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Distinguished Fellow
Herbert Scarf’s Contributions
to Economics

Kenneth J. Arrow and Timothy J. Kehoe

erbert Scarf never formally studied economics. Both his undergradu-
Hate and his graduate training were in mathematics. For the past 35
years, however, Scarf has worked on problems at the core of eco-
nomic theory. He has deepened our understanding of the nature of standard
economic theory, linked together disparate lines of study, made theory usable
by creating computational tools, and explored the areas of increasing returns
and nonconvexity, areas in which standard theory has had the least to offer. His
work has simultaneously sought the most general and abstract formulations,
while simplifying the theory and bringing it closer to applications. Scarf’s
election as Distinguished Fellow of the American Economic Association in 1991
honors the depth and diversity of his many contributions in studies of invento-
ries, the core, computation of equilibria, and integer programming, all of which
have had a strong influence on the way economists have learned to think about
these subjects, and some of which have led to flourishing lines of research.
Scarf’s early interest in economic problems was formed in the rather heady
and free-wheeling environment of the Rand Corporation in Santa Monica,
California, in the 1950s. He had entered Princeton in 1951 afier receiving his
AB. from Temple. Like other holders of doctorates in mathematics and
economics from Princeton at that time—such as his friends Ralph Gomory,
Lloyd Shapley, and Martin Shubik—he was eventually drawn to an interest in
game theory and mathematical programming. Although these friendships would
later prove influential for his economic 'research, he recalls that while at
Princeton he remained innocent of these fields [21]. (As is conventional for this

m Kenneth [. Arvow is Emeritus Professor of Economics, Stanford University, Stanford,
California. Timothy [. Kehoe s Professor of Economics, University of Minnesota, and
Aduiser, Federal Reserve Bank of Minneapolis, both in Minneapolis, Minnesota.



162 Journal of Economic Perspectives

Journal, articles by Scarf are referenced according to the numbers in Table I,
while all other citations appear in the reference list at the end of the article.) In
his first year at Princeton, he wrote a paper that contained a new proof of the
fundamental theorem of algebra based on group invariant integration [1]. His
thesis research dealt with diffusion processes on differentiable manifolds.

The Rand Corporation was created by the U.S. Air Force in the belief that
the nature of warfare had been so fundamentally altered by technological
developments that new ideas were necessary. Game theory and allied thinking
in what came to be known as decision theory, a great deal of which had been
developed at Princeton under John von Neumann of the Institute for Ad-
vanced Study and Oskar Morgenstern and Albert Tucker of Princeton, stood
ready to meet the demand. Many distinguished scholars with mathematical
backgrounds came to the Rand Corporation, some on a permanent basis, some
for summers. Scarf joined the mathematics department at Rand in 1954, after
receiving his Ph.D.

At Rand, Scarf showed his ability to follow new developments. He began to
work on game theory with Shapley, with whom he wrote a paper on dynamic
games with incomplete information [2]. His characteristic strengths emerged
gradually as he evolved a style of time-intensive full engagement with a
problem. They were first displayed in his work on inventory theory. Rand had
held a conference on inventory management in 1950, and Kenneth Arrow,
' Theodore Harris, and Jacob Marschak presented there a pioneer dynamic
inventory model with uncertainty. As detailed below, Samuel Karlin and Scarf
continued the work, developing the intricate stochastic process problems in this
framework. But Scarf characteristically went more deeply into the foundations:
where previous work had assumed the form of the policy and only sought to
determine its parameters, Scarf elegantly and relevantly formulated the cost
assumptions that impliéd the optimal shape of the policy. The results were
typical of his future work; when the answer came, it appeared as the only
possible way of approaching the question, though no one had known previ-
ously how to formulate it.

This clarity of vision and thoroughness of knowledge are appreciated by
his auditors and readers. Those who have heard Scarf present his work in a
seminar or have read one of his papers or books can testify that his oral and
written exposition are models of clarity of thought and courtesy to his audi-
ence. His students and colleagues testify that his contributions go even further:
Scarf is a concerned and dedicated teacher, adviser, and colleague, generous
with his energy and enthusiasm.

This courtesy and intellectual honesty go hand in hand. In his writings,
seminars, classes, and conversations, Scarf pays attention to his audience,
explaining what that particular audience needs to know to understand the
problem he is concerned with: its significance, his proposed solution, and what
is left undone by the solution. Since his audience is often broad, doeing this
without compromising or oversimplifying requires a deep understanding of the
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problem. Students in his classes learn quickly that mathematical rigor does not
depend on formalism or on heavy use of notation. The best test of whether a
researcher fully understands his own work is whether he can explain it to
someone who is not an expert in the field.

Inventories and Introduction to Economics

While at Rand, Scarf met Arrow and Karlin, who asked him to collaborace
with them on work on inventory problems at Stanford in 1956-57, a collabora-
tion that resulted in several volumes of collected papers [3, 6, 8). In 1957, Scarf
left Rand to join the Department of Statistics at Stanford. He immediately
established himself as a great teacher, offering an unusual combination of
lucidity and depth. His course of mathematical methods for social scientists
hecame a center for the new generation of graduate students in economics and
psychology.

