 (Walras’s Law): £ obeys Walras’s law; #'§(#) = 0.

Kehoe [12] generalizes Assumption 1 to one that allows the norm of excess
demand to become unbounded as some prices approach zero. For the sake of
simplicity, however, we assume here that £ is defined and continuous over all
nonnegative prices except the origin.

The production technology is specified by m C? profit functions a,: R? \{0)
—> R, which can be regarded as a mapping from R A0} into R™, a(7)
= (a7}, ..., a,(m). To motivate this approach, let us consider the problem of
maximizing profits when production possibilities are specified directly by a
production function. Suppose that a vector of feasible net-output combinations is
one that satisfies the constraints

f(x)=0,
x>0 (i=1,...,h),
x, <0 (G=h+1,...,n).

Here f: R"—> R is a constant-returns production function, homogeneous of
degree one and concave, that produces the first £ commodities as outputs
employing the final # — A commodities as inputs. Suppose that we attempt to
maximize 7'x subject to the feasibility constraints where # is a fixed vector of



REGULARITY AND INDEX THEORY 897

nonnegative prices. The problem that immediately arises is that, given the
assumption of constant returns, profit is unbounded if there is some feasible
vector x for which #'x > 0. There are several ways to get around this difficuity.
For example, if A =1, that is, if f produces a single output, we can impaose the
additional constraint x, = 1. Another, more general, solution to this problem is to
impose the constraint || x[| = 1.

It is well known that a(s) is homogeneous of degree one, convex, and
continuous as long as the feasible set is nonempty, even when the optimal
net-output vector is not single-valued. When a 15 differentiable, Hotelling’s
lemma says that the profit maximizing net-output vecter for any vector of prices
is the gradient vector Da,_ (see, for example, Diewert [3]). Given the constant-
returns nature of the production technology, we can consider this gradient vector
as an activity analysis vector: Any nonnegative scalar multiple of it is a feasible
input-output combination.

Let us now consider again the general case a: R4 \{0}— R™. The Jacobian
matrix Da, maps R" into R™. Define the mapping A : R \{0} > R"™" by the
rule 4 () =(Da,Y. A(7) is a generalization of the concept of an activity analysis
matrix. Indeed, in the situation where each g, is the linear function X7 a7,
A(x) is a matrix of constants. The set of feasible net-output vectors correspond-
ing to a{w) is the production cone Y,= {x € R"|x = A(m)y for some =
€ R0}, y € RT ). Observe that ¥, contains the origin, is convex, and is
closed if a is C'. We specify the production side of our model by imposing
restrictions on the mapping a.

AssUMPTION 4 (Differentiability); a: R%\(0} > R™is C*.

AssumpTion 5 (Homogeneity): a is homogeneous of degree ong; a{tr} = ta{m)
for any ¢ > 0.

AssuMPTION 6 (Convexity): Each function ¢ 1s convex; .czj,.(t:rarI +(1 -7
< ta(7'y+ (1 — fa(a”) forany 0 < < L.

AssuMpTION 7 (Free Disposal): A4 (7) always includes » free disposal activities,
one for each commodity. Letting these activities be the first n < m, we set
ﬂj(‘?’i’)= —ni=1..

AsSsUMPTION $ (Boundedness): There exists some 7 > 0 such that a(7) < 0.

The convexity and homogeneity of 4 imply that #"A(7") > 7" A(z?) for all
g!,77 € R \{0}. It is easy to use this observation to demonstrate that Assump-
tion 8 is equivalent to the assumption that there is no output possible without
any inputs in the sense that ¥, N R = {0},

Notice that the activity analysis specification used by Mas-Colell and Kehoe is
a special case of this type of technology. Assumptions 5-8 are quite natural; it is
the differentiability part of Assumption 4 that is restrictive. It would be possible
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to impose conditions on production functions that would give rise to such
smoothness in the corresponding profit functions and net-output functions.
These conditions would be similar to those on a consumer’s utility function that
umply smoothness in the corresponding indirect utility function and individual
demand function. Since we have chosen to specify the production side of the
economy using profit functions rather than production functions, we shall not
pursue this issue. A further restriction embodied in Assumption 4 is that we
require the net-output functions to be continuous even on the boundary of R .
We can avoid this problem if we impose the constraint {ix|| = | rather than
x, = 1. This is not an important conceptual issue, however. We shall ignore it.

An economy is specified as a pair (£, a) that satisfies Assumptions 1-8. Let &
be the space of excess demand functions endowed with the uniform C' topology.
We say that two demand functions £' and £7 are close if their values and those
of their partial derivatives are uniformly close on the compact set S. Similarly let
« be the space of the profit maps endowed with the uniform C? topology. The
space of economies & = & X & receives the product topology induced by the
topologies on & and <.

DEFINITION: An equilibrium of an economy (£,a) is a price vector # that
satisfies the following conditions: (a) a(#) < 0. (b) There exists y >> 0 such that
§#Fy=A(F}p. (c) #e=1 wheree=(1,..., 1.

The condition a(#) < 0 implies that at # no excess profits can be made. The
second condition, when combined with Walras’s law and the homogeneity of a,
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implies that #4(#) = #'A (#)y = a{#Y'y = 0. The homogeneity assumptions on £
and a4 imply that, if % satisfies the first two equilibrium conditions, then # also
does for any ¢ > 0. Therefore, when examining equilibria, we possess a degree of
freedom that we use to impose the restriction #'e = 1. The free disposal assump-
tion allows us to restrict our attention even further to the unit simplex § =
(reER"|7>0,7e=1).

