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1. Introduction 

In recent years the Walrasian general equilibrium model has become an 
important tool for applied work in such fields as development economics, 
international trade, macroeconomics and public finance [see, for example, 
Shoven and Whalley (1984) and Lucas (1987)]. Unfortunately, economic 
equilibria are usually solutions to fixed point problems rather than solutions to 
convex optimization problems. This leads to two difficulties that are closely 
related: first, equilibria may be difficult to compute; second, a model economy 
may have more than one equilibrium. 

In this paper we explore these two issues for a number of stylized economies. 
We start with static exchange economies and then add a production technol- 
ogy. We later analyze economies with infinite numbers of goods, economies in 
which time and uncertainty play important roles. Studying economies of this 
sort is interesting not only for its own sake but because of the insights it 
provides into the properties of economies with large, but finite numbers of 
goods. Finally, we extend our analysis to economies that include distortionary 
taxes and externalities. 

Although our emphasis is on computational issues, the approach is fairly 
theoretical. As Scarf (1973, 1982) has stressed, a precondition for developing 
computational methods for finding an equilibrium is to know that one exists. 
Furthermore,  existence proofs often suggest algorithms for computing equilib- 
ria. Consequently, much of this paper deals with proofs of the existence of 
equilibria for a variety of economies. The paper is also filled with simple 
numerical examples, however, that illustrate the theory and could serve as test 
problems for algorithms. The reader who wishes to implement any of the 
algorithms suggested here on the computer should consult a good book on 
numerical methods, such as Acton (1970), who provides a wealth of practical 
advice, and Press, Flannery, Teukolsky and Vetterling (1986), who provide a 
large number of useful computer programs. 

2. Static exchange economies 

We begin by reviewing results for exchange economies with a finite number of 
consumers and a finite number of goods. We use two alternative specifications 
of such an economy, the first in terms of utility functions and endowment 
vectors, the second in terms of aggregate excess demand functions. Although 
the first specification is in some sense the more primitive, we alternate between 
the two as is convenient. 
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2.1. Existence of  equilibrium 

Consider an economy with m consumers and n goods. Each consumer has 
preferences given by a utility function u i : R~---> R that is strictly concave and 
monotonically increasing. He is endowed with a vector w e = (W~l , . . . ,  wi,) that 
is strictly positive. An equilibrium of this economy is a price vector/3 E R~\{0} 
and an allocation (21 . . . .  ,2m), where 2 ~ C R~,  such that 
• 2 i, i=  1 . . . . .  m, solves max ui(x ) subject to 15'x<-~'w i, x ~ O ,  
• r,i~=l 2 i <- r~i~=~ w i. 

Alternatively, we could specify this economy in terms of an aggregate excess 
demand function f : R~\{0}---> R". We assume that f is continuous; that it is 
homogeneous of degree zero, f ( O p ) ~ f ( p )  for all 0 > 0 and all p E R~\{0}; 
and that it obeys Walras's law, p ' f ( p )  =-0 for all p E R~\{0}. An equilibrium 
is now a price vector/3 E R~\{0} such that 
• 0 .  

Notice that Walras's law implies that f~(/5)= 0 if/)~ >0 .  
To motivate our assumptions on f ,  we can think of f as being derived from 

the first specification of this economy. Let x~(p) be the solution to the 
consumer's utility maximization problem. Our assumptions on u~ and w i imply 
that x i is continuous, at least for all strictly positive price vectors; that is 
homogeneous of degree zero, x~(Op) --xi(p) for all 0 > O, p E R~+ ; and that it 
obeys the budget constraint, p'xi(p)=--p'w ~. The aggregate excess demand 
function 

f ( p )  = £ ( x i (p )  -- W i) 
i=l 

therefore, is continuous, at least at all strictly positive price vectors, is 
homogeneous of degree zero and obeys Walras's law. 

Unfortunately, utility maximization does not imply that f is continuous on all 
R+\{0}. Rather,  it implies that f is continuous and bounded below on all R++. 
For some, but not necessarily all, pOE R+\{0} where p~ =0 ,  some i, if 
pk__~pO, pk E R++, then IIf(pk)ll---~oo. [See, for example, Arrow and Hahn 
(1971, Chap. 2)]. One way to handle the possibility that f becomes unbounded 
at price vectors that have some zero elements is to impose a constraint like 

m x~<2 E j= 1 w j in each consumer's utility maximization problem. With such a 
constraint xi(p),  and therefore f,  is continuous on all R+\{0}. Furthermore, 
such a constraint cannot bind in equilibrium. An alternative way to handle this 
possibility is to show that, for any f :R++-- -~R that satisfies the conditions 
implied by utility maximization, there is another function f*  that satisfies our 
assumptions, agrees with f on some open neighborhood of every equilibrium of 
f,  and has no equilibria that are not equilibria of f [see, for example, Kehoe 
(1982)]. In any case, since the potential unboundedness of excess demand 
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when some prices are zero does not play a significant conceptual role in any of 
the issues discussed in this paper, we shall ignore it. 

There  is a close connection between equilibria of such economies and fixed 
points of continuous mappings of the simplex S = { p E R~ I e 'p  = 1, p 1> 0} 
into itself. (Here  and subsequently, e = ( 1 , . . . ,  1).) To prove the existence of 
equilibrium we employ Brouwer 's  fixed point theorem. 

Brouwer's Fixed Point Theorem. Let  S C R"  be any non-empty ,  compact ,  
convex  set, and let g : S---> S be cont inuous.  Then g leaves s o m e  £c E S f ixed ,  that 
is, ;c = g( ;c ) . 

Homogenei ty  allows us to restrict our attention in studying equilibria to the 
simplex: if f(/~) ~ 0 for/3 ~ S, then f ( f i )  ~< 0 for fi --/~/(e'/3). S is non-empty,  
compact and convex. Consider the function g : S--~ S that associates with any 
point p ~ S the point g (p )  E S that is the closest point in S to p + f ( p )  in terms 
of euclidean distance. In other  words, g ( p )  solves the problem 

min ~ ( g - p - f ( p ) ) ' ( g - p - f ( p ) )  subject to 

e 'g  = 1 ,  g>~O. 

Since the objective function is strictly convex in g and continuous in p and the 
constraint set is convex, g ( p )  is a continuous function. 

Proposition 2.1. /3 is an equi l ibrium o f f  i f  and  only i f  it is a f i xed  po in t  o f  g, 

/3 = 

Proof. g ( p )  solves the minimization problem that defines it if and only if 
there exists A E R such that 

g ( p ) -  p - f ( p ) -  Ae>~0, 

g ( p ) ' ( g ( p )  - p - f ( p )  - Ae) = O. 

If g(/3) =/3, then the second, the complementary slackness, condition becomes 

- /3 ' ( f ( /~ )  + Ae) = )t/3'e = A = O. 

The first condition then becomes f(/3)~< O. 
Conversely, if/3 is an equilibrium, we set A = 0 and observe that/3 satisfies 

the above conditions that define g(p) .  

Remark.  This result can easily be extended to economies where excess 
demand is a non-empty,  bounded,  upper-hemi-continuous,  convex-valued cor- 



2054 T.J. Kehoe 

respondence rather than a continuous, single-valued function. We need to alter 
g, however,  because, as defined above, g ( p )  is not necessarily convex-valued. 
Let  D be the convex hull of the image o f p  + f ( p )  f o r p  E S. Since f i s  bounded 
and upper-hemi-continuous and S is compact,  D is compact. Let  q : D - +  S be 
the function that associates any point p ~ D with the point q (p )  E S that is 
closest to p. Now let g : D---~ D be the correspondence g ( p )  = q ( p )  + f ( q ( p ) ) .  
In other  words, instead of first adding excess demand and then projecting into 
the simplex, we first project  into the simplex and then add excess demand. The 
advantage is that g is now convex-valued as well as being upper-hemi- 
continuous.  By Kakutani 's  fixed point theorem,  it has a fixed point/3 ~ g(/3). 
An easy argument,  similar to that above, implies that/~ is a fixed point if and 
only if it is an equilibrium. In practice, however,  working with a domain like D 
is often more  difficult than with one like S. 

The above result is useful because it allows us to reduce the problems of 
computing equilibria and establishing the uniqueness of equilibrium to the 
analogous problems for fixed points. The question arises whether  this is the 
easiest approach. In many circumstances it is. If the only assumptions that we 
make on f are those of continuity, homogenei ty  and Walras's law, then an 
argument due to Uzawa (1962) says that the study of equilibria is in a sense, 
equivalent to the study of fixed points. Suppose that y : S---~ S is continuous. 
Consider the function 4 ~ ' R + \ { O } - + R  n defined by 4 , ( p ) = y ( p / ( e ' p ) )  - 
A(p)p,  where A(p) = y ( p / ( e ' p ) ) ' p / ( p ' p ) .  By construction, th is continuous, is 
homogeneous  of degree zero and obeys Walras's law. 

Proposition 2.2 [Uzawa (1962)]. ~ b a fixed point o f  Y if  only it is an 
equilibrium o f  ffa, that is, 4)(15) <~ 0 and ~ ~ S. 

Proof. If ~b(/6) ~< 0 and / )  E S, then 

i = l , . . . , n .  

Since Walras's law implies ~bi(/~)< 0 only if/~ i = 0 and since Yi(P) ~ O, this can 
be rewritten as 

A(/~)/~i = y~(/~), i =  1 . . . . .  n .  

Consequently,  e'/~ = e'y(/3) = 1 implies/~ = 3'(/~). Conversely, if/~ = y(/~) then 
A(/~) = 1 and ~b(/J) = 0. 

Remark.  Suppose that we are willing to impose no stronger conditions on u i 
and w i than those given previously and that m/> n, in other words, that there 
are at least as many consumers as goods. Then a series of results due to 
Sonnenschein (1973), Mantel (1974), Debreu  (1974), McFadden,  Mas-Colell, 
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Mantel and Richter (1974) and Mas-Colell (1977) says that the only assump- 
tions that we are justified in imposing on f are continuity, homogenei ty and 
Walras's law; for any f that satisfies these assumptions there is an economy with 
n consumers whose excess demands aggregate to a function f*  whose equilibria 
coincide with those of f and that agrees with f on any compact set of prices 
where f is continuous [see Sharer and Sonnenschein (1982)]. Imposing stronger 
restrictions on u i and w i, however,  can sometimes make the study of equilibria 
easier than the study of fixed points. 

Interpretations of Uzawa's result are delicate. It is not surprising that we can 
show that the equilibrium existence theorem holds if and only if Brouwer 's  
fixed point theorem does, since both are theorems given the axioms of modern 
mathematics. What  is important  is how easy and trivial the result is. Any 
theorem that proves the existence of a fixed point can be translated into a 
theorem that proves the existence of equilibrium by adding a few lines to the 
proof,  and conversely. Any computer  program that computes fixed points can 
be translated into a program that computes equilibria by adding a few lines to 
the code, and conversely. Any conditions that imply uniqueness of a fixed 
point can be easily translated into conditions that imply uniqueness of equilib- 
rium, and conversely. 

There  is an important  caveat to this interpretation of Uzawa's result. It 
relates fixed points to equilibria of economies specified in terms of aggregate 
excess demand functions. At this point it would seem that,  to relate fixed 
points to equilibria of economies specified in terms of preferences and endow- 
ments of individual consumers, we would need to use some method,  such as 
that of Geanakoplos  (1984), that constructs an economy of n consumers for 
any arbitrary aggregate excess demand function. Thus, if we had an algorithm 
for computing equilibria of arbitrary economies specified in terms of prefer- 
ences and endowments,  using it to compute fixed points would be complicated. 
We would first use Uzawa's method to turn the mapping whose fixed points we 
wanted to compute into an excess demand function. We would then use 
Geanakoplos 's  method  to turn this excess demand function into n pairs of 
utility functions and endowments vectors. Although the first step is trivial, the 
second is not. Rather  than go into details, however,  let us postpone discussion 
of this issue to Section 3, where we shall see that there is another  connection 
between fixed points and equilibria of economies specified in terms of prefer- 
ences and endowments.  

2.2. Scarf's algorithm 

Uzawa's result says that any algorithm that is guaranteed to compute equilibria 
of arbitrary economies specified in terms of aggregate excess demand functions 
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must be guaranteed to compute fixed points of arbitrary mapping of the 
simplex into itself. Scarf (1967, 1973, 1982) has developed such an algorithm. 
Numerous  researchers have further improved algorithms of this type, known as 
simplicial algorithms; see, for example, Merrill (1971), Eaves (1972), Kuhn 
and Mackinnon (1975), Todd (1976a) and van der Lann and Talman (1980). 
This type of  algorithm can also be used to compute fixed points of set-valued 
correspondences.  

In R "  a k-dimensional simplex is the convex hull of k + 1 points, called 
vertices, v ~ , . . . ,  v k+l , that have the property that the k vectors v ~ -  v k+l  

k k + l  . . . .  v - v are linearly independent.  The price simplex S, for example, has 
i = 0 ,  j ¢  i. A face of a simplex is a vertices e i, i = 1 , . . . ,  n, where e i = 1, e j  

lower dimensional simplex whose vertices are vertices of the large simplex. In 
R 3, for  example,  the point e I is a 0-dimensional face of S and the convex hull of 
e ~ and e z is a 1-dimensional face. A subdivision of S divides S into smaller 
simplices so that every point in S is an element  of some subsimplex and the 
intersection of any two subsimplices is either empty or a face of both. 

Scarf's approach to computation of equilibria is based on a constructive 
proof  of a version of Sperner 's lemma: Assign to every vertex of a simplicial 
subdivision of S a label, an integer from the set { 1 , . . . ,  n}, with the property 
that a vertex v on the boundary of S receives a label i for which v~ -- 0. Then 
there exists a subsimplex whose vertices have all of the labels 1 , . . . ,  n. 

Scarf's algorithm for finding this completely labeled subsimplex is to start in 
the corner of S where there is a subsimplex with boundary vertices with all of 
the labels 2 , . . . ,  n (see Figure 38.1). If the additional vertex of this subsimplex 

(0 ,0 ,1 )  

I or2 

2or3  3 3 3 1 or3 
(1, 0, O) (0, 1, O) 

Figure 38.1 
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has the label 1, then the algorithm stops. Otherwise, it proceeds to a new 
subsimplex with all of the labels 2 , . . . ,  n. The original subsimplex has two 
faces that have all of these labels. One of them includes the interior vertex. 
The algorithm moves to the unique other subsimplex that shares this face. If 
the additional vertex of this subsimplex has the label 1, the algorithm stops. 
Otherwise, it proceeds, moving to the unique subsimplex that shares the new 
face and has the labels 2 , . . . ,  n. The algorithm cannot try to exit through a 
boundary face. (Think of  what labels the vertices of such a face must have.) 
Nor  can it cycle. (To cycle there must be some subsimplex that is the first that 
the algorithm encounters  for the second time; but the algorithm must have 
previously encountered both of the subsimplices that share the two faces of this 
subsimplex with the labels 2 , . . . ,  n.) Since the subdivision consists of a finite 
number  of subsimplices, the algorithm must terminate with a completely 
labeled subsimplex. 

To see the connection of this algorithm with Brouwer 's  theorem, we assign a 
vertex v with a label i for which g i (v )  >i v i. Since e ' g ( v )  = e ' v  = 1, there must 
be such an i. Notice that,  since gi (v )  >i O, i can be chosen such that the labeling 
convention on the boundary is satisfied. A completely labeled subsimplex has 
vertices v 1 n i , . . . , v  such that g~(vi)>~v~, i = l , . . . , n .  To prove Brouwer 's  
theorem, we consider a sequence of subdivisions whose mesh, the maximum 
distance between vertices in the same subsimplex, approaches zero. Associate 
each subdivision with a point in a completely labeled subsimplex. Since S is 
compact,  this sequence of points has a convergent subsequence. Call the limit 
of this subsequence ~. Since g is continuous, we know gi(~)/> xi, i = 1 , . . . ,  n. 
Since e'  g( . f )  = e' . f  = 1, g(Yc) = ~. 

Scarf does not consider an infinite sequence of subdivisions, which is the 
non-constructive aspect of this proof. Instead, he works with a subdivision with 
a small mesh. Any point in a completely labeled subsimplex serves as an 
approximate fixed point in the sense that II g(x) - xll < ,  w h e r e ,  depends on 
the mesh and the modulus of continuity of g. 

2.3.  The  g lobal  N e w t o n  m e t h o d  

An alternative algorithm for computing fixed points has been developed by 
Smale (1976), the global Newton method.  It is based on Hirsch's (1963) proof  
of Brouwer 's  theorem. A similar method has been developed by Kellogg, Li 
and Yorke (1976). Let  S now be the disk {x E R n [ x ' x  <~ 1); like the simplex it 
is a non-empty,  compact,  convex set. Smale starts with an algorithm for 
computing fixed points of a continuously differentiable map g : S---~ S that has 
the proper ty  that g ( x ) =  0 for every x on the boundary of S, the sphere 
OS = {x  E R n [ x ' x  = 1}. Smale (1976) and Varian (1977) show how to extend 
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this algorithm to situations where g is an arbitrary continuous map and S is 
again the simplex. 

If S has no fixed points, we could define a map 

h ( x )  = A(x)(x - g(x ) )  

where A(x)= ( ( x -  g ( x ) ) ' ( x -  g(x))) -1/2. This map would be a retraction of S 
into its boundary:  it would continuously map S into OS and be the identity on 
0S. Hirsch proves that no such map could exist, thereby proving Brouwer 's  
theorem. Smale proposes starting with a regular value of x -  g ( x ) ,  a point 
£ E 0S such that I - D g ( £ )  is non-singular. Sard's theorem says that the set of 
regular values has full measure and, in particular, that there exists such a point 
2. The  algorithm then follows the solution to 

A ( x ( t ) ) ( x ( t )  - g ( x ( t ) ) )  = £ .  

Since the path x ( t )  cannot return to any other  boundary point, and since it 
cannot  re turn to £ because it is a regular value, it must terminate at a fixed 
point (see Figure 38.2). 

Differentiating the above equation with respect to t, we obtain 

A(x)(l - D g ( x ) ) 2  + X(x  - g ( x ) )  = O. 

Smale shows that x ( t )  can be chosen as the solution to the differential equation 

( I  - O g ( x ) ) x  = t ~ ( x ) (  g ( x )  - x )  

where /z(x) has the same sign as d e t [ I - D g ( x ) ]  and is scaled so that ~ has 
constant velocity. Except  for the factor t~ this is a continuous version of 

5 

Figure 38.2 



Ch. 38: Computation and Multiplicity of  Equilibria 

Newton's method for solving x - g ( x )  = 0: 

x ,+ ,  = x ,  - ( I  - O g ( x t ) ) - l ( x ,  - g ( x t )  ) . 

2059 

2 .4 .  R e g u l a r i t y  a n d  the  i n d e x  t h e o r e m  

Merely establishing the existence of equilibria and developing methods for 
computing them leaves important questions unanswered. Are equilibria 
unique? If not, are they locally unique? Do they vary continuously with the 
parameters of the economy? In recent years, economists have used the tools of 
differential topology to investigate these questions. Debreu (1970) has investi- 
gated the questions of local uniqueness and continuity with continuously 
differentiable excess demand functions. See Dierker (1982) and Mas-Colell 
(1985) for surveys of this and subsequent work. Analogous results to those 
derived in the differentiable framework can be obtained in a piecewise-linear 
framework applicable to Scarf's approach to computing equilibria. See, for 
example, Eaves and Scarf (1976) and Eaves (1976). 

Debreu (1970) defines a regular economy to be one that satisfies conditions 
sufficient for there to be a finite number of equilibria. Dierker and Dierker 
(1972) simplify these conditions to the requirement that the Jacobian matrix of 
excess demands_Df(~) with the first row and column deleted, the ( n -  1)× 
(n - 1) matrix J, is non-singular at every equilibrium. The first row is deleted 
because of Walras's law, the first column because of homogeneity. We are left 
with a square matrix because, as Wairas (1874, Lesson 12) pointed out, the 
number of equations equals the number of unknowns in the equilibrium 
conditions. The inverse function theorem implies that every equilibrium of a 
regular economy is locally unique. Since the set S is compact and the 
equilibrium conditions involve continuous functions, this implies that a regular 
economy has a finite number of equilibria. 

Let us rewrite the equilibrium conditions as f (p ,  b) = 0 where b E B and B is 
a topological space of parameters. If f and its partial derivatives with respect to 
p are continuous in both p and b, then the implicit function theorem implies 
that equilibria vary continuously at regular economies. Furthermore, in the 
case where B is the set of possible endowment vectors w i, Debreu uses Sard's 
theorem to prove that, for every b in an open set of full measure in B, f(., b) is 
a regular economy. When B is the function space of excess demand functions 
with the uniform C ~ topology, an open dense set of B consists of regular 
economies. Consequently, if we are willing to restrict attention to continuously 
differentiable excess demand functions, a restriction that Debreu (1972) and 
Mas-Colell (1974) have shown in fairly innocuous, almost all economies, in a 
very precise mathematical sense, are regular. 
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Dierker  (1972) has noticed that a fixed point index theorem could be used to 
count the number  of equilibria of a regular economy. Let  us define the fixed 
point index of a regular equilibrium/~ as s g n [ d e t ( I -  Dg(/~))] whenever  this 
expression_is non-zero. Dierker  shows that the index can also be written as 
s g n ( d e t [ - J ] ) .  The index theorem says that ~ index( /~)= +1 where the sum is 
over equilibria of a regular economy. This result is depicted in Figure 38.3 
where n = 2 ,  Pl = 1 - P 2 ,  and gl(Pl,  P2) = 1 -g2(P~,  P2). Here  index(/~) = 
sgn(1 - Og2/Op2 ) and a regular economy is one where the graph of g does not 
become tangent to the diagonal. 

Mas-Colell (1977) shows that any compact subset of S can be the equilibrium 
of some economy f. If we restrict ourselves to regular economies and n ~> 3, 
then the only restrictions placed on the number  of equilibria are those given by 
the index theorem. (If  n = 2, an equilibrium with index - 1  must lie between 
two with index + 1.) This implies that the number  of equilibria is odd and that 
there is a unique equilibrium if and only if index(/~) = +1 at every equilibrium. 

It is easy to see that there are an odd number  of solutions to Scarf's 
algorithm and to Smale's global Newton method.  To see this in the case of 
Scarf's algorithm, let us argue that there are an odd number  of completely 
labeled subsimplices. The path followed from the corner missing the label 1 
leads to a unique subsimplex. Suppose there is an additional completely 
labeled subsimplex. Then  it shares the face with labels 2 , . . . ,  n with a unique 
other  subsimplex. Restart  Scarf's algorithm at this subsimplex. Ei ther  the 
additional vertex to this subsimplex has the label 1, in which case it is 
completely labeled, or it does not,  in which case it has another  face with all of  
the labels 2 , . . . ,  n. Move to the unique other  subsimplex that shares this face 
and continue as before.  The algorithm cannot encounter  any subsimplex in the 

O(P) 

0 

P 

Figure 38.3 
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path from the corner to the original subsimplex. (To do so there must be some 
subsimplex in the path that is the first that it encounters; but it must have 
previously encountered both of the subsimplices that share the two faces of this 
subsimplex with the labels 2 , . . . ,  n.) The algorithm must therefore terminate 
in yet another completely labeled subsimplex. Consequently, all completely 
labeled subsimplices, except the original one located by the algorithm starting 
in the corner, come in pairs. There is a definition of index of a completely 
labeled subsimplex that agrees with that of a fixed point/~ in the case where the 
mesh of the subdivision is sufficiently small and f is regular [see Eaves and 
Scarf (1976) and Todd (1976b)]. The original subsimplex located by the 
algorithm starting in the corner has index + 1. All other completely labeled 
subsimplices come in pairs as described above, one with index + 1 and one with 
index - 1. 