Perhaps the most widely cited work on inventory theory is Scarf's paper on
the optimality of the (S,s) policy [4]. It deals with the dynamic inventory
problem introduced by Arrow, Harris, and Marschak (1951). Here is the
situation: a retailer faces uncertain demand for its product over discrete tme
periods. It pays a fixed reorder cost and a unit cost when it orders this good
. from its producer. Over time, it pays a holding cost based on the size of its
inventory and a shortage cost based on the magnitude of excess demand if it
runs out of the good. Arrow, Harris, and Marschak had assumed (following
actual practice) that the optimal inventory policy had the so-called (S, s) or
two-hin form; that is, the firm waits until its inventory falls below a lower fixed
level, s, and then makes a reorder that restores the stock to an upper fixed
level, S. They found the optimal policy within this restricted class, but did not
show that this was indeed optimal among all possible policies. It was scon
shown by Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz (1953} that, with
appropriate specifications on the demand process and the costs, (S, s) policies
need not be optimal. Karlin (1958) gave a special set of assumptions on costs
and demand which sufficed for the optimality of (S, s) policies.

Scarf approached the problem in a manner which became characteristic.
He defined a generalization of convexity, called K-convexity. He showed that
K-convexity for the total cost function is preserved by the recursion formulas of
the dynamic inventory model and that it holds whenever holding and shortage
costs are linear or, more generally, convex. Once the importance of
K-convexity was grasped, it was easily shown that an (8§, s) policy is optimal in
each period. Scarf considered a model with a finite number of periods; a
student of his, Donald Iglehart (1963), extended the analysis to the infinite-
horizon case.

There are obvious applications of inventory theory in monetary economics,
where, for example, consumers face uncertain need for cash balances and a
fixed cost of replenishing these balances. Other applications are in business
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cycle theory. For example, Andrew Caplin (1985), working on a thesis under
Scarf’s supervision, found that if retailers follow (S, s} inventory policies, then
variations in final demand are magnified in variations in the demand faced by
producers. This finding directly contradicts the widely held notion that inven-
tories serve as a buffer that protects manufacturers from fluctuations in sales. It
is also in accord with the evidence on the relative variabilities of sales and
deliveries to retailers (see, for example, Alan Blinder, 1981).

While working with Arrow and Karlin on inventories, Scarf was introduced
to general equilibrium theory. At the time, Arrow was working with Leonid
Hurwicz and Hirofumi Uzawa on stability of equilibrium. Scarf’s recent work
had given him a taste for the operations research approach to solving problems
by computing solutions, and he was concerned with the applicability of the
tdtonnement adjustment process for finding the equilibrium prices of a pure
exchange economy.

To understand the issues involved in this and in much of Scarf’s subse-
quent research, consider an economy with n goods. In this economy a con-
sumer sells his endowment vector of goods and purchases a vector of goods to
consume so as to maximize utility subject to the budget constraint. The
aggregate response of all of the consumers to a vector of prices p = (p),..., p,)
is summarized in an aggregate excess demand function f(p) = (fi(p), ..., f(P)).
Good by good, this function reports the sum of the consumers’ demands for
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that good minus total supply from the endowments. Under standard assump-
tions on the consumers’ utility functions and endowments this function is
continuous and homogeneous of degree zero; in other words, demands do not
change if all prices are multiplied by a positive constant. Furthermore, it obeys
Walras's law, which says that the value of excess demands summed over all
goods is always equal to zero.!

An equilibrium is a vector of prices such that excess demand is less than or
equal to zero for every good, f(#)} < 0. Walras's law ensures that excess
demand is actually equal to zero if the corresponding price is positive, but this
concept of equilibrium allows for free goods. Léon Walras had proposed in
1874 a process that he called tdtonnement, or groping, to find equilibrium
prices. This process, later formalized as a system of differential equations by
Paul Samuelson, raises the price of a good in positive excess demand and
lowers the price of a good in negative excess demand.

Arrow, Hurwicz, Uzawa, and others had found that the tdionnement process
always leads to an equilibrium if excess functions satisfy either the weak axiom
of revealed preference or gross substitutability. They were hopeful that the
method would work under far more general conditions and were busy search-
ing for such conditions. Scarf [5] dashed their hopes by producing a simple
example with three goods and three consumers in which there is a unique
equilibrium but, unless the tdtonnement process is started precisely at those
prices, the process will literally go around in circles forever.

This result comes as no surprise now, since a series of papers by Hugo
Sonnenschein (1973), Rolf Mantel (1974) (a student of Scarf), and Gerard
Debreu (1974) has shown that, with a sufficient number of heterogeneous
consumers, the excess aggregate demand function is essentially arbitrary (ex-
cept for continuity, homogeneity, and Walras's law) and hence that the behav-
ior of the tatannement process is also essentially arbitrary. At the time, however,
Scarf’s paper had considerable influence on discouraging enthusiasm for the
titonnement method. It also had the effect of focusing his own attention on the
lack of an algorithm for calculating general equilibria.