The proof of the existence of an equilibrium follows similar lines as those in
Eaves [4], Todd [20], and Kehoe {10]. We define the set S, = {7 & R"| a(7) <0,
#'e = 1}. Our assumptions imply that 5, is a nonempty, closed, convex subset of
S. Let p be the projection mapping that associates any point in R" with the
point in S, that is closest in terms of Euclidean distance. We define the map
g: S~ S by the rule g(7) = pSe(7 + &(7)).

THEOREM 1: Fixed points 7t = g(#) of the map g and equilibria of (§,a) are
equivalent.

PrROOF: At any point # € 8, g = g(w) can be computed by solving the qua-
dratic programming problem

min 1 /2(g— 7 — &) (g~ 7~ &)
subject to a(g)<0, ge=1.

The Kuhn—Tucker theorem implies that the vector g solves this problem if and
only if there exists y € RY and A &€ R such that g — o — &(7) + A(g)y + Ae =0
and a(g)’iy = (. Consequently, # = g(#)} is a fixed point if and only if —&#) +
A(#)}P + Ae = 0. Walras’s law implies that this relationship holds if and only if
X = 0. Therefore, £(#) = A (7} and # € S, is equivalent to ¢ = g(#). Q.E.D.

Since S is nonempty, compact and convex and g is continuous, Brouwer’s
fixed point theorem implies the existence of an equilibrium of (£, a).

3. REGULAR PRODUCTION ECONOMIES

In the subsequent discussion we focus our attention on the partial derivatives
of g at its fixed points. For proofs and more detailed discussion of many of the
results presented here we refer to Kehoe [10]. To make matters simple, we define
X as a smooth (that is, C") n dimensional manifold with boundary that is a
compact, convex subset of R”, chosen so that it contains § in its interior and
does not contain the origin. It is easy to smoothly extend the domain of § to X.
We are justified, therefore, in viewing X as the domain of g.

Unfortunately, g is not everywhere differentiable except in very special cases.
All we need is that it is differentiable at its fixed points. To ensure this holds
we need to impose two additional restrictions on (£,a). Consider the map-
ping b:RUN{0) > R*, 0< k< m, made up of k of the profit functions
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(a(7), ..., a,(m). Let B: R2\{0}) > R"** be the corresponding matrix func-
tion whose columns are the gradients of the individual profit functions b,
j=1...,k

ASSUMPTION 9: At any point # € S the profit functions b that satisfy b(z) =0
are such that the columns of B(#) are linearly independent.

AssuMpTION 10: Suppose that b is the vector of profit functions that earn zero
profit at some equilibrium #. Then the vector y € R% is strictly positive in the
equation £(#) = B(#)y.

We later justify these assumptions on the grounds that they hold for any open
dense subset of economies in &. Actually, Assumption 9 is stronger than needed.
What we require for g to be differentiable at its fixed points is that the matrix of
activities in use at every equilibrium has linearly independent columns. Assump-
tion 9 implies that this condition holds but has the advantage of being easier to
deal with in genericity arguments. Notice that this assumption does not rule out
the isoquants of two production functions intersecting: At intersections both
preduction plans are not necessarily profit maximizing. [t does, however, rule out
isoquants becoming tangent to each other. Assumption 10 rules out the possibil-
ity of an activity earning zero profit but not being used at equilibrium.

Suppose that # 1s an equilibrium of (£,a). Let C be the » X (k + 1) matrnix
{B(#) e&] where B(#) is the n X k matrix of activities in use at equilibrium and ¢
is the » X 1 vector whose every element is unity. Further let H be the n X n
matrix formed by taking the Hessian matrices of the &k profit functions b
evaluated at =, multiplying them by the corresponding activity levels, then
adding them together; that is, H(#) = 3%_ D %(a,),; 0.

THEOREM 2: If an economy (§,a) € & satisfies Assumptions 9 and 10, then g is
differentiable in some open neighborhood of every fixed point #. Moreover, Dg.
=((I+ )" =+ H)Y'\C U+ BYy'oytled + HY 'YW+ DE).

PrROOF: At the equilibrium # the conditions that determine g(#), #, and A are
g—n—§mn)+ B(g)y+tAe=0,

b(g)=0,

s

ge=1.

The continuity of g and a ensures that g,(g(7)) < 0 for any # in some neighbor-
hood of # and any ; not included in the vector b. If we could demonstrate that y
varies continuously with # in some neighborhood of #, then Assumption 10
would imply that b(g(7)) =0 over the neighborhood. The implicit function
theorem implies that g, y, and A all vary smoothly with # on some neighborhood
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of # if the matrix of partial derivatives obtained by differentiating the above
system with respect to these variables is nonsingular. Indeed, we can find Dg, by
solving the system

I+H(#) B(#) el Dg | [1+ D¢,
B(#y 0 O Dy|=l 0
e 0 0l DA, 0
The matrix that we must prove is invertible is
I+H CJ
C’ 0
Notice that I + H is positive definite since { is positive definite and H is positive
semi-definite. Consequently, 7+ H is invertible. Notice too that € has full

column rank since B{w) has full column rank by Assumption 9 and #'B{(7) =0
while #'e = 1. Using these cbservations, we can compute

-1
i+H C
c’ 0

U+ HY - HY 'O(Cs+ H)“C)_‘C‘(I+ Hy'' (d+HY'c(cr+ H)“c)'1

(et +Hy ') i+ Yy (c+my ')

Solving for Dg,, we obtain Dg, =((J+ H)™'— (I + H) 'C(C'(J+ H)™!
)Y '\CI+ HY '+ DE&). Q.E.D.