Likewise, it can be shown that the global Newton method has an odd 
number of solutions. Starting at ~ on the boundary the algorithm locates one, 
which has index + 1. All other solutions are matched up in pairs, one with 
index +1 and one with index -1 .  Indeed, it is a general feature of these and 
related algorithms that, unless they are restarted at a fixed point different from 
the one originally computed by the algorithm, they always lead to fixed points 
with index +1. This, combined with Mas-Colell's (1977) result about the 
arbitrariness of the number of fixed points, suggests that, unless for some 
reason we know that index(/~)= +1 at every fixed point, there can be no 
method except for an exhaustive search that locates all fixed points. There is an 
important possible exception to this remark involving the all-solutions al- 
gorithm of Drexler (1978) and Garcia and Zangwill (1979, 1981). This method, 
which depends on being able to globally bound g using complex polynomial 
functions, is further discussed in the next section. 

2.5. Path fo l l owing  me thods  

Much recent work on the computation of fixed points has been based on the 
idea of path following. The idea is to follow the path of solutions to H ( x ,  O) = 0 
where H : S × [0, 1] ~ R n is chosen so that H ( x ,  0) = 0 is trivial to solve and 
H ( x ,  1) = x - g (x ) ,  which means a solution to H ( x ,  1) = 0 is a fixed point. The 
function H is called a homotopy [see Garcia and Zangwill (1981) for a survey 
and references]. 

Suppose that g : S---~ S is twice continuously differentiable. Define 

H ( x ,  O) = x - (1 - 0)Y - Og(x) 

where £ is an interior point of S. Notice that, for any 1 > 0 >/0 and x E S, 
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(1 - 0)~ + Og(x) is also interior to S. We start at the trivial solution H(£,  0) --- 0 
and follow the solution path until we reach the boundary where 0 = 1 and 
H(x, 1) = x - g(x) = 0. We require that 0 be a regular value of H(x, O) in the 
sense that the n × (n + 1) matrix DH(x,  O) has rank n whenever  H(x, O) = O. 
Sard's theorem says that we can always choose £ so that this condition is 
satisfied and, indeed, that it is satisfied for almost all £. (It is here that second 
differentiability is important.)  The implicit function theorem then implies that 
solutions to H(x, 0) = 0 form a compact one-dimensional manifold with bound- 
ary, a finite number  of paths and loops, and that the boundary points of this 
manifold are also boundary points of S × [0, 1]. By construction, H is such that 
(£, 0) is the only possible boundary solution except for points where 0 = 1, 
where solutions are fixed points of g (see Figure 38.4). 

Although the path that starts at (£, 0) cannot  return to the boundary where 
0 = 0, it need not be monotonic in 0. Consequently,  we do not want to think of 
the path in terms of x as a function of 0. Rather ,  let us write y(t) = (x(t), O(t)). 
Differentiating H(y(t))=--0 with respect to t, we obtain 

D H ( y ) ~  = O. 

This is a system of n linear equations in n + 1 unknowns that has an infinite 

0 

Figure 38.4 
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number  of solutions. One is 

))i "~" ( - 1 )  "-~+~ det DH(y)_~.  

Here  D H (y ) _  i is the n × n matrix formed by deleting column i from DH(y) .  
That  0 is a regular value of H implies that at every point y along the path some 
matrix D H ( y ) _  i is non-singular. To see that the above differential equation 
does indeed follow the solution path to H ( y )  = 0, we suppose that DH(y)_I  is 
non-singular and rewrite DH))= 0 as 

n + l  

E DiH))i =-D1H)) I  
i = 2  

where DiH is column i of DH. We choose ))1 ~ ( - - 1 )  n det D H  1 and solve for 
))2 . . . .  , ))n+l using Cramer 's  rule: 

.9 = Oe t [D2H'"  D ~ 1H(-1)n+~(det D H 1 ) D I H D i + ~ H ' "  D~+~H] 

+ det DH 1 

= ( - 1 )  n-i÷1 det DH_ i . 

As with the global Newton method,  we have reduced the problem of 
computing fixed points to that of solving a system of ordinary differential 
equations. To solve such equations, we can use a variety of methods,  such as 
the Runge-Kut t a  method or the Bulirsch-Stoer  method [see, for example, 
Gear  (1971) and Stoer and Bulirsch (1980, Chap. 7)]. The homotopy  approach 
can also be applied to piecewise-linear problems [see, for example,  Merrill 
(1971), Eaves (1972), Kuhn and MacKinnon (1975), Eaves (1976) and Eaves 
and Scarf (1976)]. 

The homotopy approach yields a very simple proof  of the index theorem. 
Notice that at 07, 0) 

O = det[DH(£, O ) _ ( n + l ) ]  ~-- det I = 1 > O. 

Following the path of solutions to H(x(t) ,  O(t)) = O, O may change signs, but 
when 0 = 1 

O = det[DH(x, 1 ) _ ( n + l ) ]  = d e t [ I -  Dg(x)] 

must be non-negative. ( T a k e a n o t h e r  look at Figure 38.4.) If 0 is a regular 
value of x - g(x), if the economy is regular, then d e t [ I -  Dg(x)] > 0. Other  
fixed points come in pairs, with each one the endpoint  of a path that starts and 
ends on the boundary where 0 = 1. At  one endpoint  0 ~< 0 and at the other  

I> 0. In the regular case we define index(~) = sgn(det[I - Dg(~)]). Summing 
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over all fixed points, all solutions to H ( x ,  1) = 0, yields +1. This proof  of the 
index theorem is easily extended to maps that are continuously differentiable 
only of first, rather than second, order  [see Garcia and Zangwill (1981, Chap. 
22)1. 

A fascinating possibility presented by the path following idea is that of being 
able to compute all of the fixed points of a function g : S--> S. The all-solutions 
algorithm of Drexler  (1978) and Garcia and Zangwill (1979) is easiest under- 
stood in terms of computing zeros of polynomials. We first approximate 
g ( x )  - x by a finite order  polynomial f : S---~ R" and then extend f t o  a function 
f : R"--> R n. Weierstrass's approximation theorem says that we can choose f to 
approximate g(x )  - x arbitrary closely on S [see, for example, Lang (1983, pp. 
49-53)]• We then convert f into a complex function by allowing both its 
domain and range to be C n, the space of complex n vectors. We can expand the 

, - , .~_ vector z E C n into a vector z* E R 2n by writing z = ( z~  + Z z l , . . •  , Z2n 1 

Z~ni). Consequently,  we can expand f into f*  : RZn---> R 2n by writing f ( z )  = 

( f ~ ( z * )  + ~ * t z * l i  . . ,  * * + * * " • / 2 \  ] ' "  f2 ,  1( z ) f 2 n ( Z  ) t ) .  We now discuss a method that 
can compute  all the zeros of f* .  Notice that not all of the zeros of  f*  are 
approximate fixed points of g; some may be complex and some may lie outside 
of S. 

Letting rnj be the highest order  of the polynomial fj(z),  we consider the 
homotopy H : C n × [0, 1]--> C ~ defined by the rule 

H j ( z , O ) = ( 1 - O ) ( z ~  ' n ' + ' ) -  l ) + O f j ( z ) ,  ] = 1  . . . .  , n .  

At 0 = 1, solutions to H ( z ,  0 ) =  0 are zeros of f. At 0 = 0, H i ( z ,  0 ) =  0 has 
m i + 1 solutions 

z j  = c o s ( 2 1 r a / ( m j  + 1)) + i s i n ( 2 ~ a / ( m j  + 1)) ,  a - 0, 1 . . . . .  rnj . 

n + Consequently,  there are IIj= 1 (rnj 1) solutions to H ( z ,  0) = 0. We can expand 
• , 2 n  ~ 2 n  H into H : R × [0, 1] R . The crucial insight involved in the all-solutions 

algorithm is that any solution path to H*(z* ,  0) = 0 is monotonic in 0, 

0 = d e t [ D H * ( z * ,  0)_(2n+1) ]/> 0 .  

The proof  is simple: D H * ( z * ,  0)_(2,+1) consists of 2 × 2 blocks of the form 

[ oH  oH ] o-i oHl l 
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r i r 
H e r e  z j  = z~j_ 1 is the real part of zj, zj = z~. is the imaginary part ,  and H i and 
H i are the real and imaginary parts of H i. The Cauchy-Riemann  equations, 
which follow easily from the chain rule, say that 

OHT_ OHI OHT_ OHI 
oz; oz', ' 

Consequently,  the 2 × 2 blocks that make up DH*(z*, 0)_(2n+l) all have the 
special form 

aij bij] 
-bij aqj" 

These matrices have important  properties: their special form is preserved when 
such a matrix is multiplied by a scalar or inverted; it is also preserved when two 
such matrices are added or multiplied together.  Consequently,  performing 
Gaussian elimination on these 2 x 2 blocks, we can reduce the 2n × 2n matrix 
DH*(z*, 0)_(2n+l) to a lower block triangular matrix with n such 2 x 2 blocks 
on the diagonal. The determinant  is the product of the determinants of these 
blocks, each of which is non-negative. 

Since 0 is monotonic  along any path, there can be no paths that both start 
and end at 0 = 0 or at 0 = 1. To guarantee that every solution at 0 = 1 is the 
endpoint  of a path that starts with 0 = 0, we need to rule out paths diverging to 
infinity for 0 ~ < 0 <  1. It is here that the polynomials (z~ mj+l ) -  1) play their 
role. Suppose that I l z l l - ~ .  Then, for at least one i, f j (z) / (z~ '+l)-  1)--->0, 
which implies that Hi(z, O)/(z~ '+1) - 1)---> (1 - 0). Consequently,  Hi(z, O) = 0 
cannot hold for any path along which Ilzll--, ~ and 0 ~< 0 < 1. Following each of 
the paths that starts at 0 = 0 either leads to a zero of f or diverges to infinity at 
0 = 1. No path can start at 0 = 1 and diverge to infinity going backwards, 
however,  so this method necessarily locates all of  the zeros o f f  [see Garcia and 
Zangwill (1981, Chap. 18) for further discussion]. 

This method can easily be applied to functions other  than polynomials. What 
we need is a function f : R'---->.R" than can be extended to C" and polynomials 
( z q i - 1 )  such that some f~(z)/(zq'-l)--->O as I lzl l-- '~.  The all-solutions 
algorithm is obviously a promising direction for future research. 

2.6. Multiplicity of equilibria 

By constructing an example of an economy with an equilibrium with index - 1 ,  
we can easily construct an example of multiplicity of equilibria. 
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Example 2.1. Consider a static exchange e c o n o m y  with two consumers  and 
two goods .  Consumer  i, i = 1, 2, has a utility function of  the form 

2 

Ui(X1, X2) 2 i, b, _ 1 ) / b i  = aj l ,  x j  
j = l  

i ~ 0 and b i < 1. This is, of  course,  the familiar constant-elasticity-of- where  aj 
substitution utility function with elasticity of  substitution ~i = 1 / (1  - b;). Given 
an e n d o w m e n t  vector (wi l ,  i w2), consumer i maximizes  this utility subject to his 
budget constraint. His demand functions are 

2 
i i 

"Y j Z p k W k  

x i j ( p l  P2)  = k=l i -= 1, 2,  j = 1 2 2 , ~ " 
p~ i  Z i l r l i  

Y k P k  
k = l  

H e r e  7ii = ( a ' y  j. T h e  two consumers  have the ( sym m et r i c )  p a r a m e t e r s  given 
b e l o w .  

Commodity 
C onsumer  1 2 

1 1024 1 
2 1 1024 

b I = b 2 = - 4 ,  

w; 
Commodity 

C onsumer  1 2 

l 12 1 
2 1 12 

1 2 1 2 
O f  c o u r s e  "ql = 7 2  = 1 / 5 ,  Yl = Y2 = 4  a n d  Y2 = Yl = 1. 

This e c o n o m y  has t h r e e  e q u i l i b r i a ,  w h i c h  a re  l i s ted be low.  

Equil ibrium 1: p l  = (0.5000, 0.5000) 

Commodity 
Consumer  1 2 u i 

1 10.400 2.600 -0 .02735 
2 2.600 10.400 -0 .02735 
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Equilibrium 2:p2 = (0.1129, 0.8871) 

Commodity 

Consumer 1 2 u~ 

1 8.631 1.429 -0.10611 
2 4.369 11.571 -0.01497 

Equilibrium 3:p3 = (0.8871, 0.1129) 

Commodity 

Consumer 1 2 u~ 

1 11.571 4.369 -0.01497 
2 1.429 8.631 -0.10611 

2067 

This example has been constructed by making p~ = (0.5, 0.5) an equilibrium 
with index - 1 

3.2 ] - 3 . 2  
' ~ ' -  "~'Jt/~') : - 3 . 2  3.2 ' 

index( p l ) = sgn( -3 .2 )  = - 1. 

Remark.  A similar example has been constructed in an Edgeworth box 
diagram by Shapley and Shubik (1977). 

Two assumptions have played significant roles in discussions of uniqueness of 
equilibria since the time of Wald (1936). They are gross substitutability and the 
weak axiom of revealed preference.  Gross substitutability says that, if p />  q 
and Pi = -  qi for some i, then f / (p )  >~f,(q) and, if f ( p )  = f ( q ) ,  then p = q. (This 
actually combines the two conditions often known as weak gross substitutabili- 
ty and indecomposability.) The weak axiom of revealed preference says that if 
p ' f ( q )  ~ 0 and q ' f ( p )  ~< 0, then f ( q )  = f ( p ) .  

The argument that gross substitutability implies uniqueness is easy: Suppose 
that there are two vectors p,  q, such that f ( p )  = f ( q ) ~  0. It must be the case 
that p,  q > 0. Otherwise, for example, pg = 0 and 2p ~> p would imply f/(2p) > 
f / (p ) ,  which would contradict homogeneity.  Let  , / = m a x  qJpj.  Then ,/p 
satisfies ,/p >t q, ,/Pi = qi some i. Consequently,  f ( , /p)  = f ( p )  = f ( q )  = 0 implies 
,/p = q. It is also easy to show that,  when f is continuously differentiable, gross 
substitutability implies that index(/~) = + 1, since 0fi(/~) / Opj >I O, i ~ j implies, 
in general,  that - J  is a P matrix, a matrix with all of its leading minors positive 
[see Hahn  (1958) and Kehoe  (1985b)]. 

The weak axiom implies that the set of equilibria is convex. If f is regular, 
this implies that it has a unique equilibrium. Suppose that there are two vec- 
tors p , q  such that f ( p ) = f ( q ) ~ O .  Then p ( O ) = O p + ( 1 - O ) q ,  0~<0~<1, 
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satisfies p(O)'f(p)<~O and p(O)'f(q)<~O. Walras's law implies that (Op + 
( 1 -  O)q)' f (p(O))= 0. Consequently, it cannot be the case that p ' f ( p ( O ) ) >  O, 
otherwise q ' f (p(O))<O,  which contradicts the weak axiom. Consequently, 
p ' f (p(O))  <~ O, which implies f (p(O))  = f ( p )  <<- O. In the case where f is differen- 
tiable, the weak axiom implies that Dr(p)  satisfies x ' D f ( p ) x  <~ 0 for all x such 
that x ' f ( p ) = 0  [see Kihlstrom, Mas-Colell and Sonnenschein (1976_), Kehoe 
(1985c) and Freixas and Mas-Colell (1987)]. This implies that d e t [ - J ]  > 0 if/3 
is a regular equilibrium. 

One problem with the weak axiom is that, in contrast to gross substitut- 
ability, it does not aggregate: the two functions in Example 2.1, for example, 
satisfy the weak axiom because they come from utility maximization; their 
sum obviously does not. Mas-ColeU (1989) discusses a condition called mono- 
tonicity that both implies the weak axiom and aggregates: f is monotone with 
respect to the normalizing vector a E R n+ if p'a  = q'a = 1 and p # q imply 
( p  - q ) ' ( f ( p ) - f ( q ) ) <  0. Unfortunately, monotonicity is not implied by utili- 
ty maximization. Mas-Colell (1989), however, presents sufficient conditions on 
utility functions and endowments for monotonicity to hold. 

2. 7. Other computational methods 

Despite not being guaranteed to converge for arbitrary economies, methods for 
computing equilibria other than fixed point algorithms are popular in practice. 
Let us briefly consider three such methods, tfitonnement, a non-linear Gauss- 
Seidel method and Newton's method. 

Samuelson (1941) has formalized Walras's (1874) concept of tfitonnement, 
or groping to equilibrium, as the system of differentiable equations 

,6 = f ( p ) .  

Notice that Ilptl stays constant under this adjustment process: 

d (p 'p )  
dt = 2p'lJ = 2p ' f (p )  = 0.  

In other words, if IIp(0)t[ = 1, then Ilp(t)ll = 1; the path followed by tfitonne- 
ment always remains on the intersection of the sphere and the positive orthant. 

This process converges to the set of equilibria if f satisfies the weak axiom, as 
shown by Arrow and Hurwicz (1958), who use the Liapunov function L ( p ) =  
½ (p  - /~ ) ' ( p  - / ) ) .  Notice that L(p)  > 0 unless p =/~ and that 

L(  p) = ( p - ~)'1~ = - Y f l  P) . 



Ch. 38: Computation and Multiplicity of Equilibria 2069 

Unless p is an equilibrium, f ( / 3 )=  0 and the weak axiom imply that L ( p ) <  O. 
Arrow, Block and Hurwicz (1959) further argue that gross substitutability 
implies that the weak axiom holds in comparisons with an equilibrium vector of 
an exchange model; that f(/3) = 0 implies y f ( p )  > 0 unless f (p)  = f(/3). Con- 
sequently, tfitonnement is also globally asymptotically stable if f satisfies gross 
substitutability. 

If, however, f does not satisfy the weak axiom or gross substitutability, the 
tfitonnement process may not converge to an equilibrium. In fact, Scarf (1960) 
constructs a simple example with unique equilibria in which, unless p ( 0 ) =  ,6, 
the process converges to a limit cycle. Indeed, the Sonnenschein-Mantel -  
Debreu result on the arbitrary nature of aggregate excess demand implies that 
the behavior of tfitonnement is also arbitrary. See Hahn (1982) for a survey of 
results related to tfitonnement. From our point of view there are two points 
worth noting. First, the process can be generalized to allow different adjust- 
ment speeds 

/ii = 0if~(p) , i = 1  . . . .  , n .  

For any 0 i > 0, i = 1 , . . .  , n, the process remains globally stable i f f  satisfies the 
weak axiom or gross substitutability. In general, however, changing the weights 
0 i can greatly affect the stability properties of t'~tonnement. Second, if we want 
to avoid problems with negative prices we have to alter the process to 
something like 

/ii =/fi(P)[o if p i > 0  or f i (p)  > 0 ,  
otherwise.  

Al though/ i  can be discontinuous at a point where Pi = 0, it can be shown, as 
done for example by Henry (1972, 1973), that the path p(t) is continuous. 

Van der Laan and Talman (1987) have developed a tfitonnement-like 
algorithm that is guaranteed to converge under weak regularity assumptions: 
start with an initial price vector/~ interior to the simplex. The algorithm sets 

pj/fij = min[p , / f i , , . . . ,  P,/fi, l if f j (p)  < 0 ,  

PJ/ f i i=max[pl / / ) l , ' ' ' ,  P,/fin] i f f j ( p ) > 0 .  

When f j (p)  = O, pj is allowed to vary to keep market j in equilibrium. The set 
of points that satisfy these conditions generically form a collection of loops and 
paths in S. The algorithm operates like the global Newton method and the path 
following methods described earlier, following the path that starts at fi until 
another endpoint is reached. This endpoint is an equilibrium. 
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Walras (1874, Lessons 12 and 24) originally conceived of tfitonnement as 
clearing one market at a time. With linear equations the analogous process is 
called the Gauss-Seidel method. The idea is to update a guess at a solution to 
the equations 

f j ( l ,  P2, P3 . . . .  , Pn) = 0 ,  j = 2 , . . .  , n 

one equation at a time: Given the guess p 2 k , . . . ,  p~, we let p/~+~ be the 
solution gi(p k) to 

f~(1 gz (pk ) , . ,  g,(pk), k k , ",  P i + ~ , ' ' ' , P n ) = O ,  i = 2 , . . . , n .  

In the case where f is linear, this method converges if there exists some Oj > O, 
j = 2 , . . . ,  n, such that 

oi >~ , i , ] = 2  . . . .  , n ,  
OPi j:~i Opj 

with strict inequality some i [see Young (1971) for a collection of conditions 
that guarantee convergence of this method]. This, however, is the familiar 
diagonal dominance condition satisfied by the Jacobian matrix of an excess 
demand function that exhibits gross substitutability. Consequently, it is pos- 
sible to show that, if Df(~) satisfies gross substitutability at some equilibrium 
/~, there is some open neighborhood N of/~ such that if p0 C N, the non-linear 
analog of this algorithm converges to/~. The weak axiom does not guarantee 
diagonal dominance, and it is easy to construct examples that satisfy the weak 
axiom but for which this method is unstable. 

Perhaps the most popular method for solving systems of equations such as 
g(p) =p  is Newton's method, 

k k - l _ A k ( / _ D g ( p k - 1 ) )  l ( p k - l _ g ( p k - ~ ) ) .  p =p  

Frequently, the scalar A k > 0 is chosen by a line search to make ]] pk _ g(pk)]] 
as small as possible. Furthermore, the elements of Dg are usually approxi- 
mated numerically rather than calculated analytically. In many versions of this 
algorithm I -  Dg is never explicitly inverted. Rather,  an approximation to its 
inverse is successively updated; these are called quasi-Newton methods. See 
Ortega and Rheinboldt (1970) and Jacobs (1977) for surveys of these methods. 
An important warning is in order here: Most work in the mathematical 
programming literature on Newton-type methods relates to minimizing a 
convex function h : R n---~ R, 
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x k = x k-1 _ A k D 2 h ( x k - 1 ) D h ( x k - 1 )  , . 

Although this does amount to solving the system of equations D h ( x )  = 0, this 
system has two special properties. First, D2h is symmetric and positive 
semi-definite. Second, A k can always be chosen small enough so that h(x  k) 
decreases at every iteration. Unless I -  D g  satisfies strong integrability condi- 
tions, these sorts of properties do not carry over to solving for equilibria. 

Arrow and Hahn (1971, Chapter 12) have shown that a continuous version 
of Newton's method 

t~ = - ( I  - Dg(  p ) ) -  ' (  p - g ( p ) )  

is globally stable if d e t ( I -  D g ( p ) )  never vanishes. (We ignore the minor 
technical problem caused by the potential discontinuity of Dg;  as in the case of 
t~tonnement where some price is zero, p( t )  can be shown to follow a 
continuous path.) In this case, the index theorem implies that there is a unique 
fixed point /~ =g(/~).  L ( p ) =  ½ ( p - g ( p ) ) ' ( p - g ( p ) )  provides a Liapunov 
function: L ( p ) > 0  unless p = g ( p ) ,  and 

L ( p )  = ( p  - g ( p ) ) ' ( l  - Dg(p))15 = - ( p  - g ( p ) ) ' ( p  - g ( p ) )  . 

