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In general, no method to find alt the equilibria of an econoemy is known that does not involve
an exhanstive search Tn this paper we argne that for an economy with a generalized input—
output structure and two factors of production such a sgarch is feasible, and indeed can be
performed graphically, After presenting a search procedure, we apply it to an example with
mulliple equilibria, It is hoped that study of the simple two factor model will provide insight
into the question of non-uniqueness in more general models.

1. Introduction “

Scarf (1973) first developed an algorithm that computes an equilibrium for
d general equilibriutn model. Unfortunately, there are a whole class of
equilibria, those with negative index, that it cannot find. [see Eaves and Scarf
(1976)]. Although such an algorithm can be modified to get around this
particular difficulty, it remains true in general that no method to find all the
equilibria of an econumy is kpown lhat does nol involve an exhaustive
search. In this paper we argue that for an econemy with a generalized input—
output structure and two factors of production such a search is feasible, and
indeed can be performed graphically. We demonstrate the equivalence
botween the equilibria of an cconomy with a generalized input-output
structure and two factors of production and the equilibria of an appro-
priatcly defined two-commodity pure exchange economy. This type of
transformation has been used in the past by international trade theorists and
i oweutly Ly goucial oyuilibiivin mwodellcrs, whe have used (e diwcu-
sion reduction to. improve computational efficiency [see, for example, Help-
man (1976)]. We. point out the possibility of using the dimension reduction
to find all of the equilibria of an economy. An appealing aspect of the
transformation is that the concepts of regularity and fixed point index carry
over, We also study extensively the possibility of more activities: than
produced goods being used at equilibria, a possibility that has not previously

*F am grateful to Herbert Searf, who suggested this topic to me, and to David Backus and
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been explored. After presenting the scarch procedure, we apply it to an
economy with multiple equilibria. This example is intcresting in that con-
sumer excess demands exhibit gross substitutability while derived factor
demands do not. Finally we discuss what insights the study of the simple two
factor model may provide into the question of non-uniqueness in more
general models.

f

2. The model and its equilibria

The model we employ here iz a special case of that found in Kechoe (1980).
The consumption. side of an economy is specified by an excess demand
function, &:R%\{0}-»R", that assigns any vector of non-negative prices,
-except the origin, to a vector of aggregate net trades.

A.l. £ is continuously differentiable.

A.2. £ is homogeneous of degree zero; &(tn)=£&(x) for all r=0.

A3, E obeys Walras’s law; n'&(m)=0. _
The production side is specified by an n xm activity analysis matrix 4.

Ad. A allows free disposal; in other words, the nxn matrix —1I is a
submatrix of A.

A5. There exists some >0 for which #'4<0; this is equivalent to the
assumption that the only vector Ay 20 for which yz 0 is Ay=0.

An equilibrium of (£, A} is defined to be a price vector 4 that satisfies #'4 £0,
ER)=AJ for some 20, and #'e=1, where e is a vector whose element is
unity.

-Qur two-factor model is similar to models used by international trade
theorists in their discussions of factor price equalization [see, for example,
McKenzie (1955)]. It satisfies the following additional assumptions:

A.6. There are two non-produced goods; ¢;;£0 for i=n—1, n and j=
,....m

A.7.- There is no joint production; for every j=1,...,m a;;>0 for at most
one i. :

A& Production is possible in that there exists a non-negative vector y such
that 37, a;; 5, >0, i=1,..,,n—2.

AZ9. Bvery good that can be produced is actually produced at every
equilibrivm.
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It is easy to check whether an economy (¢, A) satisfies A.6-A.8; A9 is more
difficult to check. To ensure that it holds, we could require that &(x)=0 for
the first n—2 goods, with strict inequality in one coordinate, for all prices =
that are not zero in the final two coordinates by allowing consumers positive
initial endowments of only the final two goods. A9. is more general,
however, and we later present an example where this exira penerality is
essential.

To simplify matiers, we impose the following non-degeneracy assumptions
on (£, 4). We can justify them by arguing that they hold for afmost all
economies.