Notice that in the activity analysis case every element of H is zero and,
consequently, Dg, = (I — C(C'C)™'CWI + D&y).

Let us consider a subset of economies that satisfy Assumptions 9 and 10 and
the further restriction that 0 is a regular value of (g~ [): X-> R". Here, of
course, [ is the identity mapping.

DErINITION: An economy (£, 4) € & that satisfies Assumptions 9 and 10 and is
such that DG, — I is nonsingular at every equilibrium is a regular economy. The
set of regular econories is denoted #.

Regular economies possess many desirable properties. For example, the inverse
function theorem applied to g — [ at every equilibrinm # implies that the
equilibria of a regular economy are isolated. Since the set of equilibria lie in the
compact set § and g — I is continuous, this implies that a regular econorny has a
finite number of equilibria. Consider the equilibrium price correspondence

IT: & -» S that associates any economy with the set of its equilibria. The
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topology on & is fine enough to imply that II 15 an upper-semi-continuous
correspondence. On 47, moreover, I is continuous and the number of equilibria
is locally constant.

4. THE INDEX THEOREM

The version of the Lefschetz fixed point theorem given by Saigal and Simon
[18] provides us with a tool for counting the equilibria of (£, a). If ({,a) is a
regular economy, then the local Lefschetz number of any fixed point of g
can be calculated as L.(g)=sgn{de{{Dg; — I]). Saigal and Simon prove that
Dr=gmla(g) =(—1)". A regular economy therefore has an odd number of
equilibria. Furthermore, a necessary and sufficient condition for a regular
economy to have a unique equilibrium is that L,(g) = (—1)" at every equilib-
rium.

To make much economic sense of this result we need to develop alternative
expressions for sgn(det[Dg; ~ I). According to Theorem 2,

Dg,,; - )_(
- ((1 +HY ' =+ HY 'c(ca+ By ') e+ H)“)
X (I+ D§)~ 1.
We can premultiply this matrix by [+ H, which is positive definite, without
changing the sign of its determinant. Since C'(J + H)™'C is also positive definite
we can compute

Lit £)= sgnl det (!—C(C’({+ H)"C)_1‘(.’+ H}'[)(I+D£,;)—.’~H 0 ‘
Cl+ Hy "+ DY cl+ HYyt '

Performing elementary row operations, adding the second row of this matrix
premultiplied by C(C'(J + H)"'C)™' to the first row, then subtracting the first
row of the resulting matrix premultiplied by C‘(/ + H)™' from the second row,
we obtain the expression

Li(g)= Sgn(dct{ D‘gg # ED

DermnimioN: If # is an equilibrium of a regular economy (£, ), then index(#) is
defined as

0 e’ 0
(—1)'sgn(det[ Dg; — 1) = (—1)"sgn|det} ¢ D&~ H(#) B(#)
0 B(#) 0
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The following theorem is an immediate consequence of the Lefschetz fixed
point theorem and the definition of index{#).

THEOREM 3: Suppose that (§,a) is a regular econonmy. Then 3, oz »index(m)
=+1L

Notice that the existence of an equilibrium. for (£, a) follows directly from this
theorem.

In applications of this theorem other expressions for index(#) are useful. They
can be derived using simple matrix manipulations. Let the matrix J be formed by
deleting from D£; all rows and columns corresponding to commodities with zero
prices at equilibrium # and then deleting one more row and corresponding
column. Let H be formed similarly by deleting the same rows and columns from
H(#). Let B be formed by deleting the same rows from B(#) as well as all
columns corresponding to disposal activities. It is easy to verify that

index(7) = sgn(det[ 'jtg ED
-8B 0

If only one commodity has positive price at #, then index(#) = + 1.
We can motivate this formula for the index by considering the eguations that
locally determine an equilibrium:

{m)— B(m)y =0,
B(m)=0.
Suppose # is strictly positive. We can set 7, = 4, by homogeneity and use

Walras’s law to ignore the first equation £ (7) — 3(8b;/d7,)(7)y, = 0. Differenti-
ating this system with respect to 7 and y then yields

{f—gﬁ —ﬂ.

If this matrix is nonsingular, then the inverse function theorem implies that # is
an isolated equilibrium, and the implicit function theorem implies that this
equilibrium varies continuously with the parameters of (£, ). In other words,
(£,a) is a regular economy. The index theorem implies that the sign of the
determinant of this matrix is crucial for counting the number of equilibria.

Another formula for index(#) can be computed as follows: Choose an n X
(n — k) matrix ¥ whose columns span the null space of the columns of B(#). Let
E be the n % n matrix whose every element is unity. Then it is possible to
demonstrate that

index(#) = sgn(det[ V'(E + H(#) — D& )V1).