The Core

After giving a talk on his example of instability at Columbia University in
1960, Scarf discussed with Martin Shubik the relationship of the equilibria of an
exchange economy to its core, a topic that Shubik had been studying. The core
is an allocation of the aggregate endowment such that no coalition of con-
sumers can find an alternative allocation for its members that both is feasible

'Homogeneity of degree zero says that f(8p) = f(p) for any price vector p and any number 8 > 0.
Walras's law says that p, fi(p) + - +p, f{p) = 0.
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given their endowments and makes all of them better off. That evening, a
conversation between Scarf and Lloyd Shapley, who was visiting Shubik at the
time, established that any competitive allocation was in the core. Shubik
proposed the conjecture that, as the number of consumers increased to infinity,
the core would converge to the set of competitive allocations.

To specify an allocation in an economy with n goods and m consumers, we
need a list of n X m numbers to describe the assignment of each good to each
consumer. As the number of consumers increases, this list becomes longer and
the core becomes a more complicated object. To avoid the awkwardness in
constantly changing the dimensionality of the core, Scarf used an approach
employed by Shubik (1959), who in turn had followed Francis Edgeworth: he
restricted his attention to economies with a fixed number of types of con-
sumers, specified in terms of utility functions and endowments, and increased
the total number of consumers by replicating all of these consumers the same
number of times. Assuming that the core assigned the same consumption
bundle to all consumers of the same type, Scarf [7] was able to prove that, if any
allocation was in the core for any number of replications, then there existed a
vector of prices such that the prices along with that allocation constituted an
equilibrium.

Subsequently, Debreu pointed out to Scarf that the assumption of identical
core allocations for consumers of the same type, far from being restrictive, was
a simple consequence of strict concavity of the utility function. He also sug-
gested a substantial simplification of the central proof, which was incorporated
into a joint paper [9]. This paper became the starting point for a large literature
on the relationship between the core and the set of equilibria in economies with
large numbers of consumers. One of the most notable contributions to this
literature was that of Robert Aumann. Having heard Scarf discuss his original
paper at a conference at Princeton in 1962, Aumann (1964) produced a model
with a continuum of consumers in which the core and the set of equilibrium
allocations were the same.

In 1963, Scarf moved to the Cowles Foundacdion at Yale, which he had
visited in 1959-60. He has remained at Cowles, except for visiting appoint-
ments at Rome, Cambridge, and Stanford, since then. The aumosphere at
Cowles is ideally suited to Scarf. As he described it in the introduction to his
book on computation of equilibria (12, p. x]: “The standards of mathematical
rigor and clarity of thought which prevail at Cowles are well known to the
economics profession. But perhaps more important is the persistent though
subtle suggestion that the highest aim of even the most theoretical work in
econontics is an ultimate practical applicability.”

Computation of Economic Equilibria

After arriving at Yale, Scarf returned to the problem of finding a method
for computing economic equilibria. His work on the core had suggested a
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possible approach: if he could find a method for calculating core allocations,
then this method would serve to approximate equilibrium allocations, ac least
when the number of consumers was large. Scarf had been able to find an
algorithm for finding allocations in the core of exchange economies with three
consumers, and he was working on extending this procedure to more general
situations.

An exchange economy can be thought of as a cooperative game. The
general specification of such a game considers all possible subsets, or coalitions,
of agents and the sets of outcomes available to them. In an exchange economy,
for example, a coalition is a subset of the set of consumers and the available
outcomes are the utilities that can be generated by distributing the total
endowment of the coalition among its members. An assignment of outcomes is
in the core of the game if there is no coalition that can attain an outcome that is
preferred by all of its members.

Scarf had produced a simple example of a game with three agents with
nonconcave utility functions that had no core, so he knew that additional
assumptions had to be imposed to guarantee existence of an outcome. The
condition that he used was that the game be “balanced.” This condition is
complicated to enunciate; it is attractive, however, because it is satisfied by any
exchange economy with concave utility functions considered as a cooperative
game. Scarf was able to prove the existence of an outcome in the core of a
- balanced cooperative game. His approach relied on Brouwer’s fixed point
theorem, however, which, at that time, he considered an approach oo abstract
ever to lead to a constructive algorithm.

The breakthrough in finding an algorithm for calculating outcomes in the
core occurred in 1965 when Aumann, who was visiting Cowles at the time,
showed Scarf a recent paper by Carlton Lemke and Joseph Howson (1964).
This paper provided an algorithm for calculating Nash equilibria of two-agent
noncooperative games. Although the application was very different from the
one that Scarf was studying, this paper excited Aumann and Scarf because, up
until that time, the only argument for the existence of Nash equilibria in this
type of game had relied on the sort of fixed point theorem that Scarf wanted to
avoid. Using the fundamental insight of Lemke and Howson’s paper, Scarf was
able to develop an algorithm for approximating an outcome in the core of a
balanced cooperative game [10].