A.10. ‘No column of A can be expressed as a linear combination of fewer
than » other columns.

A1l Any activity that carns zero profit at equilibrium # is assuviated with
a positive activity level.

We denote the prices of the first n—2 goods by the vector p and the prices
of the two non-produced goods by the vector g We partition the matrix A

into
A,
A2 *

where 4, is (n—2) xm and A4, is 2 xm, and similarly partition the vector &(m)

into

[fl(ﬁ)]

&i(m)
We begin with the case where A consists of only 2n—2 activities, the n
disposal aclivities and an »nx(r—2) matrix B with one activity to produce

each of the first n—2 poods. A.9 implies that each of these n—2 activities is
vsed at a positive level at equilibrium, We partition B into

B,
B
A8 implies that B, is a productive Leontief matrix; A 10 implies that it is
indecomposable. Consequently, B; ! has all its elements strictly positive [see,
for example, Debren and Herstein (1953)]. The equilibrium condition B,j=
EY(#, ) implies that §=B71EYp,§) >0, and the zero profit condition §'B, +
§ B, =0 implies that j=—(B,B;"')§. Since A.6 and A.10 imply that every
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element of B, is negative, —(B,B7 ") is a strictly positive matrix. Since all the
coordinates of {$, ) cannot be equal to zero, both the coordinates of § cannot
equal zero. Therefore § is strictly positive at any equilibrium. We can use
these observations to construct a pure exchange model of the two factors
whose equilibria are equivalent to those of (¢, A): We define the 2 x 1 excess

demand function
- 2q) =8~ (B,By 'Vq, 4)~ BB 1~ (BB g, 9).

It is easy to check that z satisfies the appropriate versions of A.1, A.2, and A3
since & does. Observe that z(g) =0 is equivalent to £2(p, §) = B, By '¢'(,4)= B,j
and, therefore, that § is an equilibrium of (z, —1I} if {§,4) is an equilibrium
of (£,A4). Unfortunately, A9 in its present form allows the possibility
that 4 is an equilibrivmm of (Z,—1I) but (§,4) is not an equilibrium of
(&, A) because By !¢Y(5,d) contains negative elements. The assumption that
& (p, gy =0 wounld preclude this possibility. In any case, this possibility is easy
to check for,

When the matrix 4 contains more than 2n—2 columns, the sitvation is not
so simple. z{g) becomes an upper-semi-continuous, point-to-set corres-
pondence rather than a continuous function. To calculate z(g), we begin by
solving the linear programming problem

min —q'Asy subjecl w A,y=e,  y20.

A8 implies that this problem is feasible. A.5 implies that it has a finite
solution. The non-substitution theorem implies that the solution is associated
with a feasible basis that does not vary as the right-hand <ide vector, here o,
varies [see Samuelson (1951)]. The solution is associated with a feasible basis

[
B, |
and a vector of commeodity prices p such that p'B;+¢'B,=0 and p'4, +
g A, 20 [see Gale (1960, pp. 301-306}]. The presence of disposal activities
in 4, ensures that p is non-negative. When the basis is uniquely defined, we
cant proceed as above. .

A problem arises, however, when the basis associated with the solution

to the linear programming problem is mot unique. There can be n-1
activities earning zero profit at prices (—{B,B; *Y'¢,q) and two distinct bases,

—4'B, and —q4C, :
By c,

possible in the solution. A.10 implies that there are at most two distinet
bases and that they differ by only one activity. At any factor prices g where
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the linear programming problem is degenerate in this way the final demand
for the factors can be either

2Mqy=E—(B2B1"Y'q,a)— BBy ' (— (B Br Ya,4), or
) =E(—{(C,C1 ', 9)~ C,Cr '~ (CoC VY a).