For the derivations of these, and other, formulas for index(#) see Kehoe [9].
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5. A TRANSYERSALITY APPROACH TO REGULARITY

Mas-Colell [15] has developed an interpretation of the definition of regular
economy based on the concept of transversality. Using his interpretation, we can.
reduce the demonstration that regularity is a generic property of the space of
economies to an argument dealing with transversal intersections of manifolds.
Actually, Mas-Colell [13] proves the genenicity of regular economies for econo-
mies with smooth production technologies. The approach used there, however, is
more complicated than that of Mas-Colell [15] and cannot be used to develop an
index theorem. References for the technical concepts employed here are the
books on differential topology by Guillemin and Pollack [7] and Hirsch [8].

In the subsequent discussion we find it convenient to change our normaliza-
tion rule for prices. By Assumptions 2 and 5 the vector p = (1 /[|#||)# satisfies the
conditions a(p) <0 and &) = A(p)) for some y &€ R if and only if the vector
#={(1/ep)p is an equilibrium of (£ a). Furthermore, D§; = ||#]|DE;, A(p)
= A(#), and H(p) = ||#| H(#). Let = be the unit sphere { p € R"[l| pl| = 1}. We
redefine X so that it now contains £ N R} in its interior but otherwise has the
same properties as before. Let P be the intersection of £ and the interior of X. P
is an # — 1 dimensional smooth manifold with boundary. To avoid problems
with the boundary of R”, we extend both £ and 4 to €' maps on X. Define
a(p)= A'(p)p at points not in R] .

The requirement that (£, «) is a regular economy involves three conditions. Let
us first turn our attention to Assumption 9. Let M be the power set of the
integers {l,..., m}. For every MeM j=1,..., 2", define the set Q(M})
= {x e R™|x;=01if i € M;}. In other words, Q(M} is the coordinate subspace
of R™ on which the coordinates whose indices are elements of M, are zero. The
following result is an immediate application of the definition of transversality.

FIGURE 2.
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Lemma 1: Consider the vector of profit functions a € o extended 10 a C' map
from intX into R™. Suppose that, for every M, € M, a is transversal to Q(M)).
Then a satisfies Assumption 9.

Observe that, since Db, is k X n and Db 7 = 0 if b(wr) = 0, the rank of Db_ can
be no greater than »n — 1. If the number of elements in M, is greater than n — I,
then the only way that it is possible for a th Q(M)isfora” i Q(M))) to be empty.
In other words, there can never be more than n — 1 profit functions that earn
zero profit at some price vector if the transversality condition is met. We are
justified, therefore, in considering only cases where k < n — 1. Assumption 9 is
simply the requirement that 0 is a regular value of 5 :int X = R*, which implies
that 5~ Y0) is a smooth manifold of dimension n — k. Let us define

Ky={pEintX|p'B(p)=0,pp=1}.

By Assumptions 3 and 9 K, is a smooth # — & — | dimensional manifold. At any
point p € K,

T(Kg)={vER"|UB(p)=0,p'v=0}.

Let B be an n %X k& matrix of net-output functions and let B* be an n X k*,
k< k*<n-1, matrix that includes B as a submatrix. Define the sets

T(P)={(px)EPXR"|px=0},
graph() = ((p.x) € P X R"[x = {(p}},
L(B* B)
= {(p,x} € P X R"|p'B*(p) =0, x = B(p)y for some y € R* ].

T(P)is a smooth 2(n — 1) dimensional manifold called the tangent bundle of P.
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Walras's law implies that graph($) is a smooth r» - | dimensional submanifold of
T(P). At any (p,x) € graph(£)

T(p‘x)(graph(é)) = {{0, ) ER"X R"|p'o=0,u= Dgpu}.

If a € A satisfies Assumption 9, then L(B* B) is a smooth (n — 1) — (k* — k)
dimensional manifold for any submatrices B and B* of the matrix of net-output
functions A. It too is a submanifold of T(P). Notice that, if § is an equilibrium
of (£, a), then {p, & §)) € graph($) N L(B*, B) where B* is the matrix of activities
that earn zero profit at § and B is the matrix of activities that are actually in use.

Any vector (v,u) € T(Fx)(L(B* BY)) must clearly satisfy the restriction that
v € T,(Kp.}. The restrictions on u are less obvious. Assumption 9 implies that the
vector_p € R* that satisfies x = B(p)y varies smoothly with p and x; in fact, we
can compute y = (B'(p)B(p))}~ lB(p)x The easiest way to compute D_y and Dy,
is to differentiate the identity x = B(p)y(p,x) and solve. The results are Dy,

= —(B(p)B(p))"‘B(p)H(p) and Dy, = (B'(p)B(p)) " 'B(p). For a vector (o, )
to be in T, ,(L(B*, B)) it must satisfy (/ — B(p)D,y)u — (H(p) + B(p)D,y)v
= (). Consequently,

Tep(L(B% B)) = ((0,4) € R" X R"| 0'B*(p) = 0, 0p = 0,

(1 = B(p)}(B'(p)B(p)) ' B'(p)(u— H(p)v)=0}.

LemMma 2: Suppose that (£, a) satisfies Assumption 9 and that, for all possible
combinations B and B*, graph(é)rh L(B* R). Then (§ a) satisfies Assumption 10,

Proor: If (£, a) violates Assumption 10, then the matrix of activities that earn
zero profit at some equilibrium p, B*(p), has more columns than the matrix in
use, B(p). For this particular pair of matrix functions B* and B, dim L(B*, B)
=pn—1—(k* - k) <n-11If however, L(B*, B) and graph(£) are transversal,
then dim L(B*, B) + dim graph(¢) > dim T(P), which implies dim L{B* B) >
n— 1 Q.E.D.

