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The emphasis in discussions of uniqueness of equilibrinm has traditionally been on what
gualitative restrictions on the sttuctvrs of an cconvmy are sulliciont for wnigueness. Unlortunately,
these restrictions seem to be extremely stringent. In this paper we ask how common is a particular
feature of consymer excess demands required for multiplicity, namely, a violation of the weak
axiom of revealed preference, in a very tightly parameterized space of demand funetions. A
numerical investigation vsing a random number generator indicates that, at least in the very
narrow class of functions that we consider, this feature is very rare.
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1. Introduction

Recent investigations of conditions that ensure uniqueness of equilibrium in
general equilibrium models have made use of the tools of differential topology.
Following thc introduction of these tools into economic analysis by Debreu (1970),
Dierker (1972) has noticed that the concept of fixed point index can be used to
count the number of equilibria of a pure exchange economy. Mas-Colell (1984) and
Kehoe {1980a) have extended this analysis to economies with production, and
Kehoe (1982b) has provided a thorough discussion of the implications of this analysis
for the uniqueness question.

The emphasis in this discussion, and in other discussions of the unigueness
question, is on what qualitative restrictions on the structure of an economy are
sufficient for uniqueness of equilibrium. Unfortunately, these restrictions seem to
he extremely stringent. The emphasis on qualitative, rather than quantitative, restric-
tions follows a long tradition in economic theory, closely identified with Samuelson
(1947). In this paper we ask how common is a particular feature of consumer excess
demands required for multiplicity of equilibria, namely a violation of the weak
axiom of revealed preference, in a very tightly parameterized space of demand
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functions. A numerical investigation using a random number gencrator indicates
that, at least in the very narrow class of functions that we consider, this feature is
very rare. Although the subset of demand functions with this feature contains a
nonempty open set, it seems to be very small.

Our resuits are intended to stimulate more work on the uniqueness question,
which is a crucial question for applications of general equilibrium models in
comparative statics exercises. Currently, there is no good answer to this question.
On one hand, it seems that general conditions that guarantee the uniqueness of
equilibrium are impossibly restrictive, especially for models that allow taxes and
distortions (see Kehoe (1982a, 1982b)). On the other hand, there is at least some
evidence that uniqueness of equilibrium is not uncommon in practice. Kehoe and
Whalley (1982}, for example, have exploited the special features of two large scale
numerical general equilibrium models and carried out exhaustive searches that have
verified that both have unique equilibria.

2. The index theorem

The general equilibrium model considered in this paper is highly stylized. Its
consumption side is specified by an aggregate excess demand function £&:R3, »R”
that assigns any vector of strictly positive prices with a vector of aggregate net
trades. We assume that £ is completely arbitrary aside from the following assump-
tions:

A.l. £ is continuously differentiable.

A.2. £ is bounded from below; there exists weRY, such that £() = —w for all
meR..

Al If 7°#0, a)=0, and #'eR,, i=1,2,..., are such that 7'~ «° then
()] = 0.

A4, £ is homogeneous of degree zero; £(tm) = £(x) for all t> 0.

A5. ¢ obeys Walras’s law; #'é(w) =0,

We specify the production side of the model by an n X m activity analysis matrix
A. Kehoe (1983) explains how our analysis can be extended to more general
production technologies. We assume that A is arbitrary except for the following
assumptions:

A6, A allows free disposal; in other words, the n X n matrix —/ is a submatrix
of A,

A.7. There exists some # > 0 for whch 7' A =< 0; this is equivalent to the assumption
that the only vector Ay=0, y =0, is Ay =0.

An equilibrium of the economy (&, A) is a price vector # that satisfies the following
conditions:

BN, TASO.

E.2. &(#)= Ay for some $=0.

E.3. #'e=1 where e=(1,...,1).
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Lot Sq={meR"|»'A=s0, w'e —1}. A.7 implics that S, Is nonempty. A.6 implies
that it is a subset of the unit simplex §={meR"|7=0, #'e=1}. It is obviously
compact and convex. To prove the existence of equilibrium for this model we
construct a continuous single-valued map of S into itsclf whose fiscd points satisfy
the equilibrium conditions E.1-E.3. Let p®a:R" - S, be the map that associates a
point g € R" with that point in S, that is closest to g in terms of euclidean distance.
Let g(w) = pSa(m + £(mm)).