Consequently, L ( p )  < 0 unless p =/3. 
Although this method may cycle if ( I -  D g ( p ) )  is singular for some p, L ( p )  

always serves as a local Liapunov function near a regular equilibrium/~. That 
is, every regular equilibrium/3 has some open neighborhood N such that, if 
p(0) E N, this method converges t o / L  This suggests a stochastic method for 
computing equilibria, which is frequently used in practice: Guess a value for 
p(0).  Apply Newton's method. If it does not converge, guess a new value for 
p(0). Continue until an equilibrium is located. Since every open neighborhood 
of an equilibrium occupies a positive fraction of the volume of the price 
simplex, this method must eventually work. 

Newton's method is in some sense the simplest algorithm that has this local 
convergence property for any regular equilibrium. Saari and Simon (1978) and 
Traub and Wozniakowski (1976) show that, in a precise sense, any locally 
convergent method must use all of the information in g(p_) and D g ( p ) .  
Furthermore, Saari (1985) shows that for any step size A k/> A > 0, there are 
examples such that a discrete version of Newton's method is not even locally 
convergent. Since we cannot always choose A k so that l i p -  g(p)ll is decreas- 
ing, we have to bound A~ from below so the method does not get stuck away 
from an equilibrium. Saari shows that this may result in the method overshoot- 
ing the equilibrium. 
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Notice that the global Newton method has a global convergence property. It 
uses global information, however, because it is only guaranteed to work if 
started on the boundary or at an equilibrium with index -1 .  Otherwise, it may 
cycle [see Keenan (1981)]. Notice too that the global Newton method diverges 
from any equilibrium with d e t [ l - D g ( / 3 ) ] < O .  Because the scale factor 
/z(p) < 0  in some open neighborhood of/3, L ( p )  is actually increasing in that 
neighborhood. 

3. Equilibrium and optimization 

The problem of computing an equilibrium of an economy can sometimes be 
simplified by transforming it into a problem of maximizing a concave function 
on a convex constraint set. Such transformations typically exploit the Pareto 
efficiency of the equilibrium allocation: Pareto (1909) first realized that the 
allocation ( 2 1 . . . ,  2m) associated with an equilibrium/3 has the property that 
there is no alternative allocation (2 t . . . ,  £m) that is superior in the sense that 

m " m - i  w i and ui(x ) ~  hi ui(x ), i= 1, . m, with strict it is feasible, E~: 1 3~t~,,i= 1 . .  , 

inequality for some i. 

3.1. Welfare theory and existence o f  equilibrium 

That every competitive allocation is Pareto efficient is the first theorem of 
welfare economics. The second welfare theorem says that for any Pareto 
efficient allocation ( 2 1 , . . . ,  2 m) there exists a vector of prices /3 such that 
(/3, YcL,. . . ,  2")  is an equilibrium with transfer payments t i =/3'(2 i -  wi). In 
other words, each consumer solves the problem of maximizing utility subject to 
the budget constraint/3'x ~/3 'w ~ + t i rather than his usual problem [see Arrow 
(1951), Debreu (1954) and Koopmans (1957)]. 

For every Pareto allocation (21 . . . .  ,2  m) there exists a vector of non- 
negative welfare weights ( a l , . . . ,  o~ m) such t h a t  ( . ~ 1 ,  . . . , ) ~ m )  solves the Pareto 
problem 

max ~ aiui(x i) subject to 
i = 1  

~ xi ~ ~ wi xi ~ O. 
i = 1  i = 1  

If a > O, then any solution to this problem is Pareto efficient. The Kuhn- 
Tucker theorem says that the allocation (xl(a)  . . . . .  xm(a)) solves this problem 
if and only if there exists a non-negative vector p(cQ such that 
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o~,u,(x'(,~)) + p '  ~ ( w ' -  x'(o~)) 
i = l  i = l  

E + E (w'- 
i = 1  i = 1  

>t ~ aiui(x') + p(a) '  ~ ( w ' -  x')  
i = 1  i = 1  

for all p~>0 and ( x l , . . .  ,xm)~>0. 
Similarly, each consumer solves his utility maximization problem in equilib- 

rium if and only if there exists Ai ~> 0 such that 

u,(i ') + a,p'(w' fc') >1 u,( ,  i) + ~,p'(w' ~' > ' - - x ) ~ ui (x  ) + i , p ' ( w '  - x ' )  

for all A~ 1> 0 and xi~ O. Notice that the strict monotonicity of ui implies that 
A~ > O, otherwise we would violate the second inequality simply by increasing 
x i. Dividing the second inequality through by '(i and summing over i - -  
1 , . . . ,  m produces 

E E E (1 - ~' - /,X~)u,(x ) ~ (w' x') 
i ~ l  i = 1  i = l  i = 1  

for all (x 1 . . . .  , x m) >i O. Moreover, since ,3' Xi~ 1 (w' - 2') = 0 because of strict 
monotonicity and E i~ 1 (w' - ~')/> 0 because of feasibility, 

i ~ l  i = 1  i = 1  i = 1  

for all p /> 0. Consequently, every competitive equilibrium solves the above 
Pareto problem where a~ = 1/A i, i =  1 . . . . .  m and p ( a ) = f t .  This can be 
viewed as a proof of the first welfare theorem. 

Notice, too, that, if ( x l ( a ) , . . . ,  xm(a)) is a solution to the Pareto problem 
for arbitrary non-negative welfare weights a,  it must be the case that 

i ~,u, (x  (~))  + p ( ~ ) ' ( x ' ( ~ )  - 2 ( ~ ) ) / >  ~ ,u , (x ' )  + p(~) ' (x ' ( ,~)  - x ~) 

for all x i ~  > O. Otherwise the allocation that replaces xi(a) with the x g that 
violates this inequality but leaves xJ(a),  j # i, unchanged would violate the 
conditions required for ( i f ( c O , . . .  , xm(a)) to solve the Pareto problem. Since 
p ' ( f f ( a ) -  x i (a) )= 0 for all p, this implies that any solution to the Pareto 
problem is such that, if a i > O, xi(a) maximizes ui(x ) subject to p(a) ' x  <~ 
p(a) 'x i (a) .  Ignoring for a moment the possibility that a i = O, some i, we can 
compute the transfer payments needed to decentralize the allocation 
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( x l ( a ) , . . .  ,xm(ol)) as an equilibrium with transfer payments t i ( a ) =  
p ( a ) ' ( x i ( a )  - wi) ,  i = 1 , . . . ,  m. 

Suppose now that ot i = 0, some i. Then our  earlier argument implies 0 ~> 
p ( a ) ' ( x ~ ( a ) - x  ~) for all x~>~0. Combined with p(a)>~O, this implies that 
p ( a ) ' x i ( a )  -- 0, that consumers with zero weight in the welfare function receive 
nothing of  value at a solution to the Pareto problem. Since the strict monoto-  
nicity of ug implies p ( a )  ~ 0 and since w ~ > 0, we know that te(a ) > 0 if a i = 0. 

Our arguments have produced the following characterization of equilibria. 

Proposition 3.1. A price-allocation pair (/3, ~ l , . . . , . f , , )  is an equilibrium i f  
and only i f  there exists a strictly positive vector o f  welfare weights (&l, • • • , &m) 
such that (£c I, . . . , fc m) solves the Pareto problem with these welfare weights, that 
/3 is the corresponding vector o f  Lagrange multipliers, and that/3'(~i _ w i) = O, 
i = 1 , . . .  ,m .  

Remark.  The assumption that w i is strictly positive serves to ensure that the 
consumer has strictly positive income in any equilibrium and, hence, has a 
strictly positive welfare weight. Weaker  conditions such as McKenzie 's  (1959, 
1961) irreducibility condition ensure the same thing. Unless there is some way 
to ensure that the consumer has positive income, or, with more general 
consumption sets, can afford a consumption bundle interior to his consumption 
set, we may have to settle for existence of a quasi-equilibrium rather  than an 
equilibrium. In a quasi-equilibrium each consumer minimizes expenditure 
subject to a utility constraint rather than maximizing utility subject to a budget 
constraint.  

Unless we are willing to assume that ui, i =  1 , . . . ,  m,  is continuously 
differentiable, there may be more than one price vector p ( a )  that supports a 
solution to the Pareto problem because of kinks in u i. This makes t (a) a 
point-to-set correspondence.  Nevertheless, it is still easy to prove the existence 
of equilibrium using an approach due originally to Negishi (1960). 

Proposition 3.2 [Negishi (1960)]. There exists a strictly positive vector o f  utility 
weights (dq, . . . , &m) such that 0 E t(&). 

Proof. The strict concavity of each ui, i =  1 , . . . ,  m, and continuity of 
Z m aiUi(X i) in a implies that x z R" i=1 :R+\{O}---~ is a continuous function. 
Fur thermore ,  p :R+ \{0} - - -~R  n is a non-empty,  bounded,  upper-hemi-con- 
tinuous, convex-valued correspondence.  Consequently,  the correspondence 
t : R+\{0}--~ R m defined by the rule 

= - w 



Ch. 38: Computation and Multiplicity of Equilibria 2075 

is also non-empty, bounded, upper-hemi-continuous and convex-valued. It is 
homogeneous of degree one since xi(a)  is homogeneous of degree zero and 
p ( a )  is homogeneous of degree one. It also obeys the identity 

2 t i ( a ) ~ p ( a ) '  ~ (xi(Ol)  -- W i ) ~ - - 0 .  
i = 1  i ~ l  

Let S C R m n o w  be the simplex of utility weights. Since S is compact, t is 
bounded and upper-hemi-continuous and ti(a ) < 0 if a E S with a i = O, there 
exists 0 > 0 such that 

g(a)  -- a - Ot(a) 

defines a non-empty, upper-hemi-continuous, convex-valued correspondence 
g" S---~S. By Kakutani's fixed point theorem there exists & ~g(&). This 
implies that 0 E t(3). 

Remark. The correspondence f : R+\{O}--~R m defined by the rule 
f ( a )  = - ti(a ) /a  i has all of the properties of the excess demand correspondence 
of an exchange economy with m goods. 

3.2. Computation and multiplicity o f  equilibria 

Negishi's approach provides an alternative system of equations a = g(a), that 
can be solved to find equilibria. Mantel (1971), for example, proposes a 
tfitonnement procedure & = - t ( a )  for computing equilibria. Similarly, we 
could apply Scarf's algorithm, the global Newton method, a path following 
method, the non-linear Gauss-Seidel method, or Newton's method to compute 
the equilibrium values of a. 

We have reduced the problem of computing equilibria of an economy 
specified in terms of preferences and endowments to yet another fixed point 
problem. The obvious question, in analogy to Uzawa's (1962) result, is 
whether any arbitrary g:S----~S, S C R m c a n  be converted into a transfer 
function t(a).  The answer is obviously yes if the only properties that t needs to 
satisfy are continuity, homogeneity of degree one and summation to zero. 
Bewley (1980), in fact, proves the analog of the Sonnenschein-Mantel-Debreu 
theorem is the case where t is twice continuously differentiable and n i> 2m: for 
any such transfer function t there is an economy with m consumers and n goods 
that generates it. In closer analogy with the Sonnenschein-Mantel-Debreu 
theorem, however, it is natural to conjecture that this result holds for t 
continuous and n/> m. 
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Example  3.1 (2.1 revis i ted) .  The Pareto  problem for the exchange economy 
with two goods in Example  2.1 is 

2 2 
~'~ 1/," 1 xb a j t t x j )  - 1 ) / b  + c~ 2 ~ ,  ajttx~)2" 2,b _ 1 ) / b  subject to max ff l  Z., 
j = l  j=1 

1 _1_ X~ ~ 1 ...]_ 2 xj w i w~, j = l , 2 ,  

~ > 0  Xj 

( I t  is only in the case b~ = b 2 that we can obtain an analytical expression for the 
t ransfer  functions.) The first-order conditions for this problem are 

i l  i x b - 1  
o t i a / [ x j )  - -  pj  = O, i = 1, 2, j = 1, 2 .  

These are,  of course, the same as those of  the consumers utility maximizat ion 
problem when we set ai = 1/A~. The difference is that  here the feasibility 
conditions are imposed as constraints, and we want to find values of  a i so that  
the budget  constraints are satisfied. In the previous section the budget  con- 
straints were imposed as constraints, and we wanted to find values of  pj so that  
the feasibility constraints were satisfied. 

The solution to the Pareto problem is 

2 

(aiaij) n ~ w~ 
: 

2 

2 (aka~)  n 
k = l  

, i = 1 , 2 ,  j = l , 2 .  

Here ,  once again, 7/= 1/(1 - b). The  associated Lagrange multipliers are 

p j ( o , )  = 

Equilibria are now solutions to the equat ion 

t i(oq, a2) = p ( a ) ' ( x i ( a )  - w i) = O, i = 1, 2 .  

Since t l ( a ) +  t 2 ( a ) - - - - - 0  , w e  need only consider the first equation. Since t I is 
homogeneous  of degree one, we can normalize a~ + ot 2 = 1. There  are three 
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solutions, each of which corresponds to an equilibrium of Example 2.1. They 
are a I = (0.5000, 0.50000), a 2 = (0.0286, 0.9714) and a 3 = (0.9714, 0.0286). 

In some cases equilibria solve optimization problems that do not involve 
additional constraints like ti(a ) = 0. Two notable cases are (1) where utility 
functions are homothetic and identical but endowments arbitrary and (2) 
where utility functions are homothetic but possibly different and endowment 
vectors are proportional. In the first case, considered by Antonelli (1886), 
Gorman (1953) and Nataf (1953), the equilibrium allocation (~1 . . . . .  ~m) 
maximizes U(~im=l X') subject to feasibility conditions; here u is the common 
utility function. In the second case, considered by Eisenberg (1961) and 
Chipman (1974), the equilibrium allocation maximizes Eim~ 0; log ui(xi); here 
u~ is the homogeneous-of-degree-one representation of the utility function and 
0 i is the proportionality factor such that w ~= 0 i Zjm=l W j. 

The characterization of equilibria as solutions to optimization problems is 
useful to the extent to which it is easy to find the optimization problem that an 
equilibrium solves. The Negishi approach is useful in situations in which the 
number of consumers is less than the number of goods and the Pareto problem 
is relatively easy to solve. 

It is worth noting that there is always a trivial optimization problem that an 
equilibrium (~, / ))  solves: 

min(llx - £[l 2 + lip -/3ll2) • 

The only way that we can find this problem, however, is to compute the 
equilibrium by some other means. Another point worth noting is that the 
Pareto problems that we have considered are convex problems, which have 
unique solutions that are easy to verify as solutions and relatively easy to 
compute. Any fixed point problem, and hence any equilibrium problem, can be 
recast as an optimization problem, 

mini[ p - g(p)[[ 2 . 

Because the objective function is not convex, however, it is relatively difficult 
to compute equilibria using this formulation. Nevertheless, this problem does 
have one aspect that makes the solution easier than that of other non-convex 
optimization problems: Although we may possibly get stuck at a local mini- 
mum, at least we know what the value of the objective function is at the global 
minimum, II/~ - g(/))l[ 2 = o. 

A recent development that may allow efficient solution to non-convex 
optimization problems is the simulated annealing algorithm. This algorithm, 
developed by Kirkpatrick, Gelatt and Vecchi (1983), is based on the analogy 
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between the simulation of the annealing of solids and the solution of combina- 
tional optimization problems [see van Laarhoven and Aarts (1988) for a survey 
and references]. Although this method has been applied principally to com- 
binatorial problems, which involve discrete variables, there have been some 
applications to continuous optimization problems (see, for example, Vanderbilt 
and Louie  (1984) and Szu and Hart ley (1987)]. So far, this method has not 
been  applied to solve economic problems, however,  and it remains an intrigu- 
ing direction for future research. 

4. Static production economies 

We can add a production technology to our  model in a variety of ways. Perhaps 
the easiest, and in many ways the most general,  is to specify the production 
technology as a closed, convex cone Y C R n. If y @ Y, then y is a feasible 
product ion plane with negative components  corresponding to inputs and 
positive components  to outputs. We assume that - R +  C Y, which means that 

n any good can be freely disposed, and that Y 91 R+ = {0}, which means that no 
outputs can be produced without inputs. 

The production cone specification assumes constant returns to scale. With 
the introduction of fixed factors, it can also account for decreasing returns. It 
cannot account for increasing returns, however,  which are not compatible with 
the competit ive framework that we employ here. See Chapter  36 for a survey 
of results for economies with increasing returns. 

4.1. Existence of equilibrium 

In an economy in which consumers are specified in terms of utility functions 
and endowment  vectors, an equilibrium is now a price vec tor / )  E R+\{0},  an 
allocation ( ~ , . . .  , :fro), where ~ E R~,  and a production plan 3~ E Y such that 
• x ,  / = 1 , . . .  , m ,  solves 

max ui(x ) subject t o / ) ' x  <~p w,  x ~ 0 ,  

• /)')3 = 0 a n d / ) ' y  ~< 0 for all y ~ Y, 
• r~iml ~i ~<33 + Ei"=l w ~. 
The second condition is the familiar profit maximization condition for a 
constant-returns technology. 

In an economy in which consumers are specified in terms of an aggregate 
excess demand function, an equilibrium is now a price vector / )  E R+\{0} such 
that 
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• / ) ' y ~ < 0 f o r a l l y E Y ,  
• I ( D  Y. 
Notice that Walras's law implies that )3 = f(/~) is such that/~')3 = 0. 

Specifying the production technology as a cone is often too abstract an 
approach for many applications. Alternatively, it may be specified by an n x k 
activity analysis matrix A, where each column of A represents a feasible 
production plan. [See, for example, Koopmans (1951).] In this case 

Y = { x E R " ] x =  Ay ,  some yERk+} , 

and Y is the polyhedral cone spanned by k columns of A. Another  alternative 
is to specify production in terms of a finite number of concave, homogeneous- 
of-degree-one production functions hj : Rn---> R, j = 1 , . . . ,  k. In this case 

Y= x~R"lx=~, z ] , h i ( z J ) > ~ O , j = l , . . . , k  . 
j = l  

For example, h(Zl,Z2, z3)='O(-Zl)°(-z2)  1 ° - -Z  3 is the familiar Cobb-  
Douglas production function. (Of course, the activity analysis specification 
is a special case of this one since, for example, h(zl ,  z 2, z3) = m i n [ - z l / a u ,  
--z2/a2j  ] -- z3/a3j i s  a concave production function.) 

Another  alternative is to allow decreasing returns to scale, where the 
production function hi is strictly concave. In this case, the problem of maximiz- 
ing p ' z  subject to hi(z)>~ 0 has a unique solution zJ(p). Unless z](p) = 0 there 
are positive profits 7r](p)=p'zJ(p)  that must be spent. Letting 0~>~0, 
Em i i=~ 0i --- 1, j = 1 . . . . .  k, be profit shares, we change the budget constraint of 
c o n s u m e r / t o  p ' x  <-p 'wi+ E~= 10~Tr](p). We could define the excess demand 
function to include production responses, 

k 

f(p) = (x ' (p ) -  w ' ) -  zJ(p). 
i - I  j - 1  

Although we have to restrict ourselves to the convex set of prices for which 
zr](p) < ~,  j = 1 , . . .  , k, this approach is frequently very convenient for com- 
putation. From a theoretical viewpoint, however, it is easier to view even this 
as a special case of constant returns, defining a new good, an inelastically 
supplied factor of production, to account for each industry's profits and 
endowing consumers with this factor in the proportions 0~ [see, for example, 
McKenzie (1959)]. 

A simple extension of our previous argument demonstrates the existence of 
equilibrium in a production technology and suggests algorithms for computing 
equilibria. Again we use homogeneity to normalize prices so that e'p = 1. 
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Consider the set 

S r = { P E R  " l e ' p = l , p ' y < ~ O ,  a l l y @ Y } .  

Sy is obviously closed and convex. Since -R~_ C Y implies that Sy C S, it is 
compact. Since Y n R~_ = {0}, the separating hyperplane theorem implies that 
there exists f i ¢ 0  such that fi'y<-O for all y ~ Y .  This implies that Sy is 
non-empty. Now let g:Sv---~ Sy be the function that associates any point 
p E Sy with the point g(p) that is the closest point in Sy to p + f (p)  in terms of 
euclidean distance. In other words, g(p) solves the problem 

min 1 (g _ p _ f (p)) , (g  _ p _ f(p))  subject to g ~ Sy .  

Once again, since the objective function is strictly convex in g and continuous 
in p and the constraint set is convex, g(p) is a continuous function. (See Figure 
38.5.) 

Proposition 4.1 [Eaves (1971) and Todd (1979)]. ~ is an equilibrium if and 
only if it is a fixed point of  g, ~ = g( ~ ). 

Proof. g(p) solves the minimization problem that defines it if and only if 

( g(P) - p - f (  P)) 'g(p) <~ ( g(P) - p - f (  P))'q 

for all q @ S v. If (p  + f ( p ) ) ~ f S r ,  then this inequality says that the hyperplane 

{plpA <O,p.e=l} 
• p + f(p) 

P2 

Pl 
Figure 38.5 
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passing through g with normals (g (p )  - p  - f ( p ) )  separates g(p)  from Sy. If 
( p  + f ( p ) )  E S t ,  then g ( p ) = p  + f ( p )  and the inequality is trivial. 

Suppose that /3 =g(/3).  Then the above inequality becomes q'f(/3)<- 
/3'f(/3) = 0 for all p E Sy. Since we can multiply this inequality by any positive 
constant without changing it, we obtain q'f(/3)<-O for all q ~ Y*, where 
Y* = {q E R" [ q 'y  <~ O, all y E Y} is the dual cone of Y. This says that f(/3) is 
an element of the dual cone of Y*, Y** = {y ~ R n [ y'q <~0, all q E Y*}. Since 
Y is convex, Y** = Y. Consequently,/3 is an equilibrium. 

Conversely, if/3 is an equilibrium, then q'f(/3)<~O for all q E Sy, which 
implies that g(/3) =/3. 

Remark. Once again, this approach can be used to deal with demand 
correspondences rather than functions. Again letting D be the convex hull of 
the image of p + f ( p )  for p @ Sy, we define q : D ~ Sy as the least-squares 
projection onto Sy. As in the exchange case, the correspondence g : D ~ D 
defined by the rule g ( p ) =  q ( p ) +  f ( q ( p ) )  satisfies the conditions required by 
Kakutani's fixed point theorem to have a fixed point/3 ~ g(/3), and/3 is a fixed 
point if and only if it is equilibrium. 

Computing equilibria by computing fixed points of the function g is easiest 
when the production technology is specified by an activity analysis matrix. In 
that case, g(p)  can be calculated by solving the quadratic programming 
problem 

min X(g _ p  _ f ( p ) ) , ( g  _ p  _ f ( p ) )  subject to 

A'g  <~ 0, e'g = 1. 

Let B be the n x l matrix of columns of A associated with strictly positive 
Lagrange multipliers yj in the first-order conditions 

g - p - f ( p )  + Ay  + Ae = 0 .  

Let C b e  t h e n x ( l + l )  matrix [B e], and let e t+l be the ( l + l )  x l  vector 
with eZt++l = 1 and etj +1 =0 ,  j ¢ l +  1. Then elementary matrix manipulation 
yields an explicit formula for g(p): 

g(p)  = (I - C ( C ' C ) - I c ' ) ( p  + f ( p ) )  + C ( C ' C ) - l e  '÷1 . 