Consider the function f#:int X > R” defined by the rule

FA(py={1— B(p)(B'(»)B(p)) ' B(P)E(P)-

The advantage of our normalization || p|| = [ is that f? is a tangent vector field
on Ky since p'f®(p) =0 for all p € Ky. In other words, f(p)E T, »(Kj) for all
p € K. Noatice thatf”(ﬁ) 0if pis an equlhbrlum of (£, a). We can deferentlate
PfP(py=0 at § to obtain p ‘Dff + (fP(p) = JDfﬁ = 0. Similarly differenti-
ating B'(p)f*(p)=0, we cstabllsh that Df? maps T, +(Kp) into itself. In fact,
using techniques for differentiating matrices found in any econometrics textbook
we can. establish that

= (1— B(B)(B'(B)B(H))” 'B(H))(DE — H(p))
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LeMMA 3: Suppose that (£, a) satisfies Assumption & and that, for all possible
combinations B and B*, graph(§)h L(B*, B). Suppase further thar p is an equilib-
rium of (£, a) and that B(p) is the associated matrix of activities in use. Then the
matrix

0 e’ 0
e D& —H(p) B(p)
o B O

is nonsingular.

Proor: Lemma 2 implies that we need only consider the case B = B* We
begin by arguing that Df};‘g: T;(Kp) > T;(Kp) is onto, that is, has rank n — k — 1,
if graph($)}L (B, B). Suppose that it does not. Then there exists v € Tﬁ(K' gk o0,
such that Dj:fv ={I - B(B'B)” 'B’)(JD.EFi — H(p)v=0. This implies that the
tangent spaces T ;. ﬁ))(graph(é)) and T 5.5, (L(B, B)) overlap; both include
the nonzero vector (v, D£;0). Since both tangent spaces have dimension # — 1, it
is therefore impossible for their sum to be a space of dimension 2(n — [). As a
result, graph() and L(B, B) cannot be transversal, which is the desired contra-
diction.

The next step of the proof is to demonstrate that

rank[([ — B(B'B)"'B')(D¢; - H(ﬁ))} =n—k—1

implies our contention. This is a matter of simple, but tedious, algebraic argu-
ments similar to those used by Kehoe [10] in the proofs of his Lemma 4 and
Theorem 6. We omit it here. C.E.D.

Suppose that we renormalize prices # = (1 /e'f)f. Observe that

0 e 0
det| ¢ D& —H(p) B(p)
o B(p) O
0 e 0
= i#]"* " det| ¢ D& —H(#) B(#) |,
0 BU(#H) 0

Consequently, we can combine Lemmas 2 and 3 to obtain the following theorem.

THEOREM 4: Suppose that (£, a) satisfies Assumption 9 and is such that graph(f)
h L(B* B) for all possible combinations B* and B; then (§,a) is a regular
ECONORY.

The above arguments suggest that economies that are not regular are somehow
pathaological because they correspond to non-transversal intersections of certain
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manifolds. If we are able to perturb these manifolds in a sufficient number of
directions, then the smallest perturbation results in the manifolds becoming
transversal. We would therefore expect most economies to be regular. The
following theorem formalizes this intuition {see Guillemin and Pollack [7, pp.
67-69]).

TRANSVERSALITY THEOREM: Let M, V, and N be smooth manifolds where
dmM =m, dimN = n, and m < n, and let Z be a smooth submanifold of N.
Suppose that F: M X V> N is a C' map transversal to Z. For any v € V let
fo: M= N be defined by the rule f(x)= F(x,v). Then the set U C V for which
j;fh Z, v € U, has full Lebesgue measure.

This theorem says that almost all maps are transversal to a given submanifold
in the target space if the maps come from a rich enough family. To demonstrate
that almost all econaomies are regular we must translate the measure-theoretic
concept of genericity involved in the statement of this theorem into a topological
concept. For the infinite dimensional space of economies a natural concept of a
generic property is one that holds for an open dense set. We actually need the
transversality theorem only to prove the density of regular economies; openness
follows immediately from definitions. Nevertheless, it should be stressed that, if
we are willing to restrict ourselves to some appropriately defined finite dimen-
sional subset of E, we could prove that the set of regular economies has full
Lebesgue measure. In fact, it is by doing just this that we are able to prove the
density of regular economies.

We begin by arguing that the set of profit maps that satisfy Assumption 9 is an
open dense subset of &/, Lemma [ implies that ¢ € o7 satisfies Assumption 9 if it
is transversal to a finite number of submanifolds of R™. Standard arguments
imply that the set of maps that satisfy this property is open in &/. We need to
prove that this set is dense in &/, Consider the subset of profit maps that satisfy a
stronger version of Assumption 8, that there exists some # >0 such that
a(w) < 0. Since it is easily verified that this subset is open and dense in o7, if we
prove that the set of profit maps that satisfy Assumption 9 is dense in it, we have
demonstrated our contention.

Choose an {(m — n) X (m — n) matrix G that is nonsingular. For any o
€ R~ define the function & : (int X) X RU"~™ — R™ by the rule

d(p,v)= p’e{ ?} ]0.