Of course, p= —(C,C; YYq=—(B,B] 'Yq. In fact, for our purposes, z(g) can
be any convex combination of the two, tz"(@)+( 1-9x%4g) for any 0t <1,
A.10 implies that there are only a finite number of prices ¢ in the simplex
S={qeR?|q,+4q,=1,4;20} such that z(g) has multiple values. Consequent-
ly, z{q) is a single-valued differentiable function at almost all prices qe R, Tt
is worth pointing ont, hawever, that for z{(@ to bhe multi-valued at an
equilibrium § is by no means a degenerate situation. Although in this case
the linear programming problem is degenerate, the economy itself need not
be. In the next section we demonstrate that it is. possible for (£, 4) to have
n-1 activities in use at an equilibrium (f,4) and to be such that no small
perturbation can result in fewer than n—1. activities being used at the
perturbed equilibrium, '

3. Regular economies

Before studying the two-factor model, let us briefly summarize the
regularity and index results obtained by Kehoe {1980) for economies that
satisfy A\l A.5. A regular cconomy is onc that satisfics thc non-degeneracy
assumptions A.10 and A.11 and the condition that the expression

0 e 0
'(—1)-sgn(dm € D& B(#) )
0 B@ 0

is non-zero at every equilibrium. [Here B(#) denotes the submatrix of A4
whose columns are those activities that earn zero profit at equilibrium 4.] A
regular economy has a finite number of equilibria that vary continuously
with the parameters (£, A). Furthermore, if we define index(#) to be +1 or
—1, depending on the sign of the above determinantal expression, then we
can prove that ) index(s)= + |, where the sum is over all equilibria, It is this
result that is crucial to our study of uniqueness since the condition index(#) =
+1 at every equilibrium is necessary and sufficient for a regular economy
to have a unique equilibrium, An alternative formula for index(7) can be
-derived by petforming clementary row and column operations on the
expression for index(7). Strike out one row and column of D&, for which the
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corresponding #,>0. Strike ont the corresponding row of B(R). Letting J and
B be the matrices obtained from this process, we can prove that

index{7)=sgn (dct I: B ;, B f])

The price 7, for which the corresponding row and column are deleted from
DE; can be thought of as a numeraire. The appeal of the concept of
tegularity is enhanced by its genericity in the space of economies: Almost all
economies are regular in the sense that regular ecohomies form an open
dense subset of a suitable parameterized topological space of economies.

We now cxtend these results to the two factor model. It is easy to prove
that, since regular economiee form an open dense subset of the spoce of
economies that satisfy A.1-A.5, they also form an opén dense subset of the
subspace of economies that satisfy A.1-A.9. To interpret the index theorem in
the two factor model we need to develop an alternative expression for
index(#). We again start with the case where 4 contains only one production
activity for cach produced good. We also, for the present, require that both
factor prices are strictly positive at every equilibrium #. These restrictions
imply that there are exactly n-—2 activities in use at every equilibrium. The
index of an equilibrium #—(f,4) of a two factor economy (&, 4) can be
expressed as '

0 ¢ €€ 0
¢ D& D& B
e D& D& B,
0 B, B 0

index(f, §}=(—1)"sgn{ det

where each of the vectors e is of the appropriate dimension. Performing
elemcentary row and column operations on the matrix in this expression, it is
possible to show that

, Y. 0 ¢ —e'(B,B7YY
1r1c!c:x(p,q)=sgnldet|:€mBZBI_I'2 Dzj "7, where

Dz, =D& — BBy 'DEL — DEXB, BT Y + BBy 'DEYB,BTYY.

When we rescale ¢ and Dz, so that §'e=1, this becomes the formula for
index (4) of the two dimensional economy (z, —J). [Recall that in the »
dimensional case §'(e—B.Bi 'e)=de+Fe=1 whilc in the two dimensional
case fe=1] If neither 4, nor 4, is equal to zero, then the index of
equilibrium § can be calculated as sgn{—(z,/0q,X§)). Alternatively, we can
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use A2 to establish that index (§) =sgn (—(z,/0g,)(d) + (32(/0¢,)(§): Walras’s
law implics that, if z,(§)=0, thon z,(§)=0. Therefore equilibria of (z, -0,
with the possible exceptions of (1,0) and (0,1) are equivalent to zeros of the
excess demand function z,(gy, 1—g,). The index of an equilibrium § is equal

to +1 if the graph of z,(q,, 1 —¢,) crosses the axis from above at § and equal
to —1 il it viusses from bolow. Wotice thar if (£, 4) 1s regular, then the graph
of z,{gq,, 1 —¢qy) cannot become tangent to the axis,