Furthermore, the matrix C changes only when a Lagrange multiplier yj that has 
been previously positive becomes zero or one that has been previously zero 
becomes positive. 

Suppose that the production technology specified by k concave production 
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functions. Let at(p) be the restricted profit corresponding to the production 
function hi(z), the value of the objective function at the solution to 

max p ' z  subject to ht(z ) >! O, Ilzll = 1 .  

(For production functions with only one output i a restriction like z i=  1 is 
more natural than Ilzll = 1.) i f  this problem has a unique solution z t (p ) ,  then 
at(p)  is continuously differentiable and, by Hotelling's lemma, D a t ( p ) =  
z t (p )  ' [see, for example, Diewert (1982)]. In this case g(p)  is found by solving 

min ½ ( g - p - f ( p ) ) ' ( g - p - f ( p ) )  subject to 

at(g)<--.O, j = l  . . . .  , k ,  

e'g = 1.  

Because the constraints are non-linear, however, solving this problem is more 
difficult than it is in the activity analysis case. 

4.2. The index theorem and multiplicity o f  equilibria 

Mas-Colell (1975, 1985) and Kehoe (1980, 1983) have extended the concepts 
of regularity and fixed point index to production economies. They prove that 
regular production economies have the same desirable properties as regular 
exchange economies and that, in a precise sense, almost all economies are 
regular. Kehoe (1980) further calculates the index of a regular equilibrium of 
an economy with an activity analysis production technology as 

index, ,-sgntdet[_ , 
Here /3 is the ( n -  1 )x  l matrix formed by deleting the first row from the 
matrix of activities used at equilibrium/). In the case of more general profit 
functions, let H(/)) be the n x n weighted sum of the Hessian matrices of profit 
functions used at/), H(/)) k ~ 2 = Z j= t Yt D at (/)); the weights 39 t are the appropriate 
activity levels. In this case, Kehoe (1983) calculates 

index(/)) = sgn(det[ - ]  +_/~,H B])O 

where / t  is the (n - 1) x (n - 1) matrix formed by deleting the first row and 
column from H(/)). 
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Once again, if f satisfies the weak axiom, the set of equilibria is convex, and 
in the regular case there is a unique equilibrium. Unfortunately, even if f 
exhibits gross substitutability, the economy need not have a unique equilib- 
rium, as the following example illustrates. 

Example 4.1. Consider a static production economy with two consumers and 
four goods. Consumer i, i = 1, 2 has a utility function of the form 

4 

U i ( X  1 , X 2 ,  X 3 ,  X 4 )  • 2 aij log x~ 
j = l  

• i i i where a'j i> 0. Given an endowment vector (wi~, w2, w3, w4), consumer i maxi- 
mizes this utility function subject to his budget constraint. The aggregate excess 
demand function is 

£(Pl' Pe' P3' P4)= ~(i=I 

4) 
i ~ pkWik aj 

k = l  

4 
i 

Pj ~ ak 
k = l  

The consumers have the parameters given below. 

j = 1 , 2 , 3 , 4 .  

Commodi ty  

C o n s u m e r  1 2 3 4 

1 O.8 0.2 0 0 
2 0.1 0.9 0 0 

w'j 
Commodi ty  

C o n s u m e r  1 2 3 4 

1 0 0 10 0 
2 0 0 0 20 

The production technology is specified by a 4 x 8 activity analysis matrix 

A = 

- 1  0 0 0 3 5 - 1  -1_!]] 
0 - 1  0 0 - 1  - 1  5 
0 0 - 1  0 - 1  - 1  - 1  " 
0 0 0 - 1  - 1  - 4  - 3  

(The first four columns are disposal activities.) 
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This e c o n o m y  has three equilibria, which are listed be low together with the 
welfare weights for which the corresponding Pareto problem yields the same 
equilibrium. 

Equilibrium 1: 
p l =  (0.2500,0.2500,0.2500,0.2500), 
y l =  (0,0 ,0 ,0 ,5 .00000,0,5.0000,0) ,  
a 1= (0.3333,0.6667). 

Commodity 

Consumer 1 2 3 4 u i 

1 8.000 2.000 0 0 1.8022 
2 2.000 18.000 0 0 2.6706 

Equilibrium 2: 
p2 = (0.2500,0.2222,0.3611,0.1667), 
y~=(0,0 ,0 ,0 ,5 .1806,0.3611,4.4583,0) ,  
a = (0.5200,0.4800). 

Commodity 

Consumer 1 2 3 4 ui 

1 11.555 3.250 0 0 2.1935 
2 1.333 13.500 0 0 2.3719 

Equilibrium 3: 
p~=(0.2500,0.2708,0.1667,0.3125), 
Y3 (0, 0, 0, 0, 4.3690, 0, 5.1548, 0.1190), 
a (0.2105,0.7895). 

Commodity 

Consumer 1 2 3 4 u i 

1 5.333 1.231 0 0 1.3807 
2 2.500 20.769 0 0 2.8217 

This example  has been constructed by making pl  = (0.25, 0.25, 0.25, 0.25) be 
an equilibrium with index ( p l ) =  -1 .  

-40  0 32 
, ,  o - 8 o  8 

/ - / J ~ / /  I 0 0 0 
0 0 0 

{ [800 
index(p~) = sgn | d e t  | 0 

\ 
index( p l ) = s g n ( - 4 1 6 )  = - 1 .  

72 

8 7 2 1  
0 0 - 1  - 1  
0 0 - 1  - 
1 1 0 
0 3 0 
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That this example has multiple equilibria means that gross substitutability 
does not imply the weak axiom. Kehoe and Mas-Colell (1984) prove that gross 
substitutability does indeed imply the weak axiom if n ~< 3, so at least four 
goods are needed for this example. Kehoe (1985b) presents an example with 
multiple equilibria in which the f exhibits strong gross substitutability, 0f~/ 
Opj > 0. The simple form of a Jacobian matrix in this example, which satisfies 
gross substitutability but implies a violation of the weak axiom is due to 
Mas-Colell (1986) [see also Hildenbrand (1989) and Kehoe (1986)]. 

Unfortunately, as Herbert Scarf has demonstrated to the author, the weak 
axiom is the weakest condition on f that guarantees that a production economy 
has a unique equilibrium. Suppose that there are two distinct price vectors p 
and q such that p'f(q)~< 0 and q'f(p)<~ O. Let 

Y =  {x G- R" I x <- f (P)Y l  + f (  q)Y2, yj >~O) . 

Then both p and q are equilibria of (f,  Y). Aggregation conditions like those 
of Antonelli-Gorman-Nataf and Eisenberg-Chipman guarantee that f satisfies 
the strong axiom of revealed preference, a much stronger condition than the 
weak axiom. To make further progress on developing economically meaningful 
conditions that guarantee uniqueness of equilibrium, we need to develop 
economically meaningful conditions that imply that the weak axiom holds in 
the aggregate. A step in this direction has been taken by Hildenbrand (1983), 
who places restrictions on income distribution in an economy with a continuum 
of agents that imply the weak axiom. See Jerison (1984) for more results in this 
same direction. 

4.3. A tgttonnement method 

The function g whose fixed points are equilibria suggests a tfitonnement process 
for computing equilibria in production economies. Let /3(p) be the n × l 
matrix whose columns are those vectors Daj(p)  such that a i (p )=  0. Let/~ be 
the vector q that solves 

min l ( q _ f (p) ) , (  q _ f (p ) )  subject to B ' ( p ) q  ~ 0  . 

Suppose that we start this process at p (0)E R" such that aj(p(O))<~0, j = 
1 , . . . ,  k. Unfortunately, t5 is discontinuous when p(t) runs into a new con- 
straint aj (p( t ) )= 0. This is the same problem as that in the exchange case 
where some coordinate of pi(t) becomes zero, however, and it can be argued 
that p(t) is continuous in spite of it. Notice that, since d/dt(aj(p))  = Daj(p)13 
and Daj(p)t  5 <~ 0 whenever ai(p(t)) = O, p(t) stays in Y* = {p ~ R" I aj(p) <~ O, 
j = 1 . . . . .  k}. Notice too that, if/~ = 0 at/), then/3 is an equilibrium: q solves 
the above problem if and only if there exists a non-negative l x 1 vector of 
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Lagrange multipliers y such that 

q - f ( p ) +  B(p)y=O,  y@' (p )q=O.  

At q = 0 this becomes f(/))  =/~(/~)y. 
Let B(p) be the n x I submatrix o f /~  whose columns are associated with 

strictly positive Lagrange multipliers. Then we can solve explicitly for q to 
obtain 

D = (I - B(p)(B'(p) B(p))- 1B '( p))fl p).  

Like the tfitonnement process for exchange economies, this process leaves ]l P 11 
constant. Also like the tfitonnement process for exchange economies, this 
process is globally asymptotically stable if the weak axiom of revealed prefer- 
ence holds in comparisons between arbitrary price vectors p and the equilib- 
rium price vector/~. Suppose that p ~ Y*. Then f(/3) ~ Y implies p'f(fi) <~ O. 
The weak axiom then implies ~ ' f (p )>  O. The Liapunov function is again 
L(p) = l ( p ,  

L(p) = (p - ~)/1 ~ - ~ ' f ( p )  + ~'B(p)(B'(p)B(p))-~B'(p)f(p)  . 

Notice that y = (B'(p)B(p)) -1, B ' (p) f (p)  > 0  and 13'B(p) <~0 since t3 ~ Y*. 
Consequently, L(p) < 0 unless p =/~. 

Van den Elzen, van der Laan and Talman (1989) have generalized the path 
following method of van der Laan and Talman (1987) for computing equilibria 
of exchange economies to compute equilibria of economies with activity 
analysis production technologies. Their method, like the method for exchange 
economies, is similar to tfitonnement, and, like the above method, always stays 
in the set of prices where p 'A ~< 0. 

4.4. Computation in the space of factor prices 

The dimension of the space in which we must search for an equilibrium is 
usually the critical determinant of how difficult it is to find one. In production 
economies with a generalized input-output structure, where goods can be 
partitioned into produced goods and factors of production, we can reduce the 
dimension of the space to the number of factors. This reduction has often been 
used by applied general equilibrium modelers to improve computational 
efficiency [see, for example, Helpman (1976)]. It has also been used by 
international trade theorists in their discussions of factor-price equalization 
[see, for example, McKenzie (1955)]. Kehoe and Whalley (1985) exploit a 
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reduction in dimension of this sort to carry out exhaustive searches to verify 
that two large-scale applied general equilibrium models have unique equilibria. 

We begin with the activity analysis case. A production economy ( f ,  A) has a 
generalized inpu t -ou tpu t  structure if it satisfies the following conditions: 
• There  are h < n  factors of production: aij~<0 for i = l  . . . . .  n and j =  

1 , . . . , k .  
• There  is no joint production: for every j = 1 , . . . ,  k, aq > 0  for at most one i. 
• Production of all produced goods is possible: there exists y/> 0 such that 

m Ej~ a j / > O ,  i = 1  . . . .  , n -  h. 
• Every good that can be produced is actually produced at every equilibrium. 
To ensure that this final condition holds, we could require that fg(p)~>0, 
i = 1 , . . . ,  n - h, for all p or, what is almost the same thing, that consumers 
have no endowments of produced goods. In the case where h = 1 these 
conditions are those of the non-substitution theorem [see Samuelson (1951)]. 

Let  p E R n-h now be the vector of prices of produced goods and q E R h be 
the vector of factor prices. Partition A into 

[A:] 
where A~ is ( n - h )  × k and A 2 is h × k. Similarly, partit ion f (p ,  q) into 
( f~(p,  q), f 2 ( p ,  q)). 

In the case where A consists of 2n - h activities, n disposal activities and an 
n × (n - h) matrix B with .one activity to produce each of the produced goods, 
the reduction of the search to the space of factor prices is easy. Our 
assumptions imply that the (n - h) × (n - h) matrix Ba is a productive Leontief  
matrix. Under  a mild indecomposability assumption, B~ -~ is strictly positive. 
The equilibrium condition B133 = f l ( / ~ ,  q) implies that )3 = B~-lfl( /~,  q), and 
the zero profit condition/~'B~ + 4 'B  2 = 0 implies that/~ = - (B2Bl-1) '4  . We are 
left with the equilibrium condition B2~ =f2 ( /% 4). We define the function 
q," Rh+\ {0} ~ R h by the rule 

~b(q) =f2( - (B2Bl ' ) 'q ,  q) - B2B ~f '(-(B2Bl') 'q,  q). 

It is easy to verify the ~0 is continuous, is homogeneous of degree zero and 
obeys Walras's law because f satisfies these properties. Notice that ~0(q) = 0 is 
equivalent to 

f2(/~, q) = B2B?' f l (P ,  4) = B2f~. 

Consequently,  4 is an equilibrium of the h-good exchange economy qJ is and 
only if (/~, q) is an equilibrium of the n-good production economy ( f ,  A). 
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When there is more than one possible activity for producing each good the 
situation is slightly more complicated. To calculate qJ(q) we start by solving the 
linear programming problem 

min - q ' A z y  subject to A~y  = e, y >~0. 

Our assumptions imply that this problem is feasible and has a finite maximum. 
The non-substitution theorem says that the solution is associated with a feasible 
basis, 

- q ' B 2 ]  
B, J~ 

that is, a matrix of n - h columns associated with positive activity levels yj that 
does not vary as the right-hand side varies, although the activity levels 
themselves do. Furthermore, there is a vector of prices p such that p'B~ + 
q ' B  2 = 0 and p 'Aa  + q ' A  2 4 0  [see Gale (1960, pp. 301-306)]. When the basis 
is uniquely defined, we can proceed as above. 

There may, however, be more than one feasible basis possible in the 
solution. Although the linear programming problem may be degenerate, the 
economy itself need not be. Such is the case in Example 4.1, where the 
economy has this generalized input-output  structure with n = 4 and h = 2. At  
two of its three equilibria, this example has 3 > 2  = n -  h activities in use. 
When there is more than one feasible basis possible, the demand for factors 
becomes a convex-valued, upper-hemi-continuous correspondence; 0 E qJ(O) is 
then the equilibrium condition [see Kehoe (1984) for details]. 

With more general production technologies, the situation is similar to the 
activity analysis case with many activities. For any vector of factor prices q we 
find the cost minimizing production plan for producing an arbitrary vector, say 
e, of produced goods. This plan is associated with a vector of prices p(q ) ,  
which can be plugged into the demand function f l to find the production plan 
that satisfies the feasibility condition in the produced goods markets. This 
production plan induces a demand for factors of production. We systematically 
vary q to make the excess demand for factors equal zero. 

The transformation of an economy with production into an exchange 
economy in factors is also useful for developing conditions sufficient for 
uniqueness of equilibrium. If q, satisfies the weak axiom of revealed preference 
or gross substitutability, for example, then there is a unique equilibrium. 
Mas-Colell (1989) uses this approach to show that an economy with a 
generalized input-output  structure in which all utility functions and production 
functions are Cobb-Douglas has a unique equilibrium because q, then exhibits 
gross substitutability. (He also reports that similar results have been obtained 
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by Michael Jerison.) Mas-Colell (1989) further generalizes this to the assump- 
tion that utility and production functions are super-Cobb-Douglas  in that they 
locally exhibit as much substitutability as a Cobb-Douglas  function. The 
precise condition on u : R~_ ~ R, for example, is that for every x E R~ there 
exists a Cobb-Douglas  function u x : R~ ~ R and a neighborhood U x of x such 
that Ux(X ) = u(x) and ux(z)<~ u~(x) for all z E U~. For  generalized input -  
output  economies where n - h = h = 2 and all utility and production functions 
are CES, John (1989) has developed necessary and sufficient conditions for 
uniqueness of equilibrium• 

5. E c o n o m i e s  with  a finite n u m b e r  of  infinitely l ived c o n s u m e r s  

We now consider economies in which goods are indexed by date and, possible, 
state of nature. We assume that both time and uncertainty are discrete• If there 
are a finite number  of t ime periods and a finite number  of states of nature,  then 
there is a finite number  of goods, and this type of economy fits into the 
previous framework• Here ,  and in the next section, we consider economies 
with an infinite number  of goods• Mas-Colell and Zame (1991) study questions 
related to existence of equilibrium in this type of economy in detail in Chapter  
34; here we focus on questions related to computation and multiplicity• 

5.1. Deterministic exchange economies 

We begin by analysing a deterministic stationary exchange economy with m 
consumers and n goods in each period. Each consumer is specified by a utility 
function of the form E~= a y i - lu i (x , )  and a vector of endowments that is the 
same in every period• Here  1 > % > 0 is a discount factor• We assume that 
u i : R  ~ R is strictly concave and monotonically increasing and that w i is 
strictly positive• 

Let  p, = (Pat . . . . .  Pn,) be the vector of prices in period t. An equilibrium of 
this economy is a price sequence /Sa , /~2 , . . - ,  where /~, E R~\{0},  and an 
allocation (3~1, X ) ,  ^i ^i • , X l ,  X2, . ,  w h e r e  ^ i  n • . ^m . . x t E R + ,  

^i ~i 
• X l , X 2 , . . .  , solves 

t - 1  
max ~'i ui(x,) subject to 

t = l  

PtXt<~ p t  w ,  X t > l O ,  
t = l  t = l  

m ^i rn i 
• ~ i = I  Xt ~ E i = I  W ,  t = 1, 2 . . . . .  
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Using the Negishi (1960) approach, we characterize equilibria as solutions to 
social planning problems. This approach has been applied to dynamic 
economies by Bewley (1982) and Yano (1984). 

Consider the Pareto problem 

max a i ~ .  y i - l u i ( x l )  subject to 
i = l  t = l  

x t ~  , t =  1,2 . . . . .  
i = l  i = 1  

i 
Xt>~O , 

for a vector ~ of strictly positive welfare weights. Using the same reasoning as 
before, we can argue that, if oz i = 1/Ai where Ai is the equilibrium value of the 
Lagrange multiplier for the budget constraint of consumer i, then the competi- 
tive allocation (~1 . . . . .  ~m) solves this problem where p t ( a ) =  P t  is the vector 
of Lagrange multipliers for the feasibility constraint in period t. Consequently, 
the first welfare theorem holds for this economy. 

The crucial step in the reasoning is taking the necessary and sufficient 
condition for the solution to the consumer's maximization problem, 

" y i t - I / ~ i ( ) ~ : )  ~_ i~ i ~ pt(wAt i )c:)~ ~ ~it 1 ui'xt)lAi\ _]_ ~i ~ P't( wt-" 
t = l  t = l  t = l  t = l  

>I uitx,)+ Xi 
t = l  t = l  

for all A i />0 and x 11>0, dividing through by Ai>0,  and summing over 
consumers to produce 

i = 1  t = l  t = l  i = l  

i = 1  t = l  t = l  i = 1  

for all xl ~> 0. Since E~=I A, i _ p , w  must be finite for the consumer's utility maximi- 
zation problem to have a solution, Ei_ 1 E~= 1 ~' m _ p t w  must also be finite. 

The second welfare theorem holds for this economy as well. The transfer 
payments needed to decentralize a solution to the Pareto problem 
( x l ( a ) , . . . ,  xm(a)) as an equilibrium with transfer payments are 

• 

p t ( a )  (x t (oz  ) - w ' )  , i =  l . . . .  , m . ti(ol) = t i 
t = l  
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Once again we can argue that t is a convex-valued, bounded,  upper-hemi- 
continuous correspondence.  Consequently,  Proposition 3.2 applies and there 
exists a vector of welfare weights 6 such that (p(&),  ( x l ( & ) , . . .  , x m ( ~ ) ) )  is an 
equilibrium 0 ~ t(&). 

It is possible to extend our analysis to the more general stationary prefer- 
ences described by Koopmans,  Diamond and Williamson (1964). This exten- 
sion is most easily done using the dynamic programming framework described 
in the next section. 

Example 5.1. Consider a simple economy with one good in each period and 
two consumers. Suppose that u l ( x t )  = Uz(Xt) = log x t and that w 1 = w 2 = 1. The 
only difference between the two consumers is that 71 < Y2- A solution to the 
utility maximization is characterized by the conditions 

t l t i  ~ 
7i  lXt = hiPt  , P,Xl : Pt - 

t = l  t = l  

An equilibrium satisfies these conditions and the condition that demand equals 
supply: 

1 2 
c t + c  t = 2 ,  t = l , 2 , . . . .  

The Pareto problem is 

ce 
t 1 1 t - - I  2 

max a 1 Y 1 log x t + O~ 2 E 72 log X~ subject to 
t = l  t ~ l  

1 2 x t + x t  = 2 ,  t = l , 2 , . . . .  

A solution to this problem is characterized by the conditions 

t 1 " 
a i y  i / x '  t = p , ,  i = 1 , 2 ,  

and the feasibility conditions. These equations can easily be solved to yield 

i 2 a i 7 ~  - 1  
x t =  t-1 t-1 , i = 1 , 2 ,  

Og17 1 ~- O~27 2 

t 1 
Pt = ½ ( O ~ 1 7 t 1 - 1 ~ -  0 / 2 7 2  ) "  

The transfer payments needed to implement as a competitive equilibrium the 
allocation associated with the weights a I and o~ 2 are, therefore,  
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Ol__l 
t , ( a  I , o t z ) =  ~f, p , (x~  - 1 ) -  

t=l 1 Yl 1 - T 2  ' 

t2(a,, a2) = E pt(x~ - 1) - -a2 Ot~l 
t=l 1 T2 1--Yl 

Ol 2 

Notice that these functions are continuously differentiable, are homogeneous 
of degree one and sum to zero. The unique equilibrium is found by setting 
these transfer payments equal to zero. It is (&l, &2)= ( ( 1 -  y ~ ) / ( 2 - y  1 - Y z ) ,  
(1 - 3,2)/(2 - y~ - Yz)). 

5.2. Dynamic production economies and dynamic programming 

It is possible to analyse economies with production and durable goods in much 
the same way as we have just done with exchange economies. Frequently, 
however, it is convenient, both for computing equilibria and for studying their 
properties, to recast the problem of determining an equilibrium of a dynamic 
economy with production as a dynamic programming problem. 

Consider an economy with m infinitely lived consumers and n C perishable 
consumption goods. Each consumer has a utility function E ~=~ y ' - lu i (x t ) .  Here 
u i is strictly concave and monotonically increasing and y is a discount factor 
common to all consumers; we later discuss heterogeneous discount factors. The 
endowment of these goods held by consumer i in each period is w ~ nc E R + ;  it 
may include different types of labor. In addition, there are n k capital goods, 
reproducible factors of production. The endowment of these goods held by 
consumer i in the first period is kil E R~+ k. 

There are many ways to specify the production technology. One of the 
easiest is to define an aggregate production function h : R~ ~ × R~ ~ x Rn~---~ R 
that is continuous, concave, homogeneous of degree one, increasing in the first 
vector of arguments, and decreasing in the second and third. A feasible 
production-consumption plan in period t is then a triple that satisfies 

i = 1  

Here k t is the input of capital goods, kt+ 1 is the output of capital goods that can 
be used in the next period and Eiml (x I - w') is the net output of consumption 
goods. To keep the equilibrium path of capital stocks bounded, we assume that 
there exists a vector k max ~ R+ k such that if [[kt[[/> l[kmax][ and [[kt+l[ [ >/[kt[[, 
where kt, k t + x E R ~  k, then h(kt, k t+l ,Z)<O for all z ~ > - Z  n i i=1 w ; in other 
words, it is not feasible to sustain a path of capital stocks with Ilk,[[ i> [kmax[[. 