Here, of course, 0 is # X (m — n). (Recall that the n disposal activities are fixed.)
For any fixed o € R""™ and a € & define a,(p) = a(p) + 8(p,v). [t is easy to
check that @, € & for all v in some open set ¥ C R~ that contains the
origin. Define F: (intX) X ¥'— R™ by the rule F(p,v) = a(p) + 8(p,v). Notice
that F is transversal to any submanifold of R" since

_{-1f 0
DF“"’”)_[ - P’eG]
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is nonsingular and hence includes all R™ in its image. (Here the elements
denoted =, the partial derivatives of the final m — n components of F with
respect to p, are of no consequence.) The transversality thecrem implies that, for
a set of full Lebesgue measure in V, g, is transversal to any fixed submanifold in
R™, Recall that the intersection of a finite number of sets with full Lebesgue
measure also has full Lebesgue measure and that a set with full Lebesgue
measure is dense. Consequently, since the set V contains the origin, it is easy to
argue that the set of profit maps that satisfy Assumption 9 is dense in &

We can now choose a fixed profit map ¢ € .o/ that satisfies Assumption 9 and
let perturbations of the excess demand function £ do all the work. Any such
vector of profit functions is associated with a finite number of matrices of
net-output functions B* and B. We prove that for any fixed combination B* and
B the set of excess demand functions for which graph(£)h L(B*, B) is open and
dense in &/, Since the intersection of a finite number of open dense sets is open
dense, this implies the genericity of regular economies.

Our argument follows the same [ines as above. Again openness follows
immediately from the transversality condition. We redefine 8 : (int X} X R" > R”
by the rule

]

o
§(p.v)= —‘;;; — .

For any fixed v € R", § satisfies Assumptions 1-3. Consequently, £,(p) = & p) +
8(p,v) is an element of & if £ is. In addition, § satisfies the condition that
D8, (p,v) has rank »— 1 for any (p,v) € (intX) X R" since it can easily be
verified that the only vectors x € R" for which x'D§,(p,v)=0 are scalar
multiples of p. Define F: P X R"—> T(P) by the rule F(p,v)={p,.&p) + 8(p,
uv)). For a fixed v € R" the image of F is, obviously, graph(£,). We want to prove
that Fh L{B*, B). Differentiating F, we obtain

I 0
DF iy —{Dgp + D8, Ds,|

Notice that the image of the linear map DF . T,(P)X R" > T (P) X T (P)
has dimension 2(x — 1) since T,(P) has dimension # — 1 and D§, has rank n — L.
Consequently, this image must fill up the tangent space to T(P) at any point
(p.x} € T(P) X T,(P), since it too has dimension 2(n — 1). The transversality
theorem therefore implies that graph(£)) is transversal to any submanifold of
T'(P) for all v in some set of full Lebesgnue measure in R”. It is now easy to prove
the density of the transversality condition in &.
Qur arguments have yielded the following result:

THEOREM 5: The set of regular economies 9 is open and dense in & .
Unfortunately, our demonstration of this result relies on perturbations of the

excess demand function that may not be appropriate in economies where
preduction plays an important role. In such economies there are likely to be
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primary commodities, which are inelastically supplied as inputs to the production
process, and intermediate commodities, which are only produced in order to
produce other commodities. Obviously, if we perturb the excess demand function
of such an economy, we may destroy the primary and intermediate characteris-
tics of these goods. Kehoe [12] resolves this problem for economies with activity
analysis production technologies. His analysis can easily be extended to the more
general model that we are using here.

6. DECREASING RETURNS

In this section we sketch a procedure for extending our results to economies
with decreasing-returns production technologies. The production side of such an
economy is again specified by a vector of C? profit functions. The first »# profit
functions correspond to disposal activities. In addition there are & profit func-
tions, r;: REN{0} > R, j=1,..., k, that are dual to production functions that
exhibit strictly decreasing returns. These profit functions differ from the ones we
defined for constant-returns production because there is now no restriction such
as ||x|| = L imposed. Although Hotelling’s lemma still holds, it is no longer true
that every nonnegative scalar multiple of the gradient of the profit function is a
feasible net-output combination. Notice that we are implicitly assuming in
Assumption 4 that these profit functions have been smoothly bounded away
from infinity. Notice too that, since shut-down is allowed, these profit functions
are always nonnegative.

The positive profits that are earned by activities that are used in equilibrium
must somehow be distributed to consumers. The easiest way to specify this
process is to assign each consumer a fixed share of each profit function, which
may be thought of as a firm. Consumer excess demand then depends on profits
made on the production side of the model.

There are two ways to treat this type of model. The first is to specify an excess
demand function that has both a consumption and a production component. We
define z: R3N\{0}—> R" by the rule z(#) = &, (7)) — B(m)e. Here B is the
n % k matrix function whose columns are the gradients of the non-disposal profit
functions. The excess demand function z naturally satisfies Assumptions 1-3. We
focus our attention on the pure exchange economy specified by excess demand z
and free disposal. An equilibrium of such an economy is a price vector # such
that z(#) < 0. Differentiating z, we cbtain Dz, = D + D{ B'(w) — H(w) where
H is defined as before and all activity levels are unity. H can be thought of as the
Jacobian matrix of the aggregate supply function B{w)e. If there are no zero
prices at equilibrium. #, then we can calculate the index as