Having found an algorithm for the core, Scarf realized that he could
approximate equilibrium prices directly, without relying on the relationship of
the core and equilibria. His approach was to approximate fixed points, and to
understand how it works, it is necessary to understand a bit about Brouwer's
fixed point theorem. Brouwer’s theorem guarantees that certain systems with
the same number of equations and unknowns have solutions. Specifically, this
theorem deals with functions defined on the unit simplex, the set of points whose
components are nonnegative and sum to one. Suppose that the value of such a
function g(p) = (g(p), ..., g.p)} also lies in the simplex. Then we say that g
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Figure 1
Mapping the Unit Simplex into Itself
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maps the simplex into itself because g associates any point p in the simplex
with another point g(#) also in the simplex as depicted in Figure 1. Brouwer's
fixed point theorem says that if g maps the simplex into itself and is continu-
ous, then it has a fixed point g($) = p. In other words, there is a solution to the
system of n equations and n unknowns, g{p,...., p,) = p,.

It requires some work to move from knowing that a fixed point exists for
an arbitrary function g to knowing that an equilibrium exists for an economy
with an aggregate excess demand function f. We start by using the homogene-
ity of degree zero of excess demand to impose the normalization that prices
should sum to one, to restrict price vectors to the unit simplex. We then modify
the function formed by adding prices to the corresponding excess demand,
g(p) = p + f(p), to obtain a function with the following properties: First, g()
is in the unit simplex whenever p is. Second, a price vector $ is an equilibrium
for the economy, whenever it is a fixed point of g.2

2Consider the function

max[pj +fj(p),0]
max[ gy + fi(p), 0] + -+ +max[p, +£.(p).0]"

g}.(‘g)= j=1...,n

It is easy to use Walras's law to show that g is continuous whenever f is and that § = g(}) if and
only if f{(}) < 0.
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Although Brouwer’s theorem can be used to prove the existence of equilib-
rium for an economy, Scarf had originally tried to avoid using it in his work on
computation because the traditional proofs of this theorem, of which there were
several, said that a fixed point existed but said nothing about how to find it. In
1966 Scarf developed an algorithm for computing equilibria based on a proce-
dure for calculating fixed points [11].

The idea behind this algorithm is fairly simple. The researcher starts by
specifying a finite, but large, grid of points on the simplex. The algorithm
considers a set of n such points that are close together and asks if these points
come close enough to satisfying the conditions for a fixed point in that the
values of the function evaluated at these points are, in a specific sense, close to
the points themselves. If the set of points does not satisfy this property, then the
algorithm moves to an adjacent set of points formed by all but one of the
previous points and one new point and asks the question again. It terminates
when it encounters an approximate fixed point. The algorithm has two key
features: The first is that at any step, except at the start and the end, the
algorithm can always carry out the replacement operation of moving from ane
set of points to another by dropping a point in the first set and adding an
additional point. The second key feature is that at any step, except at the start
and the end, the set of points under consideration has exactly two adjacent sets
of points to which it could move, one of which it has just visited and the other
that it will visit at the next step.

The algorithm must terminate with an approximate fixed point in a finite
number of steps. There are only a finite number of points in the grid and,
consequently, only a finite number of sets of points that the algorithm could
consider. The only way the algorithm could fail to converge would be to cycle;
it cannot cycle because then some set of points would be the first such set to be
considered twice; and this cannot be because the algorithm would have already
visited the adjacent sets of points. This argument that the algorithm must
terminate is the insight that Scarf derived from Lemke and Howson’s paper,
which is otherwise different in its mechanics and interpretation. Scarf likes to
illustrate Lemke and Howson’s insight with a story [12, p. 48]:

Let us imagine a house consisting of a finite number of reoms, each of
which has precisely two doors. Assume that one of the rooms has a door
leading to the outside of the house. Then there must be at least one other
door leading to the outside! And that other door may be found by this
simple rule: Begin with the known outside door and proceed from room
to room, never departing from a room by the door used in entering it.
One can never return to a room previously entered.

For the algorithm to be efficient, it must be able to march through the
simplex considering only a tiny fraction of the total number of points in the
grid. For the algorithm to be easy to use, it must be easy to specify the grid of
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points and easy to carry out the replacement operation needed to move from
one set of points to another. Scarf originally specified the sets of points to be
considered using a concept called primitive sets, that he had used in his
algorithm for computing an outcome in the core. In 1967, a student in his
mathematical economics class at Yale, Terje Hansen, found that, if the grid of
points is specified as all points of the form (m,/D,...,m, /D) wherem,...,m,
are nonnegative integers that sum to I, then the concept of primitive set can be
specified so that the replacement operation can be performed with a few simple
additions and subtractions.