1

RO U

Fig, 1

The index theorem tells us that an economy (£, 4) has a unique solution if
and only if the graph of z,(q,, 1—q,) always crosses the axis from above. In
the case where z is single-valued at every equilibrium an economy has a
unique equilibrium if (dz,/84,){(4) <0. Walras’s law and homogencity imply
that this condition is equivalent to each of three other mutually equivalent
conditions, (8z,/0¢,)(d) <0, (02,/84,)(§)=>0, (9z,/84,)(§)>0. A two factor
economy therefore has a unique equilibrium if either factor is normal at
every equilibrium or, equivalently, if the two factors arc gross substitutes at
every equilibrinm.
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Consider the situation where z is multi-valued at an equilibrium 4. In some
neighborhood of §, as we increase the price of the first factor, say labor, and
decrease the price of the second, say capital, one activity goes from being
inefficient to efficient. At § a change of basis occurs and another activity,
which produces the same good, is dropped from the basis. What we shall
demonstrate, and what certainly is intuitively plausible, is that, as we increase
the price of labor, the activity that comes into the basis is relatively more
capital intensive than the vector that drops out. The swilch of techniques
results in a sudden drop in demand for labor and increase in the demand for
capital. Consequently, the interpretation of the index theorem in terms of
normality and gross substitutability can be carried over to the case where z
is multi-valued. .

Suppose now that either one of the factor prices is equal to zero at
equilibrium. Then A.11 implies that a disposal activity is used at a positive
level. The situation is similar to that where more than one activity is used to
produce each produced good. In either case, since A.10 implies that at most
n—1 activitics can earn zero profit at any equilibrium #, there must be
exactly n—1 activities in use. If there are exactly n—1 activities in use at
equilibrium #, then index{#)= + 1. To see why this is so, let C be the nxn
maltrix [B(#)e]. Since B(#) has full column rank by A.10 and #'B(f) =0 while
#'e=1, C is non-singular. Consequently,

D¢y

index{ﬁ)=(1)"Sgn(dﬂt[ o g])=sgn(dct[C’C]) =+1,

since C'C is positive definite. We should therefore expect that when there are
n—1 activities in use at equilibrium that the graph of the excess demand
correspondence z,(q,,1 —q,) crosses the axis from above. This result can be
viewed as the reason why a one factor input-output model, which always has
n—1 activities in use at equilibrium, has a unique equilibrivm,

Let us investigate the situation where § is an equilibrinm of a regular
economy (z, —f} and there are two distinct bases possible in the solution to
out linear programming problem. There is some neighborhood of 4, U= R2.
sugh thal the prugramming problem alwdys resulis in cither the basis

— ' B, —qCy By
0] o 60 = 3]

be the activities associated with all those ge UnS such that ¢, >4,. (Here §
denotes the unit simplex in R%) We can choose some veR® with v, = —v,>0
so that both §+» and §—v are clements of U S. That

)
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is not associated with the basis at ¢—v implics that —(¢—u)'B,B;'C, +
(d—vyC,=0 with strict inequality holding for the coordinate correSponding
to the column in which B, and C, differ. Since §'B,B'=¢'C,Ci'=¢,
this implies u’BzB 1€, —¥'C,20. Since ¢ is an equilibrium, A.9 implies that
Dyyp+ Crye~— &1 (ﬁ, g) [ svme yp ye>0. Comseyuendy, C;'>0 Implics
CyLEVp, ¢)— Cl Byyp=yc>0. Multiplying the previous inequality by Yo
yields 03231 *Ci¥e<t'Cyye. Similarly, we can prove that v "B,y <
v'C,C7 1B, yB Adding these two incqualities yields v'By(yy+B['C,y)<
v'Cy(yet Cy ' B, yp), which is cquivalent to

v'B,By ¢ (B, <v' C,C{ B, ),
véz(ﬁ’é) 0B281 lé (Pst)>U§ ( ) UCZCI 16 (p’Q)
v'z¥ @ > v'29(9).