B ~ " 0 :
index(7) = (— 1) sgn(dct[ e Di + Dg;Be'(ﬁ) — H(#) D

The second way to treat a model with decreasing-returns production invalves
defining an additional good to represent the nonmarketed factors of production
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peculiar to each firm (see, for example, McKenzie [16]). There are then r + k
goads in the model. The first # profit functions, which allow free disposal of the
first » goods, stay fixed. An additional k& profit functions are defined as
G (T M) =rm, o Ty = T, f= 1, ..., k. The vector of profit
functions a: RZ**\(0} > R*** would satisfy Assumptions 4-8 except that it
lacks components that correspond to free disposal activities for the final & goods.
The assumption of strictly decreasing returns implies, however, that good n +
has a zero price only if the corresponding firm j does not operate. In this case,
anﬂ("rl: e M) = T if ’}'(”Is coasm) =0

The restrictiveness of the assumption that iy is €7 is clear in this context. We
are, in fact, assuming that a firm’s optimal net-output function is C' even at
prices where it just becomes optimal to shut down. The problem is similar to the
one that is encountered in smoothing a consumer’s excess demand function when
there are corner solutions to the utility maximization problem. We have chosen
to ignore bath of these minor technical problems. It would be possible to deal
with them, however, by demonstrating that, even if such nondifferentiabilities
existed in » and £, they would not occur at equilibria of almost all economies {sce
Mas-Colell [14, pp. 87-891).

Each consumer receives an initial endowment of good n + j equal to his share
of the profits of firm j. Since the sum of profit shares for each firm is unity, the
aggregate initial endowment of each good n+ 1, ..., r + k is also unity. Each
of these goods is considered a primary good in the sense that &, , A= —1,
F=1,..., k To facilitate the comparison of the calculations of the index for
this formulation to the previous one, let us abuse notation a bit by partitioning
7 € R"** into

ki
7]
where 7 € R" and r € R*, We similarly partition £(=, r) into

{ &a,r) }

—e
and B(w) into
{B('}T) }

=

Again assuming that there are no zero prices at equilibrium (z, ), we can write

0 ¢ e 0

Dt —H(®Y D& B(#

index(#,#) = (—1)""*sgn|det Z & 0 ) 05’ _(?
o B —-I 0

where e has the appropriate dimension. Performing elementary row and column
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operations that do not change this expression, we obtain

) . " e + ¢'B'(#)
index(#,7) = (— 1) sgn| det ;

e+ B(#)e D&+ DEB(F) — H(%)

This is, of course, the same as the expression that we derived previously. The
only difference is that now we have rescaled so that ¢'# + ¢'F = e'a + &' B'(%)7
= 1 rather than e'# = 1.

Equilibria that have zero prices have the same index in either of the above
formulations. If some price is zero, then Assumption 10 implies that the corre-
sponding disposal activity is used in equilibrium. By expanding the determinantal
expression for the index along both the column and the row that contain this
activity it can easily be shown that the index is the same as that for the economy
where the free good does not appear.

7. UNIQUENESS OF EQUILIBRIUM

The most significant consequence of our results is that they permit us to
establish conditions sufficient for uniqueness of equilibria. If the parameters of a
regular economy (£,a) are such that index(#) = +1 at every equilibrium # €
II¢¢, @), then the set of equilibrium prices consists of a single point. A partial
converse to this observation is also valid: If an economy (£,2) has a unique
equilibrium #, then it cannot be the case that index(#) = — 1. The condition that
index{#) = +1 at every equilibrium is, therefore, necessary as well as sufficient
for uniqueness in almost all cases.

Kehoe [11] has studied the implications of the index theorem for uniqueness of
equilibrium in economies with activity analysis production technologies. His two
principal results are that an economy has a unique equilibrium if its excess
demand function satisfies the weak axiom of revealed preference or if there are
n — 1 activities in use at every equilibrium. An economic interpretation of the
first condition is that the aggregate excess demand function behaves like that of a
single consumer. An interpretation of the second condition is that the economy is
an input-output system; that is, there is no joint production, and consumers hold
initial endowments of a single good, which cannot be produced.

Both of these conditions imply uniqueness of equilibrium in the more general
model that we are considering here. The weak axiom of revealed preference, for
example, implies that at any equilibrium # the Jacobian matrix D£; is negative
semi-definite (not necessarily symmetric) on the null space of the n X &k matrix of
activities in use, B(#). Recall that

index(#) = sgn(det| V/(E + H(#) — D&)V])
where V is any n X (# — k) matrix whose columns span the null space of the

columns of B(#). The matrices E and H(#) are both positive semi-definite. If £
satisfies the weak axiom of revealed preference, then — V/DE, V and V/(E +
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H(#) — D&,V are also positive semi-definite. Consequently, if (£, ) is a regular
economy, then index (#) = + 1 at every equilibrium.
An alternative expression for the index is

index(#) = sgn(dct{ —JrH - B D
B’ 0

If there are always # — | activities in use at equilibrium, then B is an (n — [) X
(n — 1) square matrix. This implies that index(#) = sgn(det(B'B D)= + 1. There-
fore, an economy with »n — [ activities in use at every equilibrium has a unique
equilibrium.