Theorem 1, 7 is an equilibrium of (£, A) if and only if 7 = g(#).

Proof. g=g(n) solves the problem of minimizing (g — 7 — £(7)) (g — 7 — £(=))
subject to the constraints g'A=0 and g'e =1. The Kuhn-Tucker theorem says that
g solves this problem if and only if there exist ye R} and A € R such that g— o —
é(m)+Ay+ie=0and g'Ay=0. At a fixed point g{#)=#, and these conditions
become —£(#)+Af+Ae=0 and #'A7=0. Walras’s law now implies that i =0.
Consequently, #(#)= Aj, and, since we already know that #*/A=0 and #'e=1, #
is an equilibrium if it is a fixed point. Conversely, if # is an equilibrium, we can
set y equal to  and A equal to 0 to demonstrate that it is a fixed point of g. [

The construction of the map g is based on similar least-distance maps used by
Eaves {1971} and Todd (1979). There is 2 minor technical problem that £ and
possibly g, is not continuous on the boundary of R. Kehoe (1982b), however, -
demonstrates that it is possible to replace £ with another map £* that is continuous,
in fact continuously differentiable, on all R", that agrees with £ on some neighborhood
of every equilibrium of (£ A), and that is such that every equilibrium of (£*, A} is
an equilibrium of (£ A). Consequently, we are justified in assuming that g is
continuous on S. :

To demonstrate the existence of equilibrium we appeal to Brouwer’s fixed point
theorem, which states that any continuous map of a nonempty, compact, convex
set into itseif has a fixed point. We can motivate this theorem using a graph of the
one dimensional case, such as that in Fig. 1. Suppose that g{s) is a continuous
function from the unit interval into itself: 0= g(#) =1 for any ¢ = 7 < 1, Brouwer’s
fixed point theorem says that g must cross the diagonal, where = = g( ), at least once.

More than this can be said, however. Suppose that all fixed points of g lie in the
interior of the interval, that g is continuously differentiable in some neighborhood
of every fixed point, and that the graph of g is never tangent to the diagonal. Then
the graph of g must first cross the diagonal from above; after that, it crosses once
from above for every time it crosses from below. Let us assign a fixed point # an
index +1 if the graph of g crosses the diagonal from above at # and an index —1
if it crosses from below. To compute index(#) we need only find the sign of the
expression (1—(dg/d7}(#)). The index theorem says that the sum of the indices
of all equilibria is +1. Consequently, there is an odd number of equilibria, and, if
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index(#7) = +1 at every equilibrium, then there is a unique equilibrium. If, however,
index(#)=—1 at any equilibrium, then there are multiple equilibria.

Simple calculus arguments suffice to prove Brouwer’s fixed point theorem and
the index theorem for the one dimensional case. Although the arguments for the
general case involve more complex topological issues, analogous results hold:
Suppose that all fixed points of g are interior to S, that g is continuously differentiable
in some neighborhood of every fixed point, and that T — Dg(#) is nonsingular at
every fixed point. Let the index of a fixed point # be +1 ar —1 depending on the
sign of the expression det[I — Dg{#)]. Again the sum of the indices of all equilibria
is +1. This implies that there exists at least one equilibrium and that a necessary
and sufficient condition for uniqueness of equilibrium is that index(#) = +1 at every
equilibrium. A proof of this index theorem is given by Kehoe (1980).

To ensure that g is continuously differentiable at its fixed points we impose two
additional assumptions on (£ A):

A.8. No column of A can be expressed as a linear combination of fewer than n
other columns,

A9. Any column of A that earns zero profit at equilibrium # is associated with
a strictly positive activity level; 7#'a; =0 implies that 7> 0.

The following result is an easy application of the implicit function theorem.

Theorem 2. Suppose that (£, A) satisfies A.8 and A.9 and that « is an equilibrium of
(£, A). Let B be the n xk submatrix of A made up of all those columns that satisfy
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#'B= 0. and let C=[B e). Then g is continuously differentiable in an open neighbor-
hood of 7 and Dg(#)=(I - C(C'C)"'C")(I + D¢(#)).