A simple example of such a function h is 
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h(k, ,  k t +  1 Z l t  , z2t  ) , o . .  . .1-o , = ~ K t ~ - z l t )  + ( 1 - / 3 ) k t - k t +  1 - Z z t .  

Here  there is a single capital good, k~, and two consumption goods, leisure, zl,,  
and consumption z2t. The  feasibility constraint says that consumption and 
investment net of depreciation must be less than the output  of a Cobb-Douglas  
production function. 

An equilibrium of this economy is a sequence of prices for the consumption 
^ ^ n c . goods p~, P 2 , . - .  , where/~,  E R+\{0} ,  a price f E R +  k for the initial capital 

stock; an allocation, "~ ~ . where 21E R+ ~, for each consumer i; a X 1 , X 2 , . . 

sequence of net outputs of consumption goods 21, 2 2 . . . . .  where ~, E R~c; and 

a sequence of capital goods/c~,/cz . . . . .  where /c, ~ R+ k such that 
h i  ^ i  

• X l , X 2 ~ . . .  solves 

max ~ , 1 7 ui(x ,)  subject to 
t = l  

At  PtX¢  ~ E ~t i ^r i p t w  + r k l ,  x~>~O. 
t = l  t = l  

• z l ,  z2," "- , and kl , /~2,-  . .  solve 

max ~ /~,z, - ~k I subject to 
t = l  

h(kt ,  kt+ I , z , ) ~ > 0 ,  t = l , 2  . . . . .  

k t ~ 0  . 

m m hi Zt + E i = l w i '  t = 1 , 2 , . . . .  • ~ ' i = 1  Xt z 

• ~ i m l  kil = k , .  

Again, an equilibrium is Pareto efficient and solves a Pareto problem of the 
form 

max of. i y uAxt)  subject to 
i = 1  t = l  

h(kt, kt+l,~(xi-wi)t~O, t = l , 2  . . . .  , 
\ / i = 1  

i = 1  

i 
Xt ,  k t ~ 0 , 

for an appropriate vector a of strictly positive welfare weights. 
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In principle, we have all that we need to characterize equilibria of this 
economy: using the Lagrange multipliers 7 5 for this problem and the deriva- 
tives of h, or subgradients if h is not continuously differentiable, we can 
calculate 

( ) e t ( a )  -- -Tr,(a)D3h k t (o  O, k , + , ( a ) ,  ( x i ( a )  - w ' )  , 
i = 1  

r ( a )  = 1r~(a)Dlh  ki,, k2(a ), (x  a )  - w i , 
- - i = I  i=l  

p , ( a )  ( x , ( a )  - w i) - r(a)'kSl , i = 1 . . . . .  m . 
t=l  

t = 1 , 2 , . . . ,  

Once again, equilibria are solutions to the equation t ( a ) =  0. 
We can greatly simplify the characterization of solutions to the Pareto 

problem, and computation of equilibria, however, using the theory of dynamic 
programming [see Bellman (1957) and Blackwell (1965); Harris (1987), 
Sargent (1987) and Stokey, Lucas and Prescott (1989) provide useful sum- 
maries and economic applications]. Given an aggregate endowment of capital 
in the first period kl ~ R+ ~, an aggregate endowment of consumption goods in 
each period w ~ R+ c and welfare weights a ~ R+\(0},  we define the value 
function V ( k l ,  w,  ~ )  as 

~ t - 1  / i x  max ~i 7 u i t x , )  subject to 
i = 1  t = l  

, • . . , 
i = l  

i xt, k t/> 0. 

It is easy to show that V is continuous, concave in k I and w and convex in a. 
If it is continuously differentiable, the envelope theorem allows us to 
D 1 V ( k  1, w, a )  as a price vector of capital, r', and D 2 V ( k l ,  w, ce) as a price 
vector for the present value of the endowment of consumption goods, E~_l p',. 
If V is not continuously differentiable, we can work with subgradients. ]Ben- 
viniste and Scheinkman (1979) provide genera! conditions that ensure the V is 
continuously differentiable.] The value of the total endowment of consumer i is 

D I V  k~, w j, ~ k~ + D 2 V  k~, w ], Ol W i . 

- j = l  j ~ l  - j = i  j = l  
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To calculate the t ransfer  functions t i (a) ,  we need to calculate the value of 
expenditures.  To do this in terms of the value function, we introduce m con- 
sumer  specific goods and define U i : R~+ c × R"~+ --* R as Ui(x ,  y )  = YiUi(x /Yi ) .  
Notice that U i is homogeneous  of degree one and that Ui(x ,  e) = u i ( x )  where 
e = (1 . . . . .  1). We endow consumer  i with the entire aggregate endowment  of 
one unit of  yi. We now define V ( k l ,  w ,  y ,  a )  as the max imum of weighted sum 
of the augmented  utility functions subject to the feasibility constraints. If  xl is 
the opt imal  consumption of consumer  i in period t, its value is 

y t - ' o t ,  D u i ( x l ) x  I = , y t - ' o t iDiUi (x l ,  e ) x  I . 

Since Ui is homogeneous  of degree one, we know that 

D i U i ( x l ,  e ) x  I = Ui (x l ,  e ) -  D 2 U i ( x  I, e )e  . 

Using the envelope theorem,  we can show that 

E t - 1  . r e  i O W  i i 
31 aiUil, Xt, e) = a i ~ kl ,  w,  e, a 

t = l  - i=1 

and that 

) t - ,  k ' , ,  w,e,  . ~1 oliD2Ui(xl ,  e)e  = OV • i 
t = l  - i=1 

Consequently,  the value of the expenditures of consumer  i is 

~1 O l i t l l U i t X t ,  e )x l  = ol i ~ At' 
t = l  

) , w , e , a  
i=1 

ka,  w ,  e, a . 
OYi t'= 1 i= 1 

We can now define the transfer function t : R+\{O} ~ R m as 

OV k~,  w j, e,  a - k~,  w j, e,  a 
t i ( o t )  = Oli ~ i  - j = l  ~ Y /  j = l  

- O l V  , w i, e ,  a - , w j ,  e ,  ot w i . 
- j = l  j= l  j= l  "= 

If V is continuously differentiable,  t is a continuous function. If  V is not 
continuously differentiable,  t is a non-empty,  upper-hemi-cont inuous,  convex- 
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valued correspondence.  Once again, t is homogeneous of degree one and 
satisfies the identity 

ti(ol ) -~ O . 
i=1 

See Kehoe,  Levine and Romer  (1989b, 1990) for details. Fur thermore,  if 
a E R+\{0} and a i = 0, then ti(a) < 0. The same argument as in the proof of 
Proposition 3.2 now implies the existence of equilibrium° 

Using dynamic programming theory,  we can investigate the properties of V 
and, therefore,  of t. We define the return function v(k,,  kt+ ~, w, y, ~) as 

max ~ aiUi(x i, y) subject to 
i=1 

h(k t ,  kt+l, ~ X i -  w) >~O, xi >~o. 
i=1 

If h ( k , , k , + l , - W ) < O  , we let v(kt,  k t+ l ,w  , y , a ) - - - - ~ .  The function o is 
upper-semi-continuous on the extended real line R t_J { - ~ }  [see Kehoe,  Levine 
and Romer  (1989b, 1990)]. The value function V can be found by choosing 
k2, k3, . . . to solve 

~ t--1 max 3' v(k, ,  k,+l, w, y, a) subject to k,/> O. 
t=l 

The direct approach to this problem focuses on the first order  conditions, 
often referred to as Euler  equations, 

"yDlv(k,, kt+ ~, w, y, a) + D2v(k , 1, k,,  w, y, a) = O. 

This is a system of n k second-order difference equations in the state variables 
k t. There  are, however,  only n k initial conditions, the fixed values of k 1. For  
some choices of k 2 the corresponding path kl ,  k2, k3, . . . eventually leads to 
negative capital stocks and the system breaks down. For  others, we need 
additional boundary conditions to single out the unique path that is optimal. 
These are given by the transversality conditions 

lim 7 t - lDtv (k , ,  kt+ l )k  , = O . 
t - - ) ~  

Showing that the transversality conditions together with the Euler equations 
are sufficient for optimality is relatively easy [see, for example, Stokey, Lucas 
and Prescott  (1989, pp. 97-99)]. Under  additional assumptions they can also 
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be shown to be necessary [see Peleg and Ryder (1972), Weitzman (1973) and 
Ekeland and Scheinkman (1986)]. 

An alternative approach to finding the value function involves solving the 
functional equation 

V(kt, w, y, a)  = max[v(k,,  kt+l, w, y, a) + yV(kt+l, w, y, c01 

subject to kt+ ~ t> 0 

for the function V. The vector kt+ 1 = g(kt,  w, y, a) that solves this problem is 
referred to as the policy function. Calculating optimal paths is much easier 
using the policy function than it is using the Euler equations: we simply run the 
n k first-order difference equations 

k t + l = g ( k t , ~  wi, e, ot) 
i=1 

forward from k x without worrying about the transversality conditions. The 
difficulty is in finding the policy function g. Keep in mind that, using either the 
Euler equation approach or this second, the dynamic programming approach, 
we must somehow calculate the equilibrium values of a. 

Example 5.2. Consider an economy with two consumption goods, leisure and 
consumption, and one capital good. There is a representative consumer with 
utility 

E ~/t-- lu( l , ,  Ct)~-- ~ ,yt-I log c t . 
t=l t=l 

(This function does not actually satisfy our assumptions because u is not strictly 
concave in I t and it is not continuous at c t = 0; this is not essential, however.) 
The endowment is (w, 0) of labor and consumption every period and k 1 of 
capital in the first period. The production function is 

0 1-0 
h(k t, k,+,, Zl ,  , Z2t ) = r /k t ( -Zl ,  ) - k,+, - z 2 t .  

The return function is 

v(k t, kt+l, w, y, a) = ay  log(~qk~w 1-° - kt+l) - ay  log y .  

This return function is special in that we can analytically solve for the value 
function V(kt,  w, y, a). This example is a member of a class of examples first 
studied by Radner (1966). Notice that we do not allow the per period 
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endowment  of consumption to vary from zero; if we do, we cannot solve for 
the value function analytically. The value function has the form a~ + a 2 log k t. 
Using the functional relation 

a 1 + a 2 log k t = max[ay  l o g ( r l k T w  1-°  - k t + l )  - a y  log y 

+ 3"(a 1 + a 2 log k,+l) ] 

subject to k,+l I>0,  

we first solve for k,+ 1, then substitute in the results and solve for a~ and a 2. We 
obtain 

V ( k  t , w , y , a ) -  ozy [ l o g r / ( 1 - y 0 ) +  3,0 1 --- 3' ~ log 3,70 - log y 

1 - 0  
+ 7 ~  log w + - -  

1 - y t l  
0 - 3'0 log kt ] j 
1 3"0 

The policy function is 

g ( k , ,  w ,  y ,  a )  = ~ i o,o 3"vrl w K t . 

Notice that, for any initial value k l ,  the sequence k l ,  k 2 ,  . . . converges to the 
steady state /~= (3"Orl) l /1-°w.  To see this, consider 

log k,+ I = log yOr lw  1 o + 0 log k t .  

Since 0 <  0 < 1, log k, converges to (log 7 0 " q w a - ° ) / ( 1  - 0 ) .  

The Euler  equation is 

1 - 0 1 0 - 1  
yvr l  w K t 1 

_ 1 - O k O  
'rl wl-°k°''t k t+l  'rlw .~t 1 - k t  

= 0 ,  t = 2 , 3 , . . . .  

We know the initial value k 1, but we need a value for k 2 to get started. If we 
use any value other than k 2 = 3"O'owl-°k~,  however,  we eventually have a 
negative capital stock, at which point the different equation breaks down, or 
we violate the transversality condition. (To see this rewrite the Euler equation 
as a first-order linear difference equation in K t = k t + i k ~ ° . )  

Since this example has a representative consumer,  the transfer function is 
identically equal to zero. Although the transfer function itself is not particular- 
ly interesting, we can use the value function V ( k t ,  w ,  y ,  a )  t o  find the 
equilibrium value of the endowment  
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0 
r = D y ( k , ,  w, 1, 1) = (1 - yO)k,  

~ ,  1 - 0  
P , t = D z V ( k , , w , I , 1 ) =  ( 1 - ) ( 1 - y 0 ) w "  

t = l  ' y  

Consequently, 

rkl + t=l p l t w -  1 3' 

is both the value of the endowment and the value of expenditures. 

2099 

Remark. This example is a special case of the model developed by Brock and 
Mirman (1972). Long and Plosser (1983) work out a multisector version of a 
model with the same functional forms that permit an analytical solution. 

Many extensions of this sort of analysis are possible. One is to economies 
with more general preferences of the sort described by Koopmans,  Diamond 
and Williamson (1964). Letting tc = (c,, c ,+~ , . . . ) ,  these preferences satisfy the 
functional relation 

U(,c) = W(c, ,  u(,+lc)) 

for an aggregator function W:R~+ C x R---~R that satisfies certain properties 
[see, for example, Lucas and Stokey (1984), Dana and Le Van (1987) and 
Streufert (1990)]. 

Another possible extension is to retain additively separable utility functions 
but allow heterogeneous discount factors. One approach is to allow the return 
function v(kt, kt+l, w, y, or, t) to vary over time as the solution to maximizing 

m t i 
Zi= 1 ai(fli/[31) Ui(x,  y)  subject to feasibility constraints; here/31 is the largest 
discount factor [see Coles (1985)]. 

Yet another extension is to allow kt and x, to grow without bound. This is 
particularly useful in growth models of the sort considered by Romer (1986) 
and Lucas (1988). For an example that fits clearly into the competitive 
framework used here, see Jones and Manuelli (1990). In this sort of model care 
must be taken to ensure that x t cannot grow so fast that the present value of 
utility can become infinitely large. 

5.3. Stochastic economies 

The analysis of the previous section can be easily modified to include random 
events. To do so, we follow the approach of Arrow (1953) and Debreu (1959) 
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in indexing goods by both date and state of nature.  Suppose that in period t 
one of  a finite number  of events 77, = 1 . . . .  1 can occur. A state is a history of 
events s, = (~7~ . . . . .  r/,), a node on the event  tree. The event  T~t can effect 
preferences ,  endowments  or technology. Since the set of date-state pairs is 
countable,  the analysis of Section 5.1 can be applied to prove the existence of 
equilibrium. We can again reduce the prob lem of computing an equilibrium to 
finding a set of welfare weights for which the corresponding Pareto efficient 
allocation can be decentralized as a transfer  equilibrium with all transfers equal 
to zero. 

Suppose that the probabil i ty of event  i is ~i > 0 where E tj=x .n'j = 1. The 
induced probabil i ty distribution even states is given by zr(st) = zrnl. • • zrn. Let  S 
be the set of  all possible states; let t(s) be the date in which s occurs, that  is, the 
length of the history s; let s 1 be the history of length t(s) - 1 that coincides 
with s; and let "qs -- T/t(s), that is, the last event  in the history s. Assuming that 
consumers  maximize expected utility, we can write the Pareto  prob lem as 

max 2 0 ~ i  E t (s ) - I  i ~/ "JT(S) Ui(X (S), rh) subject to 
i= l  sES 

w(ns)),ns >-0, s ~ S ,  
i=1 

i=1 

x i ( s ) ,  k ( s )  ~ O. 

Here  k I is the amount  of capital before the event  in the first period occurs. 
As before ,  we define the return function v(k,, k,+l, ~,, w, y, a) as 

max 2 aiUi(x i, Y, nt) subject to 
i=1 

h(  kt, kt+ l , £ xi - w(rlt), "rlt) >~ O, xi >~ o . 
i=1 

(Notice that  now w is a vector of dimension n c x l.) The value function 
V(k l ,  ~71, w, y, a) can be found by choosing k(s),  s ~ S, to solve 

max ~'~ 7'(s)-llr(s)v(k(s_l), k(s), "qs, w, y, a) subject to k(s) >!0. 
sES 

Once again we can characterize solutions to the Pareto prob lem using either 
the Euler  equations 
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l 

Dzv(k, a, kt, "0,-1, w, y, a) + y ~ %Dav(k  t, k,+ a, "0, w, y, a) = 0 
rl=l 

and an expected value version of the transversality condition or using the 
functional equation 

V(k,,  '0. w, y, a )  = max[v(k , ,  k,+l, "0. w, y, a)  

' ] 
+ y ~ %V(k,+a, "0, w, y, a) 

r t=a  

subject to k,+ 1 />0.  

This approach can be generalized to allow events to be elements of a 
continuum. In this case xi(s) and k(s) are functions and we can rewrite both 
Euler  equations and the dynamic programming functional equation using 
integrals. We can further  generalize the probability distribution to be a Markov 
process [see Stokey, Lucas and Prescott  (1989) for details]. 

Example 5.3 (5.2 rev&ited). Consider an economy identical to that in Exam- 
ple 5.2 except that 

h(kt, k t+j , z l t ,  z2,,'0,) 10, ,i-o ~-- " 0 t K t ~ - - Z l t )  - -  kt+ 1 - -  Z2t 

where "0, = "01 with probability % and '0, = '02 with probability %.  The return 
function is 

v(k , ,k ,+ 1,'0, w, y , a ) =  . , .0 1-0 , ay  log~'0,x, w - k,+l) - ay  log y , 

the Euler  equation is 

0 O - l w l - O  0 1 0 - 1  1--0 ] 
1 %'01 k , "/T2 "02 K t w 

- -  . 0  - -  1 - 0  -[- "~ ~ ~ C 1  q-  ~ - - ' ~ ' - - -  = 0 ; 
"0 t_ lK t_ l  w --  k, "01Kt W "02Kt w --  Kt+ 1 

the value function is 

a y  [ y0 
V(kt, "or, w, y, a) - f T y  log(1 - TO) + ~ log TO 

1 - 3 /  
3' (% log "01 + % log "0z) + ~ log 'or - log y 

+ 1_-w70 

1 - 0  O-3,O ] 
+ ~ l o g w + ~ l o g k  t ; 
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and the policy function is 

g(k, ,  ~,, w, y,  o~) = yO~7,w ~-°k~ . 

In the case where ~/t is a continuous random variable, for example, when 
log~q, is normally distributed with mean zero and variance cr 2, the Euler 
equation and the value function are easily modified and the policy function 
remains the same. (This latter feature does not hold in general, however.) 

Once again our analysis can be extended in many directions. For an example 
of a stochastic equilibrium with recursive preferences that are not additively 
separable, see Epstein and Zin (1989). 

5.4. Differentiability and regularity 

The analysis of the previous two sections allows us to easily extend the 
regularity analysis for static exchange economies to dynamic production 
economies. In economies where the value function V(k  1, w, y ,  ~) is continu- 
ously twice differentiable (C2), the transfer function t is continuously differen- 
tiable (C~). In this case the analysis is very similar to that of static exchange 
economies:  An equilibrium is a vector of welfare weights ~ for which t(t~) = 0, 
a system of m equations in m unknowns. Since t is homogeneous of degree 

m 

one, we can eliminate one unknown with a normalization. Since r,t= t t i(a ) =- O, 
we can eliminate one equation. A regular economy is one for which the 
Jacobian matrix of the transfer function Dt(&) with the first row and column 
deleted,  an (m - 1) × (m - 1) matrix, is non-singular at every equilibrium. As 
with static exchange economy, a regular dynamic economy with production has 
a finite number  of equilibria that vary continuously with the parameters  of the 
economy.  Kehoe,  Levine and Romer  (1990) have extended Debreu 's  (1970) 
analysis to show that almost all economies with C 2 value functions are regular. 

The  problem has been to develop conditions that ensure that the value 
function is C 2. As we have mentioned,  Benveniste and Scheinkman (1979) 
have shown that V is C 1 under fairly general conditions on u i and h. Araujo  
and Scheinkman (1977) show that under  suitable conditions on u i and h that a 
C 2 value function follows from a global turnpike property. In other  words, if 
all socially optimal paths converge to a unique steady state (which may depend 
on the welfare weights o~), then V is C 2 and equilibria are generically 
determinate.  Recently,  Santos (1989a, b) has shown that V is C 2 under  far 
more  general conditions. The most restrictive of these conditions serves only to 
ensure that k t remain uniformly separated from the boundary of R n+ k. [Mon- 
trucchio (1987), Boldrin and Montrucchio (1988) and Araujo  (1989) present 
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earlier partial results.] A different approach to proving that value functions are 
C 2 in stochastic economies has been pursued by Blume, Easley and O 'Hara  
(1982). 

5.5. Computational methods 

The case of computing equilibria depends on how easy it is to solve dynamic 
programming problems. In this section we discuss two popular  procedures,  
value function iteration and linear-quadratic approximation. These and a 
variety of other methods,  together with applications to an example similar to 
Example 5.3, are discussed in a collection of papers edited by Taylor  and Uhlig 
(1990). 

Consider a dynamic programming problem expressed in terms of the func- 
tional equation 

V(k,, b) = max[v(k, ,  k,+l, b) + TV(kt+l, b)] subject to k,+ 1/>0.  

Here  b is a vector of parameters that includes the variables (w, y, a )  discussed 
previously. The standard approach to proving the existence of a solution V to 
this functional equation relies on the contraction mapping theorem. 

Contraction Mapping Theorem. Let S be a complete metric space with metric 
d : S---> R +. Suppose that T : S--> S is a contraction with modulus fl ; that is, 
suppose that, for some 0 < / 3 < 1 ,  d( Tx, Ty) <~ jgd(x, y) for all x, y E S .  Then 
there is a unique fixed point of  T in S, fc = T2. 

The proof  of this theorem suggests an algorithm for computing a fixed point: 
Start with x ° E S and let x "+ t = Tx". Since 

d(x "+l x n+2) d(Tx", Tx~+')<~fld(x",x ''+l) 

the sequence x °, x 1, . . .  is a Cauchy sequence and, since S is complete,  
converges to a limit ~ E S that satisfies d(~, T.~) = 0, or 2 = T~. To see that this 
fixed point is unique, suppose to the contrary, that there exists another fixed 
point £ = 7"£. Then 

d(T2, T£) = d(x, £)  > fld(fc, £)  , 

which contradicts T being a contraction [see, for example, Luenberger  (1969, 
Chap. 2) or Stokey, Lucas and Prescott (1989, Chap. 3) for details]. 

To apply this theorem to our dynamic programming problem, we need to 
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give the space of functions V(., b) a topological structure. Let  S be the set of 
continuous bounded functions that map R+ k into R with 

d(V 1, V 2) = suplVl(k, b) - vz(k ,  b)[.  
k 

S is a complete metric space. There  is a technical problem in that the return 
function v, and therefore the value function V, may not be bounded. We can 
get around this problem either by bounding v in a way that does not affect 
solutions or by using special properties of the mapping T [see, for example, 
Bertsekas (1976, Chap. 6) or Stokey, Lucas and Prescott (1989, Chap. 4)]. In 
either case, the generalization is straightforward but technically tedious, and 
we shall ignore it. 

Proposition 5.1 [Blackwell (1965)]. There exists a unique V E S that satisfies 
the functional equation of the dynamic programming problem. 