In 1968, Scarf received an unpublished paper from Harold Kuhn (1968)
that proposed an alternative approach to approximating fixed points based on
a traditional concept from combinatorial topology, the simplical subdivision of
the simplex, rather than on primitive sets. Scarf and Kuhn were intrigued by
the similarity of the replacement operation discovered by Hansen and the
analogous step in Kuhn's algorithm. Discussing this similarity and drawing a
few pictures, they came to realize that the two algorithms were virtually
identical, although their initial geometric interpretations had differed.

To make the algorithm more concrete, consider the simplex pictured in
Figure 2. This simplex is divided into subsimplices, which in this case are small
triangles whose vertices are the grid of points of the form (m, /8, my/8, m4/8),
where m|, m,, and m4 are nonnegative integers such that m, + m, + m; = 8.

'Each one of these points has a label that is the number 1, 2, or 3. A point in the
grid on the boundary is labelled 1 if m) = 0, 2 if my = 0, and 3 if m, = 0; thus,
for example, the point (0,3/8,5/8) receives the label 1 as pictured. On the
corners, where more than one label is possible according to this rule, we follow
some fixed rule, like always choosing the first possible label. If the grid points
inside the simplex are each given an arbitrary label 1, 2, or 3, then there is a
classic combinatorial puzzle: is there necessarily a subsimplex, a little ¢riangle,
whose vertices have all of the labels 1, 2, and 3? The answer is yes, and Scarf’s
algorithm provides a method for finding such a completely labeled subsimplex,
one whose vertices have the three labels.

To see the connection between a completely labeled subsimplex and fixed
points, let us suppose that the labels of grid points interior to the simplex are
not arbitrary at all, but instead depend on the function g: we give a point v a
label i for which g(z) = v, For example, suppose that we are considering the
grid point v = (6/8,1/8,1/8) and that when we evaluate the function g at v
we obtain g(6/8,1/8,1/8) = (0.23,0.41, 0.36). (Remember that if we are cal-
culating the equilibrium of a model economy, g(v) depends on the aggregate
excess demands evaluated at the price vector v.) Since go(v) = 0.41 = 1/8 = v,,
‘we can give v the label 2, as in Figure 2.3 Given this labeling rule, we see that a

*Notice that, since gqfz) = 5, we could have given u the label 3; but we apply the convention of
using the first applicable label. Notice too that this way of assigning labels is consistent with. the
lzbels on the boundary of the simplex since g;(x} is always nonnegative, and z; = 0, and g,(z) =
v, =10
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Figure 2
Scarf’s Algorithm for Computing Fixed Points
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completely labeled subsimplex has vertices that are a set of points which satisfy
the property that at one of them the function is greater than the corresponding
vertex in its first component, at another it is greater in the second component,
and at a third it is greater in the third. If the grid is very fine, in the sense that
‘the points in a subsimplex lie very close together, which in this case means that
D is very large, the continuity of g would imply that at any peint ¢ in the
completely labeled subsimplex the inequalities g () = p; are all almost satis-
fied. Since the components of g(p) and p both sum to one, however, this says
that g(p) is almost equal to p. Hence p can serve as an approximate fixed
point, which means that it can serve as an approximate equilibrium of the
underlying model economy.

The crucial steps to finding an approximate fixed point are to choose a
fine enough grid of points and to find the desired subsimplex. Scarf’s algorithm
provides a method for finding the desired subsimplex. As in Figure 2, it starts
in the corner of the simplex, where the labels on the boundary guarantee that
there is a subsimplex with vertices that have the labels 2 and 3. It then moves
into the simplex, into the house from the door to the outside in Scarf’s tale, by
considering the unique other subsimplex that shares with the first its interior
side, which has vertices with the labels 2 and 3. It examines the new vertex to
see if the labeling rule assigns it the label 1. If it does, the algorithm stops with a
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completely labeled subsimplex. If it does not, the algorithm finds the unique
new side of the subsimplex that has vertices with the labels 2 and 3, the other
door out of the room, and moves through it to the adjacent subsimplex. By
always moving through a side of a subsimplex whose vertices have the labels 2
and 3, and never moving through a side with the labels 2 and 2 or 3 and 3, the
algorithm respects the rule that every room has precisely two doors and it
guarantees that if it encounters a vertex with label 1, then it has found a
completely labeled subsimplex. It is easy to see that the only way that the
algorithm would try to move outside the simplex would be if we were to return
to the starting point, where there is a subsimplex with a side on the boundary
of the simplex with vertices with the labels 2 and 3. This cannot happen,
however, since the algorithm can never cycle. Consequently, we must en-
counter a completely labeled subsimplex.*

This whole procedure can be readily extended to higher dimensions, to
economies with many goods. In fact, Scarf's book [12] contains a Fortran
program for the algorithm that is only 27 lines long. What is needed is that the
user supply a subroutine that provides a label for any new vertex encountered
by the algorithm. This label, of course, requires the evaluation of the excess
demand function of the specific model economy that the user is studying.