Kehoe (1980} proves that every economy in an open dense subset of the topological
space of economies satisfies A.8, A.9, and the condition that (J — Dg( 7)) is nonsin-
gular at every equilibrium. Economies that satisfy these conditions are called regular
economies. We focus our attention on regular economies becanse almost all
economies in the topological space of economies are regular.

The topology that we give to the space of economies is a very natural one: We
give the space of demand functions £ the topology of uniform C! convergence on
compact sets; two demand functions are close if their values and the values of their
derivatives are close at all prices in some compact subset of R”,. We give the space
of activity analysis matrices the standard euclidean topology; two activity analysis
matrices are close if their columns are close as vectors in R”. We find that, when we
apply our regularity conditions to appropriately chosen finite dimensional subspaces
of the space of all economies, regular economies form an open dense subset of .
full Lebesgue measure. There is some need to stress this point since Grandmont,
Kirman, and Neuefeind (1974) have demonstrated that very restrictive properties
can be shown to be generic if the topology given the space of economies is strange
enough.

The preceding discussion can be summarized in the following theorem.

Theorem 3. Suppose that (£ A) is a regular economy. Let index(#)=
sgn(det{ C(C'C) "' C'(J + DE(#)) — DE(#)]). Then X index(#)=+1 where the sum
is over all equilibria.

To use the index theorem to discuss economic conditions sufficient for uniqueness
of equilibrium we need to obtain alternative expressions for index(#}. We can do
this by perfurming clementary row and column operations on the matrix (I — Dg(#))
that do not change its determinant. We present several alternative expressions as
corollaries to Theorem 3.

0 e’ 0
Corollary 1. index(#)=(-1)"sgn{ det| ¢ D¢(#) B
1] B 0

Proof. Since C'C is positive definite, index(#) has the same sign as

n DR -Cc(C’C)y'C'(I+Dg(w)) C ]
{(-1) det[ 0 cel

Postmultiplying the second column of this matrix by {C'C) 'C'(I1 D¢(#)) and
adding it to the first column, we do not change its determinant. Premultiplying the
first row of the resulting matrix by C' and subtracting it from the second row, we
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obtain

FDé(#) B el
] =({-1)" det B’ 0 0
e’ 0 0

Dg(#) C

(—1)"det[ o

FO e’ 0
=(~1D"det| e DE(7) B,

which is the desired expression. [J

Corollary 2. index(#) = (-1)" sgn(det[Dg(qg,h e g])

Proof. Postmultiplying the first column of the matrix obtained in Corollary 1 by
¢’ and subtracting it from the second column, we can establish that index(#) has
the same sign as

0 e 0
(-1)"det| e Dé(#)—ee’ B.
0 B’ 0
We now post-multiply the second column of this matrix by 7 and add it to the first.

Using the homogeneity of £ which implies that DZ(7)# =0, the zero profit condition
#'B =0, and the price normalization #'e =1, we obtain

1 e 0
Dé(my—ee’ B
(—1)" det| 0 Dg(#)—ee' B =(—1)“det[ f(’”g, e 0]. 0
0 B’ 0

Let J denote the (n— 1) % (n# — 1) matrix formed by deleting some row and column
i from Dg(#). Let B be the (n—1) x k matrix formed by deleting the same row

from B.

-J B
Corollary 3. index{(#) = sgn(det [—E‘ O—J)

Proof. Assume that i=1, Corollary 2 implies that index{#) has the same sign as

—-Dé(m)+ee’ B
det[ _g 0].

We add each column j=2,..., n multiplied by the corresponding 7, to the first
column multiplied by #,. Again using the homogeneity of ¢, the zero profit condition,
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and the price normalization, we can write out the expression that we are left with as

[_ A, 23 7
1 ——+1 - ——4 b AR
Py am, 1 1 b1
(73] 7
1 =224 e w22 v
Py 1 67rn+1 by, by
F0det | Ly :
T ae 1 __..__‘f_"+1 v ".?.§L+1 By o bl
am; am,
0 -‘b;n o ”"‘b,” 0 e 0
L0 —by -+ —by 0 -+ 0