Proof. Consider the mapping T : S--~ S defined by 

(TV)(k , ,  b) = max[v(k,,  k,+l, b) + yV(k,+l ,  b)] subject to k,+ l t>0.  

If v and V are bounded and continuous, then so is TV. It therefore suffices to 
demonstrate that T is a contraction: 

d(TV 1, TV 2) = suplmax[v(k,,  kt+ 1 , b) + yVl(kt+l, b)] 
k t k t + l  

-max[v(kt ,  k,+l, b) + yg2(kt+l, b)]] 
k t  + I 

t ~ s u p l y V  (k,+~, b ) -  yVZ(kt+,, bll.  
k t  + I 

This last expression is just yd(V I, V2), which means that T is a contraction 
with modulus y. 

Remark.  It is easy to prove that V satisfies such properties as being mono- 
tonically increasing and concave in k,. Using the properties of v, we can argue 
that,  if V is monotonically increasing and concave, then so is TV; that is, T 
maps the subset of S whose elements are monotonically increasing and concave 
into itself. Since this set is itself a complete metric space, the fixed point 
1~" = TV lies in it. 

To  implement this approach on the computer ,  we need to discretize the 
space of capital stocks. In particular, let K = {k 1 , k 2, . . . ,  k, l}, kj E Rn+ ~, be a 
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finite, but large, set of capital stocks. The method of successive approximation 
treats V as an 1 dimensional vector [see Bertsekas (1976, Chap. 5)]. Starting 
with a simple guess for V °, for example, V°(kj ,  b ) =  O, j = 1 . . . .  , l, we 
compute V'+l(k j ,  b) by solving 

max v(kj,  k, b) + y V ' ( k ,  b) subject to k E K .  

The same argument as the proof of Proposition 5.1 establishes that this 
procedure is a contraction magping. Furthermore,  if the grid K is fine enough, 
then its fixed point is a good approximation to the true value function V. 
Variants on this method do not restrict k to the finite set K in the above 
maximization but interpolate or use polynomial approximations [see, for 
example, Tauchen (1990)]. 

Unfortunately, although the method of successive approximation is guaran- 
teed to converge, convergence can be very slow. An algorithm that greatly 
speeds convergence involves applying Newton's method to the equation 

v= v(v) 

where we think of T as a mapping R z into R ~. This method is known as the 
policy iteration algorithm. [See Bertsekas (1976, Chap. 6); Rust (1987) and 
Christiano (1990) discuss variations and present economic applications.] The 
updating rule is 

V "+' = V" - [ I -  D T ( V ' ) ] - t [ V "  - T ( V ' ) ] .  

Although the l × l matrix [I - D T ( V ' ) ]  is very large if the grid K is very fine, it 
typically contains a large number of zeros. 

To apply these sorts of methods to stochastic problems, we must discretize 
the distribution of events ~7 if it is not already discrete. In the case of the 
method of successive approximation, for example, we compute V "+l(ki, rlj , b )  
by solving 

max v(k~, k, 7t j, b) + y ~ 7r(v)V'(k, ~7, b) 

where k is restricted to the grid K and 77 ranges over the discrete distribution of 
in the summation. 

Example 5.4 (5.2 revisited). Consider the functional equation 

V(k  t, b) = max[log(bk~ - kt+l) + yV(k,+l,  b)] subject to kt+ 1 >!0. 
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Because of the special form of this problem we can solve for V(k,, b) 
analytically using the method of successive approximation. Let V°(k, ,  b) = 0 
for all k,, b. Maximizing log(bk 7 - k,+~) with respect to k,+~, we obtain the 
policy function 

g~(k,, b) =0 

and the value function 

Vl(k , ,  b) = log b + 0 log k , .  

Now maximizing [ log(bk~-k,+1)+ yVl(k ,+ , ,  b)] with respect to k,+l, we 
obtain the policy function 

g2(kt, b)= ( 3"06 )k  0 
\ l + y O !  ' 

and the value function 

b 
V2~t.ct,lt. b) = log 1 + 3'0 

3"Ob 
- -  + 3 ' l o g b + y 0 1 o g  1 + 3 ' 0  - -  + 0(1  + 3'0) l og  k , .  

In general, at iteration n we obtain the policy function 

[1  (3"0)"-113"0bk: g" ( k , , b)= ~ - - ~ - ~ r  

and the value function 

[ ] gn(k,, b) = i=i ~ 3 i - i  log 1 - (3 '0)" i+1 

n-, [ [3"Ob(1_(3"O)n i)] -~- 3"0 E 3i 1 1 -" (3"0) n i ]  log  . . . . .  
~=~ 1 - 3 , 0  J 1 - ( 3 , 0 )  n '+~ 

+ o[ l_- (_3"O )" ] log k, 
1 - y O  J " 

In the limit these converge to 

g(k,, b) = 3"Obk~ , 

1 
[log b(1 - 3"0) V(k,, b ) -  1 - 3' L 

3'0 ] 0 
+ ~ l o g 3 , 0 b  + ~ log k, . 
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Writing 

g ( k , , b ) =  " o " aokt , 

n n V"(k,, b) = a] + a 2 log k t , 

we compute successive approximations for the problem with 7 = 0.95, 0 = 0.3 
and b = 2. 

n a~ a~ a~ 

l 0 0.693147 0.3 
2 0.443580 0.869208 0.3855 
5 0.567306 1.150158 0.418791 

10 0.569995 1.719038 0.419579 
0.57 2.672261 0.419580 

Remark.  Notice that the successive approximations for V converge monotoni- 
cally. It is a general property of this algorithm that, if V~(k, b) > V°(k, b) for 
all k, then V"+~(k, b) > Vn(k, b) for all k. This property,  which is the result of 
v(k,, k,+l, b) increasing in kt, is frequently useful for proving convergence 
when v is unbounded and for developing more efficient algorithms [see, for 
example, Bertsekas (1976, Chap. 6)]. 

Value function iteration methods can be very costly in terms of computer  
time when the number  of state variables, nk, is more than two or three or if 
there is uncertainty. Another  solution method that is popular  in applications is 
to solve the linear-quadratic approximation to the original problem (see, for 
example, Bertsekas (1976, Chap. 4), Kydland and Prescott (1980, 1982) and 
Sargent (1987)]. The idea is to approximate the return function v(k I, k,+l, b) 
by a quadratic function or, equivalently, to linearize the Euler  equations. The 
approximate model can then be solved exactly. 

We start by computing a steady state, a capital stock /~ ~ R'+ k that satisfies 
the Euler  equation 

D2v(f¢ , k, b) + yD~v(k, k, b) = O. 

The problem of computing a steady state can be easily formulated as a fixed 
point problem. Let  S =  {k~R+k[l[k[[<~ I[km"x[[} and let K(k) be the vector 
K E R nk that solves 

max v(k, K, b) + TV(K, k, b) subject to [[K[[ ~ [[kmax[[, K ~ 0 .  
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Notice that K(k) is continuous and maps S into S and that S is non-empty,  
compact and convex. Consequently,  K has a fixed point /~ = K(/~) that can be 
computed using the methods of Section 2. Unfortunately,  although the 
dynamic programming problem itself always has a unique solution because of 
the concavity of o, there may be multiple steady states [see Burmeister  (1980, 
Chap. 4) for  a discussion]. 

We approximate v (k , ,  k,+~, b) by the second-order Taylor  series 

O(Xt,  Xt+l) = V + D l V X  t + D 2 v x t +  l 

1 t ~ t t 
+ ~ ( X t O l U X  t + Xt+lD22oXt+1 + x t D 1 2 o x t +  1 + X t + l D 2 1 v X t )  . 

Here ,  for example, D~v is the 1 × n k gradient vector of v with respect to its first 
vector of arguments evaluated at (k, k, b) and D l l v  is the n k × n~ matrix of 
second derivatives, also x, = k, - k. There  are two approaches to solving the 
dynamic programming problem with v replaced by its quadratic approximation 
g. The first is like the method in Example 5.2: we guess the functional form of 
g(x,),  in this case a quadratic, 

("(x,) = a, + a~x, + l x ; A 3 x ,  

where a~ is 1 × 1, a 2 is n k × 1 and A 3 is n k × nk,  and then solve for al ,  a 2 and 
A 3. The second method is to directly attack the linear Euler  equations 

D 2 1 v x t _  l + (TDllO + O 2 2 0 ) x  t + y D i 2 o x t +  l = O.  

If we follow the first method,  we solve 

,' 1 t A x max g(x,, x,+l) + y(a 1 + a2x t + ~x, 3x,) 

to find 

x,+ 1 = -(D22u + Y A 3 ) - l ( D 2 1 v x ,  + ya  2 + D2v '  ) . 

Since we know that x, = 0 implies xt+ 1 = 0 because/~ is a steady state, we can 
easily solve 

a 2 = - T - 1 D 2 v  ' = D l v '  , 

a l = v / ( 1 - y  ) . 

Plugging xt+ ~ = - ( D 2 2 v  + yA3) -~D21vx ,  into the functional equation that de- 
fines V, we obtain the matrix equation 
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A 3 = D l l v  - D12o(O22v + T A 3 ) = I D 2 1 v  , 

often called the Riccati equation. One approach to solving this is to guess A~ 
and iterate 

A "  3 = D l l V  - D l z V ( D 2 2 v  + y A ~ - l ) - I D a l v  . 

Bertsekas (1976, Chap. 3) presents conditions under which this algorithm 
converges. 

Alternatively, we could turn the linear Euler  equations into the system of 
2n k first order  difference equations 

Xt+! = -T- ID12oD21U - D t z v - l ( D l l  v + 3' 1Dz2v)JL x, j - 

Denote  the 2n k × 2n k on the right side of the equation as G. As long as the 
eigenvalues of G are distinct, we can write G = X A X  -~, where A is the 
2n k x 2n k diagonal matrix of eigenvalues of G and X is the 2n k × 2n k matrix 
whose columns asre the associated eigenvectors. The theory for systems with 
repeated eigenvalues is similar but more tedious; we ignore this possibility, 
however,  because it is easy to show that having distinct eigenvalues holds for 
almost all v [see, for example,  Hirsch and Smale (1974, Chap. 7)]. Writing 

L x, =xA, ,x l[X,] 
Xt+ 1 X2 X2 ' 

we see that x, converges to zero if and only if the 2n k 

c = X  , [ x , ]  
LX2J 

x 1 vector 

has non-zero elements only where the corresponding eigenvalues h i has mod- 
ulus less than one. This means that the vector (xl,  x2) must lie in the subspace 
of R "k, called the stable subspace of G, spanned by the (possibly) complex 
eigenvectors of G associated with eigenvalues less than one in modulus. 

An easy way to see this is to rewrite the above relationship as 

2n k 

= CiA  i [ ~ i Z i ]  X t + l  i = 1  

where ( Z i ,  I~iZi) ~ C 2n is the eigenvector associated with h i and also write 

2n k 

= C i ~ i Z i  X2 .= " 
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For x, to converge to zero, the vector c must be such that (x 1, x2) is a linear 
combination of eigenvectors associated with stable eigenvalues. If x t converges 
to zero,  then k t = X t + k satisfies the transversality conditions 

! im y ' - ~ D ~ v ( k ,  k ,  b ) k ,  = O. 

A case of particular interest is when exactly half, n k, of the eigenvalues of G 
are stable and the other  half are unstable. This case is often called saddlepoint 
splitting of the eigenvalues. If this condition holds, we can uniquely solve 

2n k 

X I ~ Z CiZi 
i -1  

for the n k constants c i associated with the stable eigenvectors and use the result 
to uniquely determine x 2. There  would be a continuum of solutions if there 
were more than n k stable eigenvalues. If, however,  there were fewer than n k 

stable eigenvalues, then there would be, in general, no solution at all that 
converges to the steady state. 

Since v and its quadratic approximation b ~ are concave, we would not expect 
there to be multiple solutions to the dynamic programming problem. (Re- 
member ,  however,  that there may be multiple equilibria corresponding to 
different welfare weights a.)  To see that there cannot be more than n k stable 
eigenvalues of G, we can write the characteristic equation as 

det[Dz,v + A ( y D l l v  + Oz2v ) -+- AZ'YOl2 v] = 0 .  

Suppose that there is a vector x G R nk such that 

[DzlO + A(TD11 v + Dz2V ) q- A 2 T D 1 2 v ] x  =- O .  

Then,  since D l , v  and Dz2v are symmetric and D 2 1 v  = D 1 2 v '  , 

x ' [ D 2 1 v  + I ~ ( y D ~ , v  + D220 ) + I ~ y D , 2 v  ] = 0 

where /~  = (yA) 1 Consequently,  if A is an eigenvalue of G, so is (yA) ~. This 
implies that n k eigenvalues are smaller than y 1/2> 1 in modulus and n k 

eigenvalues are larger. 
If y is close to one, then we would expect the eigenvalues of G to exhibit 

saddlepoint splitting. Indeed,  there are turnpike theorems that guarantee 
convergence to a steady state in this case [see McKenzie (1987) for a survey of 
such results]. If y is not close to one, there may be less than n k stable 
eigenvalues, and the solution may converge to a cycle or even exhibit chaotic 
dynamics [see, for example, Ryder  and Heal  (1973), Benhabib and Nishumura 
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(1979) and Boldrin and Montrucchio (1986)]. Indeed, Boldrin and Montruc- 
chio (1986) prove that, if K is a compact subset of R n* and g : K---> K is twice 
continuously differentiable, then there exists a return function v and a discount 
factor y such that g is the optimal policy function. Since the dynamics of the 
solution path are governed solely by the policy function, this says that 
equilibrium dynamics are arbitrary. The construction used in the proof of this 
theorem, not surprisingly, relies on small discount factors. 

Example 5.5 (5.2 revis i ted) .  The return function v ( k , ,  k,+l, b ) = l o g ( b k ~ -  

k,+~) can be linearized around the steady s t a t e /~=  ( yO b)  l/~z-°) as 

log ( +  (y~7) Ix, - ~-lx,+ 1 

- -  1 [ ( (1  - -  0 ) ( ~ ( k ) - '  -J- ( ' ~ c )  2)x~ -J- ( - 2 x ~ +  1 - 2 y - ' (  Zx,x ,+,] .  

1 2 Here ( =  b k  ° - f:. The value function ~'(kt)  = a I + a2x , + ~a3x t is such that 
a 1 = (log c ) / ( 1 -  0), a 2 = (y~?)-i and a s can be solved for using the Riccati 
equation 

= -2  - - 4  
a 3 - ( ( 1  - 0 ) ( ' ~ ( ] ~ )  -1 Jr- ( ' ~ ( )  2) _ ")/ c ( ~ a  3 - c 2) 1 . 

T h e r e  a r e  two solutions to this equation, a 3 = - - ( 1 -  "y0)T 20 1 ( - 2  a n d  a 3 = 

( 1 - O ) y  ld 2 the first of which is the non-positive number (in general, 
negative semi-definite matrix) that we need for V to be concave. The policy 
function is ~(x,) = Ox,. 

An alternative for finding this policy function is to analyse the Euler 
equation 

- - 2  - 1 - - 2  ~-'=0 c x , + , - ( ( 1 - o ) ( ( £ )  ~+ - 1 ( - 2 + (  2)x, +~ c x,_, 

The corresponding characteristic equation has two roots, A = 0 and A = (A0)-~, 
only the first of which satisfies < 1. 

To see the relative accuracy of the linear-quadratic approximation, we again 
consider the model where 3' =0.95,  0 = 0 . 3  and b = 2  and solve for the 
equilibrium path_for k, starting at k 1 =0.1  using both the linear-quadratic 
policy function, k + O(k, - k ) ,  and the true policy function, "yObk~. 

Exact Linear-Quadratic 

1 0.1 0.1 
2 0.285677 0.343580 
3 0.391415 0.416654 
4 0.430196 0.438576 
5 0.442563 0.445152 

10 0.447958 0.447964 
0.447971 0.447971 
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Remark. This example has the property that the 1~ is the second-order Taylor 
series approximation to V and ~ is the first-order approximation to g; this is not 
a general feature of this method. An alternative approach is to use the 
linear-quadratic approximation where x , - - ( log  k , -  log k). For our specific 
example, such an approximation is exact as can be easily verified. 

Another promising approach to approximating solutions to dynamic pro- 
gramming problems relies on restricting the policy functions that solve the 
Euler equations to a finite dimensional function space. The linear-quadratic 
approximation restricts the policy function to being linear. Other possibilities 
include polynomials of a fixed finite order or various finite sequences of 
polynomial and trigonometric functions. For an exposition and economic 
applications of these methods, known as minimum weighted residual methods, 
see Judd (1989). A closely related method, which parameterizes the expecta- 
tions of next period's value function, rather than the policy function, using a 
finite dimensional approximation to the function space, has been proposed by 
den Haan and Marcet (1990). 

6. Overlapping generations economies 

Even though they have an infinite number of goods, the economies in the 
previous section are relatively easy to study because the two welfare theorems 
allow us to characterize their equilibria as solutions to welfare maximization 
problems. Many dynamic economies have equilibria that do not solve such 
maximization problems. An important example is the overlapping generations 
model originally studied by Samuelson (1958). Frequently, to approximate 
equilibria of such an economy on the computer, we must truncate it so that it 
has a finite number of goods. Studying the properties of economies with infinite 
numbers of goods, however, provides insights into the properties of those with 
large, but finite, numbers of goods. 

6.1. Existence of  equilibrium 

To keep the discussion simple we focus on exchange economies. Overlapping 
generations economies with production can be analysed using a similar ap- 
proach [see, for example, Burke (1986) and Muller and Woodford (1988)]. 
Consider a stationary economy with n goods in each period and in consumers 
who live for two periods in the generation born in period t, t = 1, 2 . . . . .  In 
addition there are m 0 consumers, generation 0, who live only in the first 
period. Balasko, Cass and Shell (1980) present a simple procedure for convert- 
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ing a model  in which consumers  live for k periods into one in which they live 
for two: Redefine generat ions - k + 2 , - k +  1 . . . . .  0 to be  generation 0, 
generat ions 1, 2 . . . .  , k - 1 to be generation 1, and so on. Similarly, redefine 
periods.  Notice that  the number  of goods in each period and the number  of 
consumers  in each generat ion increase by a factor of  k -  1. The important  
feature  of  the procedure  is that each redefined generat ion lives for two 
redefined periods.  

n 2 n  Each consumer  in generat ion t has a utility function u s : K+ ~ R that is 
strictly concave and monotonical ly increasing and an endowment  (wSl, w2)E  
R z"++. Faced with prices Pt, Pt+~, the consumer  solves 

max ui(x,, x,+l) subject to 

t t ~ p i t i 
p t x t - F  P t + l X t + l  ~ P t W 1  + P t + l W 2  , 

X t ,  Xt+ 1 ~ 0 .  

Each consumer  in generat ion 0 solves the problem 

max Uio(Xl) subject to 

r r i0  plx~ <~plw2 + M~, x 1 >t0. 

Here  M s is the consumer ' s  endowment  of fiat money,  which can be positive, 
negative or zero. 

We define the aggregate excess demand functions 

m 0 

Zo(Pl)  = E iO [ X l  ( P l ) -  w~O] ' 
S = l  

= ~ [Xt (Pt, Pt+l)-- W1], Y(P,, Pt+l) i, i 
i = l  

z(Pt,  P,+1) ~ lxi' ¢ • = t t+I~P,, P,+I) - w'2] 
S= I  

These functions are continuous at least for strictly positive prices; they are 
rn 0 i0  m i m i bounded  below by - Z i =  1 w 2 , - Z i =  1 w 1 and -Zs=  1 w2, respectively; y and z 

are homogeneous  of degree zero while z 0 is homogeneous  of degree zero if and 
only if M i = 0 ,  i = 1 , . . . ,  m0; and z0, y and z obey the following versions of 
Walras 's  law: 
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m o 

p[zo(pl  ) -  ~ M , ,  
i = l  

P~Y(Pt, P,+,) + P;+~x(pt, Pt+l)=-0 . 

An equilibrium of this economy is a price sequence/31, /32 , . . ,  such that 

z0(/31) + Y(P~, P2) ~ 0 ,  

z(/~, 1, /3,)+y(/3, , /3 ,_~)~<0,  t = 2 , 3 , . . .  

where there is equality whenever the price/3~, is strictly positive. 
Consider a truncated version of this economy, an economy that ends in 

period T. There is a terminal young generation with excess demand function 
Yr(Pr )  that satisfies 

m 0 

P~YT(Pr) = - - ~ ,  Mi . 
i = 1  

There are many ways of constructing such a function. One is to set 

YT(PT) = -- e . 

This is now a finite economy with transfer payments. 
To prove the existence of equilibria we consider a sequence of truncated 

economies where the truncation date T tends to infinity. To keep our discus- 
sion simple we focus on economies without fiat money. In the simple economy 
that we study here, this is often the only case in which we can prove existence 
[see, for example, Balasko, Cass and Shell (1980)]. There are, however, 
modified versions of this economy in which the only equilibria that exist 
involve non-zero quantities of fiat money [see Wilson (1981) and Burke 
(1988)]. 

In a truncated economy without fiat money existence of equilibrium follows 
directly from the arguments in Section 2.1. To ensure that the equilibrium does 
not involve prices being all equal to zero in any period, we employ two 

i additional assumptions: first, there exists _a>0 and B>max[Em° 1 w0+ 
r n  i w " t ¢ Ei= 1 wl, Ei:  1 (w' 1 + wi2)] such that e p,+i/e p, < _a implies I lz (p ,  p,+l)l] > B; 

second, there exists 6 > _a such that e'p,+i/e'p, > 6 implies ]]y(p,, P,+I)]] > B. 
See Balasko, Cass and Shell (1980) for conditions on preferences and endow- 
ments that imply these conditions. 
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Proposition 6.1 [Balasko, Cass and Shell (1980) and Wilson (1981)]. There 
exists an equilibrium ~ ,  P2, • • • for the overlapping generations model without 
fiat money. 

Proof. Consider the economy truncated at period T. Proposition 2.1 and 
Brouwer 's  fixed point theorem imply that it has an equilibrium (/31 . . . .  , ,fir). 
Consider now the sequence of prices p r = ~ t / ( e ' ~ l  ), t=  1 , . . . ,  T, p r =  e, 
t = T + l , T + 2 , . . . . O u r a s s u m p t i o n s o n y a n d z i m p l y t h a t p r ,  t = l ,  2 , . . . ,  
is an element of the non-empty,  compact and convex set 

S t =  { p E R  n [ p>~0,_a t-~ <~e'p-~ d t - l}  . 

The product II~_1 S t is compact in the product  topology. Consequently,  the 
sequence (of sequences) p~, P~2 , . . . ,  P~, P~, • • • has a convergent subsequence. 
Let  ill, P2, • • • be the limit of this subsequence. Notice that,  since the functions 
z0, y and z involve only a finite number  of variables, the functions z 0 + y and 
z + y, t = 2, 3 , . . . ,  are continuous in the product topology. Consequently,  
since each sequence p~,  p f , . . .  satisfies the equilibrium conditions in periods 
t = 1, 2 . . . . .  T -  1, the sequence p l ,  P2, • • • satisfies them in all periods. 

Remark.  The only role played by stationarity, the assumption that y and z do 
not change over time, is to provide the bounds ff and ci. Consequently,  this 
result applies to non-stationary economies in which such bounds are assumed 
to hold. In particular, it applies to economies that are stationary after a given 
date. 