Thus, v, >0 implies that z3(4) > 2{(4), and v, <0 implies that z3(§) <z§(§). It
- follows that whenever the excess demand correspondence is multi-valued at
an equilibrium § the graph of the correspondence 7,(g, 1 wa) crasses the axig
from above at § as in fig. 2,

A1l rules out such a situation as that deplcted in fig. 3. We have
demonstrated that, when a change in factor prices leads to a change of basis
in the linear programming problem that selects the efficient production
activities, there is a vertical section in the graph of z,(g;,1—q,). If this
vertical section passes through the axis, and if A.t1 is satisfied, then any
small perturbation in (£, A} yields an equilibrium where the same vertical
section of the perturbed graph passes through the axis, that is, where there
are still n—1 activities in use at equilibrinm,

4. An example

When an economy is régular, we know that its equilibria are finite and
odd in number. If we cannot prove that there is a unique equilibrium, this is
usually all we can say about the number of cquilibria. In this section we
present an example of an cconomy that satisfies A.1-A.11. Using the analysis
of the previous sections, we are able to exploit its special characteristics to
find all of its equilibria. An interesting feature of this example is that,
although the.excess demand function & exhibits gross substitutability, the
derived factor demand function z does not. .

In this economy there are four commodities and four consumers.
Consumer j has excess demand function &i{n) for the commedity i given by
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+1 +1 1

-1 ql

Fig. 2
the rule

4
el 5, mo [ ) -

Here the parameters «f and w! are non-negative and such that Y /., af =1,
f=1, 2, 3, 4. For cach consumer the vector of parameters w' =(wl, w}, wi, wh),
which may be interpreted as initial endowments, is as follows:

Consumer
1 2 3 4
1 50 0 v} 0
Commodily % 8 Sg 408 g
4 0 0 0 400

Each individual excess demand function can be derived by maximizing the
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Fig. 3

Cobb-Douglas utility function

uj(xl’ x2! JC3, .)C4) = xu{{xgéxggxift,
: - 4 4 ' -
subject to the constraints 7., mx, <Y i mwl, x,20. We specify the
parameters of as follows:

Consumer
1 2 3 4

0.5200 0.8600 0.5000 0.0600
04000 0.1000 0.2000 0.2500
0.0400 00200 02975 0.0025
0.0400 0.0200 00025 0.6875

Commodity

L B -

The aggregate excess demand function {(w)=3'%-,{/(x) satisfics A2 and
A.3 and is continuously differentiable for all strictly positive prices. There is a.
minor technical difficulty in that ¢ can become unbounded as some prices
tend toward zero. This problem could be handled by constructing a new



218 TJ. Kehoe, Computation of equilibria

cxcess demand function ¢* that agrees with ¢ on some open neighbbrhood of
every equilibrium of (£,4) and (£* A) and that satisfies Al [see Kehoe

(1982)]. We shall ignore this difficulty. Notice that & exhibits ErOss
substitutability,

ot & ol ,
——= 3 —w;>0 for j#i
ﬁ'Tt:J I=17ri i J?é

The production side of the example is given by a 4x 7 activity analysis
matrix A,
-1 0 0 0 6 —1 -1
0 -1 0 0 -1 3 4
a 0 -1 0 -4 -1 -3
o 0 0 -1 -1 -1 -1

A:

‘It is trivial to verify that A satisfies A.4-A.8. If we could demonstrate that
(¢, A) satisfies A9, in other words, that activity a® and activity a or a” are
used at every equilibrium, then we would have demonstrated that (£, 4) has
the two factor structure. A demonstration that (&, 4) does, in fact, satisfy A.9
is given below. The argument is interesting in its own right because it
depends crucially on the index theorem.