Unfortunately, it seems that these twao sets of conditions, which are extremely
restrictive, are the only conditions that imply uniqueness of equilibrium in
economies with production. For example, if the excess demand function § € &
does not satisfy the weak axiom, then it is possible to choose a vector of profit
functions @ € & such that the economy (£,a) has multiple equilibria. On the
production side of the economy the situation is even worse: If there is more than
one 7 € § for which the profit map a € & satisfies a(#) < 0, then it is easy to
find an excess demand function £ € & such that the economy (£, ) has multiple
equilibria. Obviously, general conditions that imply uniqueness of equilibrium
would have to combine restrictions on the demand side with restrictions on the
production side. An example of such a combination is the input-output condition
mentioned earlier.

One direction to look in would seem to be combinations of restrictions on £
and « that imply — D& + H(#) is positive semi-definite on the null space of
B(#) at every equilibrium #. We already know that H(#) satisfies this condition.
What we want is that H(#) somehow dominates — D£. so that their sum is
positive semi-definite. H(#) measures the responsiveness of production tech-
niques to price changes. D£; measures the responsiveness of demand to price
changes.

To get some idea of the relationship between these two, consider an economy
with three goods and one profit function, a : R3 \{0} - R, besides the three free
disposal profit functions. If all prices are strictly positive at equilibrium, then
H(#) is just the 3 X 3 matrix of second partial derivatives of a weighted by a
scalar activity level. Conditions on D%, are conditions on the curvature of the
boundary of the intersection of the dual cone and the simplex, S, at #. Given an
excess demand function £ and a price vector 7 € int §' that satisfies £(7) # 0, we
can easily choose a so that # is an equilibrium with index{(#)= +1. We set
Da; = &#) and twist the boundary of S, until D%; is large enough so that
index(#) = + 1. The condition that index(#) = +1 is equivalent in this case to =
being a sink of the vector field g — /. In Figure 4 # goes from being a saddle
point in (1), to a degenerate equilibrium in (b) to a sink in (¢) and (d). In (a)
index(#) = — [, in {¢) and {d) index(#) = + 1, while # is a critical point of g ~ [
in {(b). Notice that {d) is the limiting case where the curvature of &, is infinite at
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#. Here there are actually 2 = n — | activities in use at equilibrium; we already
know that index(#) = + 1 in such cases.

To make statements about uniqueness of equilibrium we would want to impose
global restrictions on D% on S. To make D’a; a matrix of constants, for
example, we would choose a € &/ so that S, is a sphere. To increase the
curvature of the boundary of S, at every point we would have to shrink the size
of this sphere. The limiting case, of course, is where S, shrinks to a single point.
This situation is one where the production set has a hyperplane as its upper
boundary and there is a complete reversibility of production in every direction.
For a given £ it may be necessary to choose a € &7 so that S, consists of a single
point in order to ensure uniqueness of equilibrium. Consider £(7)=0 for
example. Nevertheless, it is possible to prove that for almost all £ € &7 we can
find an a € A4 so that (£, a) has a unique equilibrium and that S, has an interior.

4
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FIGURE 3.
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We just keep shrinking S,. Such a result does not seem to be of much interest,
however, because it involves almost complete reversibility of production, a very
unpalatable assumption.

An insight into the nature of an activity analysis approximation to a smooth
production technology is provided by considering a situation where

det| —J+H —B
B 0

>0

at some equilibrium #, but

det *_"( -8B <o
| B’ 0

Such a situation is depicted in Figure 7. There are three equilibria in {a) that

N N

+| +{

{a) {b) {c)

FIGURE 7.
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coalesce into a single equilibrium as the approximation to the smooth pro-
duction set becomes more accurate. Let ¢: R} \{0)—= R be a profit fune-
tion and let #',...,7* be a finite number of points in S. Then d&(7)=
max[7 A(z"), ..., 7’ A(x")] provides an approximation to ¢ that can be made
arbitrarily accurate in the uniform C% metric by proper choice of the set
7', ..., 7% Unfortunately, such an approximation is not accurate enough in the
C? topolagy we have defined on A. The curvature of the dual cone is an essential
local characteristic of any equilibrium. The unique equilibrium in (c} can be
mistaken for isolated, multiple equilibria if we use an activity analysis approxi-
mation to the underlying production technology.

Let us turn our attention to economies with decreasing-returns production
technologies. Here index(#) = sgn(det[-J, — J,B' + H]) where J, is D, with
ane row and column deleted and J, is D§; with the same row deleted. It is
possible to use Walras’s law and homogeneity to prove that, if D&, + DEB'(#)
has all its off diagonal elements positive and on diagonal elements negative, then
index(w) = + L. This result was originally discovered by Rader [17], who did not
use an index theorem. The interpretation that he gave it was that gross substi-
tutability in demand implies uniqueness of equilibrium regardless of what the
production technology looks like. The problem with this interpretation is that the
term D¢ B'(#) involves a complex interaction between income effects from the
demand side of the model and activities from the production side. It seems
impossible to develop easily checked conditions to guarantee that DE; +
DE:B'(7) has the required sign. pattern.

Our results shed light on the applicability of the comparative statics method to
general equilibrium models. The assumptions that the equilibria of an economy
are locally unique and vary continuously with its parameters are not at all
restrictive. Almost all economies satisfy these conditions. Unfortunately, unique-
ness of equilibrium is a more elusive property. The conditions that imply
uniqueness seem to be too restrictive for most applications. There is obviously a
need for more discussion on the relationship between comparative statics and
uniqueness of equilibrium.

Massachusetis Institute of Technology
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