6.2. Multiplicity of  equilibria 

Unfortunately,  in contrast to economies with a finite number  of infinitely lived 
consumers, there are robust examples of overlapping generations economies 
with an infinite number  of equilibria. As we shall see, this has strong 
implications for computational methods for approximating equilibria, including 
methods that truncate the economy at a finite date. Our  discussion of multi- 
plicity follows Gale (1973) and Kehoe and Levine (1985, 1990b). 

Ignoring the possibility of free goods, we can write the equilibrium condi- 
tions as 

zo(p,)  + y(p l ,  p2) = 0,  

z ( p , _ ~ , p , ) + y ( p , , p t + , ) = O ,  t = 2 , 3  . . . . .  
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Once p~ and P2 are determined,  the second condition acts as a non-linear 
difference equation determining p~+~ as a function of (p~_~, p~). In this section 
we focus attention on the behavior of equilibrium price paths near a steady 
state Pt =/3t-~p, where p E R~\{0} and /3 E R++, to the second condition, 

t - 2  z(/3 p , / 3 ' - ' p )  + y( /3t - 'p ,  /3'p) = z ( p ,  /3p) + y ( p , / 3 p )  = 0 .  

We are interested in prices that converge to a steady state, (p,, p,+~)/ 
]](pt, p ,+l)[]---~(p, /3p)/]](p, /3p)][  as t---~ ~. 

Focusing on prices that start and remain in some neighborhood of a steady 
state has two advantages. First, the implicit function theorem says that, if 
Dzy (p,/3p) is non-singular, a condition that according to Kehoe  and Levine 
(1984) holds almost always, Pt+l can be calculated as a unique, continuously 
differentiable function of (P,-1,  Pt) in some neighborhood of ( p , / 3 p ) .  In 
general,  there may be multiple solutions Pt+l. Second, the local stable manifold 
theorem says that the qualitative behavior of the non-linear dynamical system 
generated by the equilibrium conditions is almost always the same as that of its 
linear approximation [see Scheinkman (1976) and Irwin (1980, Chap. 6)]. 
Fur thermore ,  using the same sort of redefinition of generations and periods 
that we use to transform an economy with consumers who live for many 
periods into one in which they live for two, we can formally transform an 
economy with a k cycle, (pl ,  p2, . . . ,  pk),  into an economy with n × k goods 
in each period in which this cycle is a steady state. What we are missing 
therefore  is a study of chaotic equilibria that converge neither to steady states 
nor  to cycles. See Benhabib and Day (1982) and Grandmont  (1985) for 
examples of such equilibria. 

There  are two types of steady states, those in which there is fiat money and 
those in which there is not. Using Walras's law and the equilibrium conditions, 
we can show that 

P;Zo(Pl) = -P~Y(P~, P2)= P;z(Pl, P2) . . . . . .  P;Y(P,, P,+~). 

Let M = -p'y(p,/3p). Walras's law, p'y(p,/3p) +/3p'z(p,/3p) = 0 and the 
steady state condition imply that (/3 - 1)p'y(p,/3) = 0; that is,/3 = 1 or M = 0. 
Kehoe  and Levine (1984) prove that these two possibilities almost never occur 
simultaneously. Steady states in which /3 = 1 and M ¢ 0 are called monetary  
steady states; those in which /3 ¢ 0 and M = 0 are called real steady states. 
Proving the existence of, and computing, steady states of each type is similar to 
doing the same for static exchange economies. Monetary steady states are 
given by a price vector p E R+\{0} that satisfies 

f ( p )  = z ( p ,  p) + y (p ,  p) = o .  



Ch. 38: Computation and Multiplicity of Equilibria 2117 

Here the function f has all of the properties of the excess demand function of a 
static exchange economy. Real steady states are given by a pair (p , /3)  that 
satisfies 

z(p, /3p)  + y(p , /3p)  = O, 

p ' y ( p ,  t ip) = O. 

Using arguments similar to those in Section 2, Kehoe and Levine (1984) 
characterize the solution to this system of equations as the solution to a fixed 
point problem in R "+~. As well as proving the existence of each type of steady 
state, they argue that there is almost always a finite number of each type, and 
they provide index theorems that imply uniqueness conditions for each type. 

Let us now study the question of how many equilibria converge to the steady 
state (p, /3p) by linearizing the equilibrium conditions. Making use of the 
homogeneity of y and z, which implies that their derivatives are homogeneous 
of degree minus one and that 

Dly  p +/3D2y p = D~zp +/3D2z p = O, 

we write the linearized system as 

Dey p + (D~y + Dzo)p~ = Dzop - Zo(p) - y ( p ,  t iP ) ,  

D2yp ,+~+(D~y+/3Dzz )p  t+/3D~zp,  ~ = 0 ,  t = 2 , 3  . . . . .  

Here D2y is, for example, the n x n matrix of partial derivatives of y with 
respect to its second vector of arguments evaluated at (p, tiP). 

We can write the equilibrium conditions in periods t = 2 , 3 , . . .  as the 
first-order system qt = Gq,- i  where q, = (Pr, Pt+l) and 

[ ° , ] 
G =  _ /3Dzy - lD lZ  _ D z y  l (Dly  + /3D2z) . 

As in the linear-quadratic model of Section 5.5, the stability properties of this 
difference equation are governed by the eigenvalues of G. The homogeneity of 
y and z imply that/3 is an eigenvalue since 

Differentiating Walras's law and evaluating the result at (p,, Pt+l)= (P, tiP) 
implies that 
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y'  + p 'D~y +/3p 'D~z = 0 ,  

z '  + p 'D2y  +/3p 'D2z  = 0 .  

Consequently,  1 is another  eigenvalue since 

[ /3p' D , z  - p '  Dzy lG  = [ /3p' D~z - p '  Dzy ] . 

In the case where/3  = 1, these are generally the same restriction and we have 
information only about one eigenvalue. 

Again solutions to the difference equation q, = Gq,_~ take the form 

2n c, , , - , r  z, 
P,+1 ~ i [,~/z/j 

i=1 

where the (possibly) complex constants c~ are determined by the initial 
conditions 

i = l  

To ensure convergence to the steady state ( p , / 3 p )  we need to put positive 
weight on the eigenvector ( p , / 3 p )  and zero weights on eigenvectors (z i, Aizi) 
for which the modulus ]A~I is greater than/3.  

The situation is in many ways similar to that in the linear-quadratic model of 
Section 5. In place of the n k initial conditions k I of the 2n k conditions (kl,  k2) 
that we need to start up the difference equation, we have n restrictions 

Dzy p + (D,y  + Dzo)pl  = DzoP - Zo(p) - y ( p ,  /3p) 

on the 2n required initial conditions (Pl, P2)' Unlike the linear-quadratic 
model,  however,  there is no need for there to be fewer than n stable 
eigenvalues of G. 

By counting the number  of eigenvalues of G less than/3 in modulus, we can 
determine the dimension of the stable manifold, the sets of points (P l ,  P2) E 
R 2n that serve as starting values for the implicit difference equation generated 
by the equilibrium conditions in periods t =  2, 3 , . . . ,  and converge to the 
steady state (p , /3p) .  If we then subtract the number  of restrictions on ( p l ,  P2) 
implied by the equilibrium conditions in the first period, we can, in general, 
determine the dimension of the manifold of equilibria that converge to the 
steady state. We need to distinguish between two cases, economies without fiat 
money and economies with fiat money. The distinction is crucial because 
Walras's law and the equilibrium conditions in the first period imply that 



Ch. 38: Computation and Multiplicity o f  Equilibria 2 1 1 9  

m 0 

[/3P'Dlz -P'D2Y] Pz 
i = 1  

This, in turn, implies that  the eigenvector associated with the eigenvalue A = 1 
m 0 must receive zero weight c i in the initial conditions if Ei= 1 Mi = 0 and must 

receive non-zero weight if E~2' 1 Mi ~ 0 [see Kehoe  and Levine (1985, 1990b) 
for details]. In the case where there is fiat money,  the dimension of the set of 
equilibria is generically n ~ + 1 - n, where n" is the number  of eigenvalues with 

</3; there is one eigenvalue A----/3, and n is the number  of restrictions 
implid by the initial conditions. This number  can be as large as n. In the case 
where there is no fiat money,  the dimension of the set of equilibria is 
generically r~ '+  1 -  n, where r~" is the number  of eigenvalues with ]A I < /3  
excluding, if need be, the eigenvalue A = 1. This number  can be as large as 
n - 1 and is equal to zero when there is saddlepoint splitting, when half of  the 
2n - 2 eigenvalues of G,  not counting A = 1 or /3 ,  are less than /3  in modulus 
and the other  half are greater.  

Another  possibility, of  course, is that there are too few stable eigenvalues. In 
this case, for almost  all initial generations z0, there is no equilibrium that 
converges to the steady state. In this case we call the steady state unstable. 

Example 6.1. Consider  overlapping generations in which generation t, t = 1, 
2 , . . . ,  contains a single consumer who lives for three periods. There  is one 
good in every period. Using the procedure  described in Section 6.1, we could 
convert  this to an economy with two consumers who live for two periods in 
each generation and two goods in each period. The consumer  born in period t 
has the utility function 

3 

~. X b __ u(x,,x,+,,x,+2) ~ aJ-l( ,+j-I 1)/b 
j - I  

where a > 0  and b < l .  Given an endowment  stream (w~, w2, W3) , the con- 
sumer maximizes this utility function subject to the constraint 

3 3 

p,+j_,x,+j_l ~< ~ p,+j_lWj. 
j = l  j = l  

The consumer 's  excess demand functions are 
3 

~j E P t + k - l W k  

zj(p,, Pt+l, Pt+2) = k = 1 3  

rt E 1 7/ 
Pt+j  1 TkPt+k 1 

k = l  

Here  r / =  1/(1 - b) and yi = a (~-1)', j = 1, 2, 3. 

- w ~ ,  j = 1 , 2 , 3 .  
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In addition to these consumers, there are two others, an old consumer who 
lives only in period 1 and a middle-aged consumer who lives in periods 1 and 2. 
The old consumer,  consumer - 1 ,  derives utility only from consumption of the 
single good in the first period, so we need not specify a utility function. If he 
has M 1 units of fiat money, which may be positive, negative, or zero, his 
excess demand function is 

z 3 t ( p l )  = M _ , / p l  • 

The middle-aged consumer, consumer 0 has the utility function 

2 
/-10(X 2 , X3) Z J b = a (xi+ l - 1 ) /b  , 

j=l 

an endowment  stream of goods, (w °, w3°), and an endowment  of fiat money, 
M o. His excess demand functions are 

2 

p k W k + l  + M o 
- 0 

z ~ ( p , , p 2 ) =  2 - w  j ,  j = 2 , 3 .  

P j  1 ~ Yk+~Pk 
k=l 

The equilibrium conditions for this economy are 

1 0 
z3 ( P ~ ) +  z2(P~, P z ) +  Z , ( P , ,  P2, P3) = 0 ,  

z ° 3 ( P l ,  P2) + z 2 ( P l ,  P2, P3) + z I (P2 ,  P3, P4) = 0 ,  

z3(Pt-2,  P , - , ,  P t ) + Z z ( P , - 1 , P , , P t + , ) + z l ( P t ,  Pt+,, P,+2) = 0 ,  t = 3 ,  4- 

The equilibrium condition for period t, t = 3, 4 , . . . ,  can be linearized at a 
steady state (1, /3, /32) as 

/32Dlz3P, 2 + (/32D2z3 q- /3Dlz2)Pt - I  + (/32D3z3 q-/3D2z2 q- D1Zl)P,  

+ (/3DBZ 2 + D2Zl)p,+l + J B Z l P t +  2 ---- 0 . 

Here  all derivatives are evaluated at the (1, /3, /32).  Corresponding to the 
condition that D2Y is non-singular in the general two-period-lived case is the 
condition that D3z I is non-zero. Corresponding to the eigenvalues of G are 
the roots of the fourth-order polynomial 
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/32DIZ 3 + ( /32D2z 3 q-- /3DIZ2)A + ( /32D3z 3 + / 3 D 2 z  2 + D I Z I ) A  2 

4- ( / 3 D 3 z  2 + D2z1)A 3 q- D 3 z l A  4 = 0 . 

The consumer has a = 1, b = - 4 ,  and (wl, w2, w3) = (5, 20, 1). To calculate 
the roots of the fourth-order  polynomial,  which determine the determinacy 
properties of equilibria near a steady state, we start by evaluating the deriva- 
tives of excess demand at (Pt,  Pt+l, Pt+2) = (1,/3,  /32). At/3 = 1, for example, 
these derivatives are 

Dlzl D2zl D 3 Z l ]  I - 3 . 0 8 6 9  4.9881 -1 .9 0 1 3 ]  
Dlz2 D2z2 D 3 z 2 / =  - 0 . 9 6 5 0  2.6201 -1 .6551 / . 
DIZ3 O2z 3 D3z3_ ] -0 .8401 3.7803 -2 .9402J  

(Notice that, since this matrix has some negative off-diagonal elements, 
(z~, z 2, z3) violates gross substitutability.) The polynomial that we are inter- 
ested in is 

-0 .8401 + 2.8153A - 3.4070A 2 + 3.3330A 3 - 1.9013A 4 = 0 .  

The four roots are A = 1, 0.4860, 0.1335 + 0.9441i and 0.1335 - 0.9441i as can 
easily be verified. This example has four steady states. The steady states and 
the corresponding roots are listed below. 

fl Other roots 

0.0976 1 -0.0102 0.3845 
0.4286 1 0.1275 ± 0.3337i 
1 0.4861 0.1335 ± 0.9441i 

903.6581 1 -1196.3574 2.2889 

As the steady state/3 = 0.4286 the modulus of the pair of complex conjugates is 
0.3572; a t /3  = 1 it is 0.9535. 

To generate examples with multiplicity of equilibria, we can choose the 
initial two consumers, generations - 1  and 0, so that (1, /3, /32,/33) satisfies the 
equilibrium conditions in the first two periods. When /3 = 0.4286, we can 
generate an example without fiat money that has a one-dimensional manifold 
of equilibria since f f s = 2  and r i S + l - n = l .  (To do so we set (w °,w~)= 
(12.0650, 1).) When /3  = 1, we can generate an example with fiat money that 
has a two-dimensional manifold of equilibria since n ~= 3 and nS+ 1 - n  = 2 
[see Kehoe  and Levine (1990b) for details]. 

A similar analysis of the possibility of indeterminacy in economies with 
production and a mixture of overlapping generations and infinitely lived 
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consumers is presented by Muller and Woodford  (1988). Similar analyses for 
non-stationary economies, economies in which the functions y, and z, vary over 
time, have been presented by Geanakoplos  and Brown (1985) and Santos and 
Bona (1989). 

6.3. Computational methods 

There  are two alternatives for approximating an equilibrium of an infinite 
horizon overlapping generations model: The first is to linearize the equilibrium 
conditions around a steady state (or cycle) and then solve the linearized model 
[see Laitner  (1984, 1990) and Kehoe and Levine (1985, 1990b)]. The second is 
to truncate the model and to compute an equilibrium of the truncated model. 
The crucial question is: What terminal conditions should we impose? A 
popular  choice is to impose the condition that the equilibrium converges to a 
given steady state [see, for example, Auerbach and Kotlikoff (1987)]. Care 
must be taken in this case to make sure that the truncated economy as a whole 
satisfies Walras's law. 

The two methods proposed above are probably best viewed as complements 
rather  than substitutes. Indeed, before computing a truncated equilibrium 
using as terminal conditions the requirement  that the equilibrium converge to a 
given steady state, we should linearize the model around the steady state. This 
would allow us to check for indeterminacy, where a continuum of equilibria 
converge to the steady state, or instability, where no equilibrium converges to 
it. We would not want to impose the condition of convergence to an unstable 
steady state in a truncated model. Indeterminacy is more problematical,  but we 
would certainly want to be aware of it since it indicates that the equilibrium 
that is computed is acutely sensitive to the truncation date T and the exact 
form of the terminal conditions. Figure 38.6 depicts three different equilibria of 
the economy in Example 6.1, each of which converges to the steady state 
/3 = 0.4286. Notice how small differences in the equilibrium paths at T =  20 
correspond to large differences earlier in the path [see Kehoe and Levine 
(1990b) for a discussion]. 

To compute an equilibrium of a truncated model,  we could use the methods 
developed for static economies. The truncated model may be very large, 
however,  and it is often more convenient to view the problem of computing an 
equilibrium as a two-point boundary-value problem. Auerbach and Kotlikoff 
(1987) and Lipton, Poterba,  Sachs and Summers (1982) have proposed alterna- 
tive methods for solving this sort of problem. The equilibrium condition in 
period t, t = 2, 3 . . . . .  T - 1 ,  implicitly defines a system of n second-order 
non-linear difference equations. The equilibrium conditions in period 1 im- 
plicitly provide n of the 2n necessary boundary conditions. The equilibrium 
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conditions in period T implicitly prove the other n. Auerbach and Kotlikoff 
(1987) solve this problem using a non-linear Gauss-Seidel method. They start 
by guessing a solution, the steady state for instance. They then solve the model 
going forward using this guess as expectations for future variables. After they 
are done, they use the calculated solution as a new guess and repeat the 
process. They stop when, and if, the calculated solution agrees with the 
previous guess. 

We write the equilibrium conditions in period t as 

f ( P ,  1, P , , P t + l ) = z ( P ,  1, P t ) + Y ( P , , P , + ~ )  = 0 .  

Suppose that we are interested in equilibria that converge to the steady state 
(p,/3p).  We perform a change of variables, deflating prices in each period by 
the factor/3, so that/7, =/3-'p~ and 

f(/Tt 1, /7,, /7,+,) =f( /Tt- , ,  /3/7,, /32ff,+,) = f (P , - l ,  Pt, P,+I) - 

We henceforth write Pt for/7t and f for j~ 
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Given the guess pl  k . . . .  , p~-, the non-linear Gauss-Seidel  method sets 
k + l  P, = g,(pk) in the system 

fl(g,(pk), pk2)=O, 

f(g,_,(pk),gt(pk),pk+l)=O, t = 2 , . . . , T - 1 ,  

fr(gr_1(pk), g,(pk)) = O. 

Near the equilibrium/3~, / ) 2  . . . . .  i t )T ,  this algorithm converges to the linear 
Gauss-Seidel  method for solving 

r 11 Dlfl lD2fl  0 . . .  0 
D2f- Dl f  I D2f XD3f "" 0 

L ! D2f71D1f I 0 

6 6 . . .  "i 
0 0 "'" D2frlDlfr  

o -1r-p1-1 
0 | / p 2 [  

Dzf'-lD3f i ] Pr_l l 
I JLPTJ  

V t), + D,f; 'D2Lp2 ] 

/ i / 
LD2fr'D, fri3r , + Pr-] 

(Depending on whether  there is no fiat money,  we may need to normalize 
fill = 0 and delete one equation in the first period.) In this system of equations 
the derivatives are evaluated at/~l, 102 . . . .  , f ir  rather than at the steady state 
p. Notice, however,  that, if the equilibrium of the infinite horizon model 
converges to p,  then as we move down the matrix the derivatives approach 
those at the steady state. 

The Gauss-Seidel  method splits the coefficient matrix of this system, which 
we write as 

A p = c ,  

into a strictly upper-triangular component  U, a strictly lower-triangular compo- 
nent  L and a diagonal component  D. We then solve 

(D + L)p k+1 = -Up k + c 
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recursively. This method converges if and only if the eigenvalues of - ( D  + 
L ) - I u  are less than one in modulus. Young (1971) provides conditions for 
convergence. It can be shown, for example, that, if f exhibits gross sub- 
stitutability and there is no fiat money, the method converges ]compare with 
Kehoe, Levine, Mas-Colell and Woodford (1986)]. 

The speed of convergence is -log]A I where A is the eigenvalue of - ( D  + 
L)-~U with the largest modulus. If the infinite horizon model exhibits indeter- 
minacy, then the matrix A is almost singular and -logIA [ is close to zero. To 
see this, notice that there would then be two vectors p~ ¢p2 such that, for T 
large, 

ApI  ,.~ Ap2,-~ c , 

A(pL _p2) ~0 .  

A slight perturbation in A would then make it singular. Standard results in 
linear algebra then imply that A has an eigenvalue very close to zero and, 
therefore, that - ( D  + L ) - ~ U  has an eigenvalue very close to one. Similarly, 
instability in the infinite horizon model, where no solution converges to the 
steady state, also corresponds to A being almost singular. This is because, 
while indeterminacy corresponds to the infinite version of A not being one-to- 
one, instability corresponds to it not being onto [see Kehoe, Levine, Mas- 
Colell and Zame (1989)]. 

This means that the Gauss-Seidel method does not work if there is 
indeterminacy or instability: One possibility is that convergence may be 
impossibly slow. If there is indeterminacy, another possibility is that the 
algorithm may stop at a point far from the true equilibrium of the truncated 
model but close to an equilibrium of the infinite horizon model. If there is 
instability, in contrast, the algorithm may stop at a point far from either. In 
either case, a crucial factor determining the results is the convergence criterion, 
the degree to which the equilibrium conditions must be satisfied for the 
algorithm to stop [see Kehoe and Levine (1990a)]. 

Our analysis sugests directions for further research. One way to speed up the 
Auerbach-Kotlikoff algorithm would be to linearize the equilibrium conditions 
around a guess and then solve, not using Gauss-Seidel, but a successive 
overrelaxation method, 

(D + a L ) p  k+l = ((1 - a ) -  a U ) p  k + a c ,  

for a good choice of a [see Young (1971)]. The system can then be linearized 
around the new guess and the procedure repeated. This method is just 
Newton's method with a fast way of inverting the sparse matrix A. Unfortu- 
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nately, of course it does not work well when A is almost singular or when 
- ( D  + L ) - t U  has an eigenvalue greater than one in modulus. 

An alternative method for solving this sort of equilibrium problem has been 
suggested by Lipton, Poterba, Sachs and Summers (1982). This is a method 
widely used by engineers and physical scientists called multiple shooting [see, 
for example, Keller (1968)]. They start by guessing the initial values for prices 
and solving forward for the resulting price path up to T: 

L ( P , ,  Pz(P~)) = O, 

f ( P t - , ( P l ) ,  P , (P, ) ,  P ,+, (P, ) )= O, t=  2 , . . . ,  T .  

They then apply Newton's method to solve P r ( P l ) -  ]1Pr(Pl)I]/~P = 0, where 
(p, /3p)  is the steady state. Unless the equilibria are completely indeterminate, 
however, most paths diverge very rapidly. Because of this the algorithm is very 
numerically unstable. They therefore propose dividing the time period into 
difference time segments, then solving 

P r I ( P l ) - P r ,  = 0  

Pr2(Pr,) - Pr2 = 0 

P~,,,(Pr,,, ,)-]]Pr,,,(PT,,, ,)]]/3p =0  

for Pl, Prl, " " ", PL,, ~ where m is the number of time segments. 
Unfortunately, this method is not a good one for many economic problems 

for at least three related reasons: First, it is often difficult to solve 
f (P t -1 ,  P,, P,+I) = 0 for p,+l as a function of (p, 1, P,). There may be multiple 
solutions (this, however, is a problem with most methods). Furthermore, any 
small divergence from the true solution for (Pt-1, P,) can cause P,+I to become 
negative or not to exist. Second, dividing the time horizon into segments causes 
the number of variables in Newton's method to go up rapidly. In Auerbach and 
Kotlikoff's model the number of variables in what corresponds to Pl is 54 and T 
is 150. Dividing into three time segments produces 3 x 54 variables, which is 
greater than the original number of variables in the system, 150. Even dividing 
into three segments is probably inadequate, however, since, as Laitner (1990) 
reports, the linearization of Auerbach and Kotlikoff's model has unstable 
eigenvalues 1.6 times as large in modulus as the largest stable eigenvalue. This 
implies that almost all small errors in guessing pl have a non-zero complement 
that is blown up by a factor of 1.6 ~°, which has order of magnitude 10 ~°, in 
pr l (p l ) .  Third, and most importantly, shooting methods work well on ordinary 
two-point boundary-value problems, not saddlepoint problems. In fact, it is 
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exactly this sort of problem for which Press, Flannery, Teukolsky and Vetter- 
ling (1986, pp. 580-581) advise that shooting methods should not be used. 