Suppose that this assumption does not hold in our example. There are
then three possibilities that we need to rule out. First, consider the possibility
of there being an equilibrium where no production takes place. If # is such
an equilibrium, then it is also an equilibrium of the pure exchange economy
(& —1) formed by deleting a®, a%, and a7 from the activity analysis matrix 4.
Since § exhibits gross substitutability, —J has the same structure as a produc-
tive Leontief matrix with positive diagonal elements, negative off-diagonal
elements, and positive principal minors, Therefore, index (#)=sgn(det [ - J]}=
+1 art every equilibrium, which implies that (¢, — ) has a unique equilibrium.
This equilibrium can be easily located using Scarf’s algorithm. It is £ =(0.65180,
0.32923, 0.00586, 0.01311). At #, however, activities a°, a%, and 47 all earn
positive profits. It follows that # is not an cquilibrium of (¢, 4) and,
consequently, that there is no equilibrium of (¢, 4) where no production
takes place.

Second, consider the possibility of there heing an equilibrium where only
one activity, a°, a®, or a7, is used. We proceed as in the previous case. If
some # is an equilibrinm where only one activity is used, then it is also an
equilibriun of the economy (&, A) formed by deleting the other two productive
activities from A. At such an equilibrium,

index(#) =sgn (det[ _g mgiD,



T.J. Kehoe, Computation of equilibria 219

where we can choose the numeraire so that every element of the vector b is
negative. Since —J is a productive Leontief matrix, there is some positive
linear combination of the columns of —J equal to the positive vector —B.
Consequently,

index(#) = sgn(det[ ——‘I;‘ _ g’x]) =sgn{—bxdet[ -T])=+1,

since x=J"15>0. We can find the unique equilibria of the three economies
corresponding to each of the three productive activities and verify that none
are- equilibria of (£, A): The unique equilibrium of the economy with only
activity a® is (0.14676, 0.83096, 0.00910, 0.01318). At these prices, however,
both 4° and a” earn positive profits. The unique equilibrium of the economy
with only a® is (0.72917, 0.25000, 0.00629, 0.01454). Here a®, but not u”, carus
positive profits. The unique equilibrium of the economy with only @’ is
(0.77473, 020283, 0.00708, 0.01536). Here both a® and a° earn positive
profits,

Third, consider the possibility that there is some equilibrium where only a®
and a’ are used. It would be an equilibrium of the economy (¢, 4) formed by
deleting 4° from A. We have already found one equilibrium of (¢, 4), #=
{0.72917, 0.25000, 0.00629, 0.01454). There are two alternative methods for
demonstrating that # is the unique equilibrium of (£, 4). The first, and more
general, approach is to use the two zero profit' conditions to reduce the
search for eyuilibria to a one dimensional line search. The procedure would
be similar to that of section 3. The second approach depends on calculating
index(#) at an equilibrium of (£, A) where both 4® and a” are used. The index
has the same sign as

dyy dys dyy 11
dy; dy3 dyqy 1 3
det| dyy dys dyy 1 1],
-1 -1 -1 00
-1 -3 -1 0 0

where d;; = —(8¢,/0m,)(#). Using elementary row and column operations, we
can reduce this expression to

dyy dig 1
4 det d41 dd,l 1
-1 -1 0
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The index therefore has the same sign as the determinant of a matrix with
sign pattern

which is unambiguously positive. Since Y.index(#)=+1, and since every
equilibrium is such that index(#)= +1, (£, 4) has a unique equilibrium. We
‘have already found it, and it is not an equilibrium of (¢, 4).

Following the procedure outlined in the previous scotion, we can find all
of the equilibria of (£, A) using a one-dimensional line search, The accuracy
of the three equilibria reported below was improved using Newton’s method.
The prices reported are based on calculations that resulted in an equality of
supply and demand accurate to twelve significant figures for all commodities.

Equilibrium [
z*=(0.19643, 0.25000, 0.12500, 0.42857),

y'=(0, 0, 0, 47.653, 72.425, 3.130).

~ Consumer
1 2 3 4

26000 54727 127.273  52.364
15.714 5.000 40000 171.429
3143 2000 119.000 3.429
0917 0.583 0292 275.000

: 17.088 36.820 97481 219,797
index(n')= +1.