An obvious drawback of Scarf's algorithm is that how close its solution
comes to satisfying the equilibrinm conditions depends on how close the points
in the completely labeled subsimplex are ta each other, which in turn depends
on how large D is. Unfortunately, the closer the points in any subsimplex are,
the more work that the algorithm has to do. Furthermore, if we compute an
answer where the grid is too coarse—in the sense that the points are too far
apart to provide a good approximation to an equilibrium—then refining the
grid requires us to discard the information obtained in the previous try and to
start all over again from the corner of the simplex.

Scarf’s work inspired a line of papers in operations research devoted to
finding more efficient ways of overcoming this problem. Early users of Scarf’s

*The crucial replacement step is trivial to carry out. The second triangle encountered by the
algorithm in Figure 2, for example, has as vertices the vectors

i

divided by 8. Since the third vertex has the label 2, we move to a new simplex by keeping the first
and third vertices and dropping the second vertex, which also has the label 2. Elementary
geometry tells us that we can do this by completing a parallelogram, adding the first and third
vertices and subtracring the second,

HRHRHRH
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algorithm attempted to overcome the problem by using the approximate fixed
point as a starting point for some other numerical technique (like Newton’s
method, which is not guaranteed to work but usually does well if started near a
solution). Later, Curtis Eaves (1972), Orin Merrill (1971), and Gerard van der
Laan and Adolphus Talman (1980) developed madifications of Scarf’s algo-
rithm that allowed the grid to be continually refined during the course of the
procedure and for solutions of arbitrarily high accuracy to be found without
having to restart at a corner. Two of Scarf’s students at Yale—Michael Todd
and Ludo van der Heyden—also contributed to this operations research
literature.®

Most of Scarf’s students at Yale over the period 1968-80 did research not
on theoretical topics dealing with the algorithm, however, but on its applica-
tions. Indeed, there is what many would characterize as a Yale school of
economtists who use applied general equilibrium models to do economic policy
analysis. Students of Scarf in this group include Andrew Feltenstein, Timothy
Kehoe, Ana Martirena-Mantel, Marcus Miller, Donald Richter, Jaime
Serra-Puche, John Shoven, John Spencer, and John Whalley. Shoven and
Whalley, two of the leaders in this field, are responsible for a pair of definitive
surveys of applied general equilibrium methods (Shoven and Whalley, 1984,
1992). Serra-Puche has combined an academic career with public service in his
home country of Mexico. He is currently Secretary of Trade and Industrial
Development there and has been directly responsible for much of the internal
deregulation and open trade policies of the Mexican government, including its
recent negotiations with the governments of Canada and the United States over
the North American Free Trade Agreement.

Increasing Returns and Integer Programming

In the course of his work on the core with Debreu, Scarf became interested
in economies with production. Debreu and he realized that their proof of
convergence of the core to the set of competitive allocations would easily extend
to economies where all coalitions had access to the same constant-returns-to-
scale production technology. Scarf also realized that, if the production technol-
ogy exhibits increasing returns, then the economy may not have a competitive
equilibrium. He was able to construct some examples, however, in which the
economy has a nonempty core even though it has no competitive equilibrium.

5When Bruce Kellogg, Tien-Yien Li, and James Yorke (1976) and Steven Smale (1976) provided an
alternative approach to finding fixed points based on solving a system of differential equations,
Scarf and Eaves [L3] wrote a paper that established the intimate relation between this approach and
that hased on simplical subdivisions. This paper also established the relation between Searf’s work
and the then emerging literature on the differentiable approach ta general equilibrium of such
researchers as Debreu (1970), Eghert Dierker (1972), and Andreu Mas-Colell (1975}
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Figure 3
A Two-good Economy with Increasing Returns
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Consider the example depicted in Figure 3. There is an economy with two
goods, a consumption good y and inelastically supplied labor . The technology
for producing the consumption good using labor is specified by a production
function f(I) that exhibits increasing returns in the sense that average produc-
tivity f(1)/1, the slope of the line between the origin and ({, (1)), is increasing
in labor input. There are m consumers who value the consumption good alone
and have endowments l‘ of the labor. Consider now the allocation where all of
the labor [ =1'+1%+ -+ +I" is used to produce the consumption good,
which is then divided among the consumers in proportion to their labor inpug,
y* = (/D) f(]). To be in the core this allocation must have the property that no
coalition can attain higher levels of consumption, and therefore of utility, for its
members using its members’ endowments. It is easy to see that this allocation js
in the core, and the intuition is simple and seemingly general: the coalition of
all the consumers can achieve total output higher than that available to any
other coalition precisely because there are increasing returns.

This sort of example led Scarf to conjecture that increasing returns could
only make existence of an allocation in the core more likely than it was in the
constant-returns case, and with constant returns he was able to prove existence
using a simple extension of his argument for exchange economies. He specu-
lated that cooperative game theory might provide the tools for studying
economies with increasing returns. It was apparent that standard general
equilibrium theory floundered in such economies: The economy depicted in
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Figure 3 has no competitive equilibrium because at the aggregate production
plan (I, (1)) there does not exist a price for consumption and a wage such that
this production plan is profit maximizing. Indeed, given the real wage ratio
depicted in the figure, the production plan is profit minimizing among efficient
points, since all efficient points except f({) lie above the line tangent to f(1)
at f(1).