Kehoe and Levine (1990a) suggest several methods for computing approxi- 
mate equilibria that combine the advantages of solving the linearized model 
with those of solving the truncated model. The simplest is to replace the 
terminal condition of convergence to a steady state by date T with the 
condition of convergence to the stable subspace of the linearized equilibrium 
conditions. When the equilibrium path is close to the steady state, this 
subspace is a very good approximation to the stable manifold of the non-linear 
system defined by the original equilibrium conditions. 

All of the methods proposed in this section are applicable to non-stationary 
economies that are stationary after some date. Extensions to economies with 
uncertainty seem much more difficult, however; see Duffle, Geanakoplos, 
Mas-Colell and McLennan (1988) for a discussion of some of the problems 
involved in even proving the existence of equilibria with the sort of stationarity 
properties that make them tractable. 

7. Economies with taxes and externalities 

In applications many economies fail to satisfy the conditions of the two welfare 
theorems because of such features as distortionary taxes, externalities, ration- 
ing and institutionally fixed prices. 

7.1. Static economies with taxes 

Large scale general equilibrium models with taxes and government spending 
are frequently used in policy analysis [see Shoven and Whalley (1984) for a 
survey]. An early approach to proving the existence of, and computing, 
equilibrium of such models is given by Shoven and Whalley (1973). Here, as 
do Todd (1979) and Kehoe (1985a), we follow an approach similar to that in 
Sections 2.1 and 4.1 for proving the existence of equilibrium in static 
economies without taxes. 

Consider an economy similar to that in Section 4. Consumer i now faces the 
budget constraint ET= 1 pj(1 + ~-j)xj <~p'w' + Oir where zj is the ad valorem tax 
on good j and 0/, 0 i >f 0, Eiml 0/ = 1, is the share of government revenue r 
received by consumer i. In many applications 01 = 1 while 02 . . . . .  0 m = 0; 
that is, the first consumer is the government. 

The responses of the consumers to a vector of prices and a level of 
government revenue can be aggregated into an aggregate excess demand 
function f :  (R+\{O}) x R+---~R" and a tax function t" (R+\{O}) × R+--~R+, 
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t( p, r ) =  ~ pj~) ~ xij( p, r) . 
j = l  i=1 

Both f and t are continuous, f is also homogeneous  of degree zero, is bounded 
below by - Z i ~  , w i, and satisfies Hf(P ,  r')lt---" ~ as r ' - - ,  ~ for any p ~ R+\{0}.  t 
is homogeneous of degree one. Together  f and t satisfy a modified version of 
Walras's law, p ' f ( p ,  r) + t ( p ,  r) ~: r. Analogously with the model without 
taxes, we can specify the consumers either in terms of utility functions and 
endowment  vectors or in terms of excess demand functions and tax funct!ons. 

To keep the presentation simple, let us specify the production technology 
using an n × k activity analysis matrix A. We again assume that A includes free 
disposal activities and does not allow outputs with inputs. Production taxes are 
specified by an n x k matrix A* that satisfies A* ~< A. Here  a~ = aij - ri~la~i[ 
where r 0 is the ad valorem tax on the output  or input of commodity i in activity 
j. There  are no taxes on disposal activities. The revenue from production taxes 
at prices p E R+\{0} and activity levels y ~ Rk+ is p ' ( A  - A * ) y .  

An equilibrium of an economy ( f ,  t, A, A*) is a price vector /~  ~ R+, a 
revenue level f E R+, and a vector of activity levels 3~ E Rk+ such that 
• fi'A* < O, 
• f ( / ) ,  ?) = Aft, 
• ~= t(~, ~) + ~ ' ( A -  A*)y. 
Walras's law implies that fi'A*)~ = 0. 

Once again we can use homogeneity to normalize prices to lie in the unit 
simplex S. To bound the set of potential levels of government revenue,  we note 
that the assumption of no outputs without inputs implies that there exists some 
a > 0  such that Hx]] < a for all x in the production possibility set {x E R" [x = 
A y / >  --Egm~ W i, y /> 0}. Our assumptions on l i m p l y  that there exists/3 > 0 such 
that Hf(P ,  r)ll ~>~ for all p e S, r>~/3. Consequently,  we can restrict our 
attention to the non-empty,  compact,  convex set S x [0,/3] in searching for 
equilibria. To define g : S x [0,/3]---~ S x [0,/3], we let g ( p ,  r) = ( g l ( P ,  r), 
g2(P,  r)) be the vector (g l ,  g2) that solves 

min ½ [(gl - p - f ( p ,  r)) ' (gl  - P  - f ( P ,  r)) + (g2 - t ( p ,  r)) 2] subject to 

g'lA - (1 + g2 - r ) p ' ( A  - A * )  <~ 0 

g ; e =  l ,  0<~g2<~/3. 

Notice that the assumption of free disposal and the first constraint imply that 
gl ~ 0 .  
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Proposition 7.1 [Kehoe (1985a)]. ( ~ ,  ~, f~) is an equi l ibr ium i f  and  only  i f  
( ~ ,  ~) is a fixed point of  g, (p, ~) = g(p, ~). 

Proof. The Kuhn-Tucker  theorem implies that ( g j ( p ,  r), g2(P,  r)) = g ( p ,  r) 
solves the minimization problem that defines it if and only if there exist 
Lagrange multipliers y E Rk+, A E R and /z, v E R+ such that 

g l ( P ,  r ) - p - f ( p ,  r) + A y  + AE = O, 

g z (P ,  r) - t ( p ,  r) - p ' ( A  - A * ) y  + tx - v = O, 

[g l (P,  r ) 'A  - (1 + g2(P, r) - r ) p ' ( A  - A*)]y = 0 ,  

t zg2(p ,  r) = 0 ,  

v(/3 - g2(P,  r)) = O. 

Suppose that (/~, ? ) =  g(/),  P) and, for the moment,  that /2 = h = 0. This 
implies tha t / ) 'A* <~ 0 and ~ = t (p ,  ~) + ~6'(A - A*)3Z To obtain the remaining 
equilibrium condition, we multiply the first condition above by ,3' to produce 

-/~'f(/~, ~) +/~ 'A j3 + J, = O. 

Walras's law now implies that A=O, and the first condition becomes 
- f ( /~ ,  f) + A)3 = 0. That t(/), ~) ~> 0 and/9 ' (A + A*)33 i> 0 justifies us in ignor- 
ing the possibility that fi > 0. Suppose, however, that 17, > 0 at a fixed point 
( /) , /3) .  Our above reasoning then implies that - f ( / ~ , / 3 ) + A ) 3 > 0 ,  which 
would contradict our choice of /3. Consequently, any fixed point is an 
equilibrium. 

To demonstrate the converse, that any equilibrium is a fixed point, we set 
y = )3 and A = /z  = v = 0 in the Kuhn-Tucker  conditions. 

Kehoe (1985a) develops regularity analysis and an index theorem for 
economies with taxes and government spending. The index of an equilibrium 
(p, P, )3) is 

sgn( °tl 
Here B and B* are the matrices whose columns are the activities of A and A*, 
respectively, that are associated with strictly positive activity levels )3j. A 
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regula r  e c o n o m y  has this express ion  non -ze ro  at all equil ibria.  O n c e  again,  
E i n d e x ( p ,  r) = + 1 where  the sum is ove r  all equil ibria  of  a regular  e conomy .  

Unfo r tuna t e ly ,  not  even the a s sumpt ions  of  a r ep resen ta t ive  consumer  or  a 
non-subs t i tu t ion  t h e o r e m  techno logy  and e n d o w m e n t  pa t t e rn ,  each  of  which 
gua ran t ee s  uniqueness  of  equi l ibr ium in an e c o n o m y  wi thout  taxes,  rules out  
mult ipl ic i ty  of  equil ibria.  T h e  fol lowing example  i l lustrates this point .  It  is 
based  on  the analysis of  Fos te r  and Sonnensche in  (1970) [see also H a t t a  (1977) 
and  K e h o e ,  Lev ine  and  R o m e r  (1989b)].  

E x a m p l e  7.1. Cons ide r  an e c o n o m y  with two consumpt ion  goods  and  labor .  
T h e r e  is a r ep resen ta t ive  c o n s u m e r  with uti l i ty funct ion 

_ ( 3 _ x l ) 2 ( x 2 + 2 )  l i f x l ~ < 3 ,  
U(Xl'Xz'X3)= X 1 - 3  i f x  L~>3, 

and  e n d o w m e n t  (w 1 , w 2, 
the  consumpt ion  of  the 
c o n s u m e r  in the fo rm of 
are  

w3) = (0, 0, 2). T h e r e  is an ad va lo r em tax 71 = 2 on 
first good.  All tax  revenues  are r e tu rned  to the  

a lump and r eba t e ,  r. The  excess d e m a n d  funct ions 

L ( p ,  r) = 

I ° ( - 9 p l  + 4p 2 + 4p3 + 2r)/3px 

[ ( 2 p  3 + r)/3pl 

if 9pl - 4 p 2  - 2p3 - r />  2p3 + r ,  

if 2p3 + r / > 9 p l  - 4p2 - 2p3 - r / > 0 ,  

if 0 ~> 9pl - 4 p 2  - 2p3 - r ; 

L ( p ,  r) = 

(2p  + r)/p2 

09Pl - 4p2 - 2p3 - r) @2 

if 9pl - 4 p 2  - 2p3 - r />  2p3 + r ,  

i f2p3 + r i>9pl  - 4 p 2 -  2p3 - r / > 0 ,  

if 01>9pl  - 4 p 2 - 2 p 3  - r ; 

f3 (P ,  r) = - 2 .  

T h e  tax funct ion is t(p, r ) =  2 p i l l ( p ,  r). 
T h e  p roduc t ion  t echnology  is specified by the matr ix  

A = A * =  
1 0 0 i ]  
0 - 1  0 - 1  . 
0 0 - 1  - 1  - 

T h e r e  are  three  equi l ibr ia ,  given below.  
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Equilibrium 1 Equilibrium 2 Equilibrium 3 

Pl 1/3 1/3 1/3 
Pz 1/3 1/3 1/3 
P3 1/3 1/3 1/3 

4/3 2/3 0 
Y4 4/3 1 2/3 
Ys 2/3 1 4/3 
21 2 1 0 
2 2 0 1 2 
fi - 1 / 2  - 4 / 3  - 9 / 4  

Equilibria 1 and 3 have index +1, and equilibrium 2 has index -1 .  

7.2. Dynamic economies with taxes and externalities 

The existence of equilibrium in economies whose equilibria are not necessarily 
Pareto efficient can be established using sequences of truncations as in Section 
6. Similar computational techniques can be used to approximate equilibria. 
Unfortunately, dynamic economies with taxes and externalities, like overlap- 
ping generations economies, can have robust continua of equilibria. 

Example 7.2. Consider a dynamic economy with a representative consumer 
and a one-sector production technology. The consumer derives utility not only 
from consumption but also from investment. The consumer purchases the 
investment good, perhaps human capital in the form of education that is valued 
for its own sake, in one period and sells it to the representative firm in the 
next. He faces an ad valorem tax on purchases of the consumption good. All 
tax revenues are rebated in lump-sum form to the consumer. He chooses 
(cl, xl) ,  (c 2 , x 2 ) , . . .  , to solve 

t - - I  max 3' u(c,,  x , )  subject to 
t = l  

2 (p,(1 + "r)c, +p,x,)<~ 2 (Y, + r , k , ) ,  
t = l  t = l  

k 1~</~, k,~<x,_~, c , , x , / > 0 .  

Here x, is the amount  of the investment good purchased by the consumer in 
period t, p, is the price paid, r,+ ~ is the price paid by the firm for the same good 
in period t + 1 and y, is the consumer's labor income plus tax rebate 

y, = ( p , f ( k , )  - r ,k ,)  + "rp,k, . 
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The representative firm chooses k~, k 2 to solve 

ac 

max ~'~ ( p , f ( k , )  - r , k , )  . 
t = l  

In equilibrium, consumers maximize utility taking p,, Y, and r, as given, 
producers maximize profits taking Pt and r t as given, k, = x ,_  ~ and 

c , + k , +  l < - f ( k ' ) ,  t = l , 2  . . . . .  

The first-order conditions for the consumer's problem are 

t - I  r u , ( c , ,  k,+~) - a p , ( 1  + "0 = O,  

t--1 
3' u 2 ( c , , k , + , ) - a ( p t - r , + ~ ) = O ,  t = l , 2 , . . . .  

The first-order condition for the firm's problem is 

p , f ' ( k , ) -  r , = O ,  t = l , 2 , . . . .  

Combining these three conditions to eliminate p, and r,, we obtain 

(1 + T ) u 2 ( c t ,  k t + l )  - U l ( f t ,  k t + l )  q- 3 ' U l ( C t + l ,  k ,+2) f ' ( k ,+2)  = 0 ,  

t = 1 , 2 , . . . .  

Substituting in the feasibility condition 

c, = f ( k , )  - k,+ l 

yields a second-order difference equation in k t. 

This difference equation requires two initial conditions. The value of k~ is 
given. To find how much freedom there is in choosing k 2, we linearize the 
difference equation around a stationary solution of/~. We obtain 

~2(k,+2 - ~ )  + ~ ( k , + l  - ~ )  + ~o(k ,  

where 

O/o 

O~ 1 

OL 2 = 3 ' ( U 1 2  - -  Ull)f', 

-~)=o 

= ((1 + ".)u2, - u . ) I ' ,  

U z'¢! = - ( 1  + r)u21 + (1 + r)u22 + b / l l  - -  [ ' /12 -I- 3"Ull f  '2 -~- 3" l J  , 
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Cons ider  the example  where  3' = 3 /4 ,  r = 2, 

u(c,  k) = 8c + (14-~)k-  ½(5c 2 + 4ck  + k 2 ) ,  

55 + lOk - k 2 
f ( k )  = 32 

In this case 6 =/~ = 1 is a s ta t ionary solution where  u n = - 5 ,  u~2 = u21 = - 2 ,  
u 2 2 = - 1 ,  u ~ = l ,  f ' = l / 4  and f " = - 1 / 1 6 .  This implies that  % = - 1 / 4 ,  
a~ = - 9 / 3 2  and % = 9 /16 .  The  two roots  of  the characteris t ic  equat ion  

%A 2 + alA + % = 0 

are A = 0.2500 +- 0.7120i. Since bo th  roots  have modul i  less than  one,  there  is a 
con t inuum of equil ibria for  which k, converges  to /~  = 1. 

Example  7.3. Cons ider  ano ther  dynamic  e c o n o m y  with a representa t ive  con- 
sumer  and a one-sec tor  p roduc t ion  technology.  The  c o n s u m e r  chooses  Cl, 
c 2 , . . ,  to  solve 

t - - I  max 31 u(c,)  subject  to 
t - - 1  

E plcr <~ y, ,  C,>~O. 
t 1 t = l  

H e r e  y, is the total  o f  labor  and capital income in per iod t. There  is a 
conges t ion  externali ty in that  ou tpu t  depends  not  only on  the inputs of  capital 
k t and the fixed a m o u n t  of  labor  but  on the average  a m o u n t  capital K t. The  
representa t ive  firm chooses  kl ,  k 2 . . . .  to solve 

max ~ ( p , f ( k , ,  Kt)  - p tk t+l )  - r l k  I . 
t = l  

H e r e  the firm cannot  control  the average K, a l though,  in equil ibrium K t = k t. 
The  o ther  equil ibrium condi t ions  are 

y, = p , f ( k , ,  K , ) ,  

c, + k,+ 1 <~ f ( k , ,  K , )  , 

kl  <~ f~l • 

The first-order condi t ions  for  the consumer ' s  p rob lem 
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t - I  
~, u ' ( c , ) -  Xp,  = 0 

can be combined with the first-order conditions for the firm's problem 

p , + l f l ( k , + l ,  K,+l)  - p ,  = 0 

to yield 

~ u ' ( c , + , ) L ( k , + , ,  K ,+, )  - u'(c,) = O. 

Substituting in the equilibrium conditions, we obtain a second-order difference 
equation in k, 

y u ' ( f ( k , + , ,  k ,+ , )  - k,+z)f~(k,+ , , k,+,) - u ' ( f ( k  t, k t )  - k ,+ , )  = O. 

Once again, we have only one initial condition k~. Linearizing around a 
stationary solution/~, we obtain 

a2 (k ,+2 -  k) + a,(k,+,  - k)  + a 0 ( k , -  k)  = 0 

where 

~0 

O/I 

= -u"( f ,  + L ) ,  

= ru"f , (L + L )  + ru ' ( f , ,  + f ,2 )  + u", 

% = - ~/u"L • 

In the case where / = / ~ = 1 ,  y = 3 / 4 ,  u ' = 2 ,  u " = - l ,  f 1 = 4 / 3 ,  f 2 = - l ,  
fll  = - 1  and fl 2 = 2, we can calculate % = - 1 / 3 ,  a~ = 1/6 and o/2 ~-- 1. The two 
roots of the characteristic equation are 1/2, - 2 / 3 .  Since both roots have 
moduli less than one, there is a continuum of equilibria for which k, converges 
to / c = l .  

As in Example 7.2, we can choose u and f as quadratic functions so that the 
linear approximation to the equilibrium conditions is exact. 

Remark.  Similar examples of multiplicity of equilibria in economies with 
externalities have been constructed by Howitt  and McAfee (1988), Spear 
(1988) and Kehoe,  Levine and Romer  (1989a). 

7.3. Character iz ing equilibria as solut ions  to op t imiza t ion  p r o b l e m s  

As we have mentioned, the computational methods for overlapping genera- 
tions economies can also be applied to economies with taxes and externalities. 
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An alternative is to characterize equilibria as solutions to optimization prob- 
lems where some of the parameters  of  the optimization problem are endogen- 
ously determined.  The characterization is formally similar to the Negishi 
approach described in Section 3, where the welfare weights a are endogenously 
determined,  although there is now no interpretat ion in terms of Pareto 
efficiency. 

Example 7.4 (7.1 revisited). Consider the "Pa re to"  problem 

max u(x~, x 2, x3) - zx~ subject to x - w <~ Ay ,  x, y >10, 

where the function u, the vector w and the matrix A are as in Example  7.1. 
Letting p E R 3 be the Langrange multipliers, we can write the first-order 
conditions as 

lgl(Xl,X2, X 3 ) - - Z - - p l ~ O ,  = 0 i f x l > 0 ,  

Uz(Xl'X2'X3)--P2 <~0'  = 0 i f x z > 0 ,  

p ' A  <~ 0 ,  p ' A y  = 0 ,  

A y - x + w = O .  

These are the same as the equilibrium conditions of Example  7.1 in the case 
where z = ~'Pl- Equilibria are, therefore,  fixed points of  g(z) = "cpl(z ). 

For a fixed value of z, we can solve the maximization problem and find the 
solution (x(z),  y(z) ,  p(z)) .  For any value of z there is a unique solution. 

z ~ > 1 5 / 1 6  15/16>~z>~3/4 3/4>~z 

x,  0 4 (1 - -  Z )  1/2 2 

x 2 2 ( l - z )  1 / 2 _ 2  0 
Y4 2 / 3  2 - ( l - z )  ~/213 413 
Ys 4 / 3  (1 - z) 1/2/3 2 / 3  
Pl 9 / 1 6  2 z - 2(1 - Z) 1/2 1 - -  Z 
P2 9 / 1 6  2 - -  Z- -  2(1 -- Z) 1/2 1- -  Z 
P3 9/16 2 -  z - 2(1 - z) 1~2 1 - z 

The function g ( z ) = 2 p l ( z  ) has three fixed points, z j = 2 / 3 ,  z 2 = 8 / 9  and 
z 3 =  9 /8 ,  which correspond to the three equilibria of Example  7.1. 

The equilibria of the dynamic economies in Examples  7.2 and 7.3 can also be 
characterized as solutions to optimization problems with endogenous parame-  
ters. In each case, however,  there is an infinite number  of endogenous 



2136 T.J. Kehoe 

parameters.  In the case of the dynamic economy with externalities, for 
example, the "Pare to"  problem is to choose (Cl, k l ) ,  (c2, k2)  . . . .  t o  solve 

max 7 u(cr) subject to 
t = l  

c, + kr <~f(k,, z , ) ,  

kl </~l , 

c~, k t >t 0 . 

For the solution to this problem to be an equilibrium, the parameters  zl ,  
z 2 , . . ,  must solve the fixed point problem z, = k,(zt) ,  t = 1, 2 . . . .  [see Kehoe,  
Levine and Romer  (1989a) for details and references]. 

Sometimes the equilibrium of an economy with taxes or externalities solves 
an optimization problem without additional equilibrium conditions. Becker  
(1985), for example, considers a model in which the representative consumer 
solves 

t 1 max 7 u(c,) subject to 
t = l  

~,  p,(c,  + k,+l) <~ (y ,  + (1 - r ) r , k , ) ,  
t = l  t = l  

k l ~ ] ~  1 , 

C t , k t ~ O .  

Here  y, = p , f ( k , )  - r,k, + rr tk  , is the consumer's labor income plus a lump sum 
rebate. Becker  shows that an equilibrium also solves 

max ~ (y(1 - r))tu(c,)  subject to 
t = 0  

c , + k t +  ~<~f(k , ) ,  t = l , 2  . . . .  , 

c,, k,  >1 0 .  

Danthine and Donaldson (1986) extend Becker 's  analysis to economies that 
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allow uncertainty. Judd (1987) shows that some similar, continuous time tax 
models also have equilibria that solve optimization problems without side 
conditions. He further argues that, although there are few cases in which 
equilibria of tax models can be computed exactly by solving an optimization 
problem without additional conditions on some of the parameters, research in 
this area may be helpful in updating guesses in iterative methods for computing 
equilibria. 

Suppose, for example, that we characterize the equilibria of either the 
dynamic economy with taxes in Example 7.2 or the dynamic economy with 
externalities in Example 7.3 as solutions to optimization problems that depend 
on a sequence z~, z 2 . . . .  of endogenous parameters. We start with a guess for 
this sequence, say, the steady state. We then solve the optimization problem 
for this guess of z, and then use the solution to update z t and so on. Kydland 
and Prescott (1977) and Whiteman (1983) discuss algorithms of this sort for 
computing equilibria in economies with externalities; Braun (1988), Chang 
(1988) and McGrattan (1988) have applied such algorithms to economies with 
taxes; and Ginsburgh and van der Heyden (1988) have applied such an 
algorithm to an economy with institutionally fixed prices. Further research is 
needed to see whether this algorithm has any advantages over alternatives. 
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