Commaodity

[ N

Equilibrium 2
72 =(0.25000, 0.25000, 0.25000, 0.25000),
y*=(0, 0, 0, 0, 52.000, 69.000, 0).

Consumer
1 2 3 4

26000  43.000 200000  24.000
20.000 5.000 80.000 100.000
2.000 1.000 110.000 1.000
2.000 1.000 1.000 275000

19.067 29832  140.802 181.909

index (n%) = — 1.

Commodity

P S
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Equilibrium 3
7 =(0.27514, 0.25000, 0.30865, 0.16621),

¥*=(0, 6, 0, 0, 53.180, 65.148, ().

Consumer
1 2 3 4

26000  39.072 224362 14.499
22,011 5.000 98.768  66.485
1783 0.510 119.000 0.339
i 1.504 1.857 275.000

ut 20.123 27.581 155.794  159.115
index (2¥)= +1.

Commodity

L Pl

5. Concluding remarks

The part of this paper most interesting to a general equilibrium modeller is
probably the example of non-uniqueness. Merely looking at the parameters
of the economy reveals nothing pathological. The consumer excess demand
function, for example, exhibits gross substitutability, Yet the model has three
very different equilibria. Using comparative statics to do policy analysis with
this model, we would surely derive very different results depending on which
cquilibria we started with, Even mere disturbing is the possibility of jumping
from one equilibrium to another without knowing it, which would render
any results meaningless.

These are, of course, possihilities that are always present as long as we are
not sure that a specific model has a unique equilibrinm. Conditions that
ensure uniqueness, however, seem to be too restrictive to have general
applicability [see, for example, Kehoe (1983a)]. Some researchers have
attempted to remedy this problem by using different starting values for their
computational algorithms and then verifying that they all lead to the same
equilibrium, The unwary should be warned against putting much faith in
such ad hoc tests. Using a version of Scarfs algorithm developed by Merrill
(1972}, which allows variable starting points, the writer applied such a test to
the example of the previous section. The first eleven starting values chosen
randomly from the price simplex in R* all led to Equilibrium 3. It was not
until the twelfth try that Equilibrium 1 was located. A conventional fixed
point algorithm could never locate Equilibrium 2. There is nothing so special
about Equilibrium 3, however, that we would be justified in studying it
alone.

Applied economists seem to view non-uniqueness of equilibrium as patho-
logical. Theorists, on the other hand, seem to have accepted it as common-
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place, Perhaps the models used for policy analysis do usually have unique
equilibria. They may, in fact, have enough structure so that this can be
checked. The two-factor case seems to be a good place to start a study of
such structure.

Our results could, of course, be easily extended to economies with smooth
production functions [see Kehoe (1983b)]. The only complication would be
in making sure that the problem of computing commodity prices from factor
prices using the zero profit conditions was easy to solve. An increase in the
dimension of the factor space would cause more of a problem, however, An
exhaustive search over a two-dimensional simplex, although feasible, would
be much more difficult to carry out than a line search. In a model with three
factors, moreover, either n—3, n—2, or n—1 activities could be used at
equilibrium. The possibility of r—3 and n-1, of course, presents no
problems. If there are n—2 activities in use, however, the derived factor
demands are multi-valued, but we have no information about the local
properties, such as the index, of the equilibrium. Nonetheless, addition of
more equations and unknowns to the model may not necessarily render our
analysis useless. Suppose, for example, that we are working with a model in
which there is a government that taxes and spends [see, for example, Shoven
(1974)]. 1t may well be that for every vector of factor prices there is a unique
level of government spending that balances with the taxes it receives. If this
is the case, as it probably is in most applied models, then by computing this
level of spending as we move along a one-dimensional simplex of factor
prices we could still carry out our linc scarch. Kchoc and Whalley (1982)
have applied this method to verify that the model developed by Fullerton et
al. (1981} has a unique equilibrium. They have also verified that the model
developed by Kehoe and Serra-Puche (1983), which has three factors of
production, has a unique equilibrium,
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