Scarf explored this approach to analyzing economies with increasing re-
turns in a set of notes [17] written in 1963 but not published undl 1986. In
these notes, he established conditions sufficient for existence of an allocation in
the core, but he also developed a procedure for constructing examples with
empty cores. Specifically, he proved that, for any production set that exhibits
increasing returns, one can construct a group of consumers specified by udility
functions and endowments so that the corresponding cooperative game has an
empty core. In fact, the procedure applies to the example just given; we merely
need to allow some endowments of the consumption goods and some utility for
leisure. Scarf’s notes were widely circulated in unpublished form. His positive
results on sufficient conditions for existence led to a literature on coalition
production economies, with notable contributions by Claude Oddou (1976),
William Sharkey (1979), and Tatsuro Ichiishi and Martine Quinzii (1983). Scarf
himself turned his attention to the theory of optimization in production prob-
lems with increasing returns and indivisibilities.

In focusing on the mathematics of optimization, Scarf was inspired by the
development of activity analysis and linear programming theory in the 1940s
and 1950s. Researchers such as George Dantzig and Tjalling Keopmans had
developed a theory for analyzing production problems with constant returns
that changed the way that economists thought about the role of prices in
determining economic efficiency. To get some favor of this theory, consider an
economy that has two alternative techniques for producing output using labor.
The first produces four units of output using four of labor; the second
produces one unit of output using two of labor. Suppose that there are six units
of labor available and that the two techniques, or activities, can be run at any
(nonnegative) levels. Because the second activity produces more output per
unit of labor, for every amount of labor input, it makes sense to use only this
activity. The output maximizing production plan is to run the second activity at
level x, = 1.5 and not to run the first activity at all, x, = 0.°

The duality theorem of linear programming offers a simple check for
efficiency: A proposed production plan is efficient if and only if there exist
prices for the outputs and inputs such that activities employed at positive levels
in the plan make zero profit and all other activities earn profits less than or
equal to zero. In this case, the price of output, taken as numeraire, is equal to
one and the price of labor is one. At these prices the first activity makes

SMore particularly, the linear programming problem whose solution determines the efficient use of
resqurces is max x; + 4x,, subject to 2% + 4x, < 6, and x|, x5 = 0.
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negative profits and the second activity makes zero profits. A corollary of the
duality theorem gives a simple test for new candidates for efficient activities: If a
new activity makes positive profits at the old prices, it should be incorporated
into the efficient production plan; if it does not make positive profits, it can be
ignored. If someone in our mode] economy invents a new process that pro-
duces three units of output using two of labor, for example, it should necessar-
ily be incorporated into the efficient production plan.

Results related to the duality theorem-—the separating hyperplane theo-
rem, the Kuhn-Tucker theorem, and the welfare theorems—are central to
modern economic theory. Scarf was concerned that there did not seem to be
analogous results for economies with increasing returns and indivisibilities in
production. Specifically, he was concerned with production models, like the
model discussed above, where activity levels are constrained to be integers. In
this case, which is called an integer programming problem, there is no simple test,
like the pricing test discussed above, to verify whether a production plan is
optimal. The earlier situation is so simple that the solution to the integer
programming problem can be found by examining each of the feasible points,
those points with integer coordinates. It is x, = 1, x, = 1. It is easy to verify
that there are no prices such that both activities earn zero profit.

Scarf's old friend Ralph Gomory had developed the first algorithms for
solving integer programming in 1958. A number of alternative algorithms have
been proposed over time, but most are unpredictable and unreliable: a small
change in one of the parameters can change an easy-to-solve problem into an
intractable one. In the language of the theory of complexity developed by
computer scientists in the 1970s, the integer programming problem is an NP
complete problem, which means that this sort of problem is a member of a large
class of mathematical problems for which there is no known algorithm that is
guaranteed to solve the problem in a pnumber of arithmetical steps that is a
polynomial function of the amount of data necessary to specify the problem.
Furthermore, these problems are all equivalent in the sense that a polynomial
algorithm for ane problem could be translated into a polynomial algorithm for
any other NP complete problem.

The development of an efficient algorithm for solving integer program-
ming problems would be a major breakthrough in at least three areas: in
applied mathematics, where it would provide an approach for solving a wide
variety of related problems; in operations research, where it would provide a
method for solving many important problems faced by large firms; and in
economics, where it could provide insights into the organization of firms and
into decision making within these firms. In an article in this issue, Scarf [25]
presents an extensive discussion of the importance of integer programming in
economics.

Scarf has been interested in the theory of integer programming since the
early 1960s and has worked on it almost exclusively since the late 1970s. One of
his goals has been to develop a simple test for optimality of a production plan,
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analogous to the pricing test in the linear programming case. Using the same
concept of primitive sets that had proved useful in his earlier work on the core
and on computation of equilibria, Scarf was able to develop such a test. The
grid of points on which these primitive sets are defined are lattice points, those
points with integer coordinates, the only points from which the solution to an
integer programming problem can be drawn. As in Scarf's work on fixed
points, a solution to an integer programming problem is associated with a
primitive set whose vectors are completely labeled; here the labeling rule
depends on which constraints of the problem are satisfied at the lattice point.
Unlike the case with his work on fixed points, however, Scarf found that the
primitive sets appropriate for an integer programming problem were not
regularly shaped analogues of triangles. Instead, they could have more vertices
and be very long in some dimensions and very thin in others. In general, a
primitive set is a collection of lattice points that are vertices of a convex
polyhedron that does not contain another lattice point. The number of these
vertices and the precise shape of the polyhedron depend on the specific integer
programming problem. The interested reader should consult the series of
articles [14, 15, 16] that Scarf has written on this subject.

Scarf has been working since the mid-1980s on developing algorithms for
solving integer programming problems. His approach has led him to the study
of the geometry of numbers, a branch of mathematics developed by the Polish
 mathematician Hermann Minkowski in the 1890s [19, 23, 24]. In the geometry
of numbers there is a classic problem that is relevant to the determination of

Figure 4
A Unimodular Transformation
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whether or not a collection of lattice points forms a primitive set in Scarf's
algorithm: When does a given convex body contain a lattice point? Consider,
for example, the question of whether the triangle in two dimensional space with
vertices (1, 0),(5, 5),(15, 18) contains a lattice point. One approach to answering
this problem would be to conduct an exhaustive search of all the integer vectors
(h), hy) whose values satisfy 1 < &, < 15 and 0 < &, < 18. (Actually, this prob-
lem involving a triangle in two dimensional space is easy to analyze, buc it
serves as an illustration of problems involving general convex polyhedra in n
dimensional space.)

Another approach is to first find a linear change of variable that moves the
vertices of the triangle closer together and to then conduct the exhaustive
search. Such a change of variables should be a unimodular transformation, that is,
the change of variable and its inverse should transform lattice points into lattice
points. A simple unimodular transformation, shown in Figure 4, transforms the
triangle with vertices (1,0),(5,5),(15,18) into one with vertices (9, —5),
(10, —5),(9, —3).” We now have to search over the transformed integer vectors
(h\, ) whose values satisfy 9 < A, < 10 and -5 < A, < —3. Doing so yields
the vector (9, —4) that lies in the triangle. Since the change of variables is
linear, we know this point corresponds to one in the original triangle; since the
change of variable is unimodular, we know that this point corresponds to a
lattice point. The lattice point contained in the original triangle is (8, 9).

In the above example we find a unimodular transformation such that the
first coordinates of all of the points are close to each other. To search for a
point in the triangle, we first choose £ = 9 and search over values of A and
then choose A} = 10 and repeat the search. The general approach in n
dimensions is analogous: We find a unimodular transformation chat allows us
to reduce a problem in n dimensional space to a small number of n — 1
dimensional problems. Doing this successively, reducing each of the n — 1
dimensional problems into a small number of n — 2 dimensional problems,
and so on, gives a decision tree structure to the original problem. If the original
problem has a large dimension, then there are a large number of branches in
the decision tree. The essential ingredient to this approach is to find a fast way
to come up with the unimodular transformations that allow us to do the
branching. Since computations along separate branches are independent, there
are substantial opportunities for parallel processing.

7 . .
The change of variables is
= —
W, = Qh, — Th,
')
By = —5h, + 4k,
Since the coefficients of this transformation are integers, it transforms lattice points into lattice
g P
points. Since the matrix of coefficients has determinant 1, its inverse also has coefficients that are

integers. A unimodular transformation is defined by a matrix of integer coefficients with determi-
nant 1 ar —1.
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Independently of Scarf, a number of applied mathematicians have been
taking similar approaches to solving integer programming problems. One of
them, Hendrick Lenstra (1983), has been able to find an algorithm that can
solve integer programming problems with a fixed number of variables in a
polynomial number of steps. Although fixing the number of variables in
advance means that this is not a polynomial algorithm for the NP complete
problem, it suggests that there may be fairly general and efficient algorithms
for integer programming problems.

Recently, Scarf has been working with a group of mathematicians and
computer scientists to implement an integer programming algorithm that can
efficiently solve problems with up to 100 integer variables [20, 22]. The results
so far are promising. Scarf[18, 25] speculates that this research could lead us to
a new understanding of the theory of the firm and of bounded rationality. This
speculation might seem somewhat far-fetched if we did not have such sohid
evidence of the power of Scarf’s mathematical intuition and his ability to focus it
on fundamental economic problems.

m The views expressed herein are those of the quthors and not necessarily those of the
Fedeval Reserve Bank of Minneapolis or the Federal Reserve System.
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