We can reduce this exprescion to the desired one in easy steps: first, we subtract
the first column of the above matrix from each column 2 through n. Second we add
each row i=2,...,n multiplied by the corresponding #; and each row i=
n+1,..., n+k multiplied by the corresponding j, , to the first row multiplied by
. Finally, we use Walras’s law, which implies that #'Dé(#) = —£&(#)' =—7'B', to
abtain

1 0 0
#ridet| e -J B{,
0 -B" 0

which obviously has the same sign as

-J B
det[_ﬁ, 0]. O

3. Uniqueness of equilibrium

The condition that index(#)=+1 at every equilibrium is necessary as well as
sufficient for unigqueness of equilibrium in almost all cases. Consequently, it is not
surprising to find that most previous theorems dealing with uniqueness of equilibrium
are special cases of our index theorem. In this section we discuss two conditions
traditionally associated with uniqueness of equilibrium, grass substitutability and
the weak axiom of revealed preference. '

An excess demand function ¢ that satisfies A.1-A.5 is said to satisfy gross
substitutability if (3£,/Am,) {7} >0 forall i j and all xR7 . It is well known that
gross substitutability in & implies uniqueness of equilibrium in & pure exchange
economy where A = —7 (see Arrow, Block and Hurwicz (1959)). This result is trivial
to demonstrate using our index theorem: The homogeneity assumption, when
differentiated, implies that Dé(m)ar=0. Therefore the matrix -J has positive
diagonal elements and negative off-diagonal elements. Furthermore multiplying
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each column j=1,..., n~10of —J by the positive scalar ;.1 and adding up produces
a strictly positive vector since

‘,i 08/ [om)(#) = (08 /0omN#)>0, i=2,...,n

Consequently, —J has the same form as a productive Leontief matrix: that is, =J
is a P matrix, a matrix with all its principal minors positive. This implies that
index({#) =sgn(det{-J]) =+1 at every equilibrium and, therefore, that there is a
unique equilibrium.

In economies with production gross substitutability in demand does not seem to
play a major role in uniqueness theorems. Indeed, in the next section we present
an example with four commodities in which the excess demand function satisfies
gross substitutability but in which there are multiple equilibria. Such an example
cannot be constructed with fewer than four commodities, however: If n <3, gross
substitutability in demand implies uniqueness. To demonstrate this, we employ the
following lemma,

Lemma 1. LetJ, B be defined as previously. If B has n — 1 columns, then index(#) = +1.

Proof. The (n—1)x(n—~1) matrix B is square and, by A.8, nonsingular. Therefore
-7 R .
det [—5’ 0] =det[B'B].

Since B'B is positive definite, index(#)=+1. O

First consider the case where n =2, Either production takes place at equilibrium
or it does not. If it does not, we know index(#) = +1 because —J is a P matrix, in
this case a positive scalar. If production does take place there must be exactly one
activity in use since #'B =0 but A.8 implies that B has full column rank. Therefore
index(#) = +1 by Lemma 1. The reasoning for the case where n = 3 is similar; There
are cither zeru, une, ur two activities in use in equilibrium. If there are zero or two,
then index(#) = +1 by the above reasoning. Suppose that there is one. Then choose
the element to be deleted from the 3 X1 vector B to form the 2 x 1 vector B so that
the two elements that remain have the same sign. Then the 3 X3 matrix

r-F B]
L-B 0

has one of the following sign patterns:

[+ -+ + - -
- + + or -+ -
- -0 + + 0

In either case the determinant is unamhiguously positive and index{#) = +1.
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Our arguments have yiclded the following theorem,

Theorem 4. If the economy (£, A) is such that £ exhibits gross substitutability, then it
has a unique equilibrium if either A= I, that is, (£, A) is a pure exchange economy,
orn<3j.

That ¢ exhibits gross substitutability does not, in general, imply that (£ A) has
a unique equilibrium. If, however, £ satisfies the weak axiom of revealed preference,
then (£, A) does have a unique equilibrium. In fact, this is the only condition that
can be imposed on £ independently of A that implies uniqueness: If ¢ does not
satisfy the weak axiom, then a matrix A can be constructed so that (£ A) has
multiple equilibria.

£ is said to satisfy the weak axiom of revealed preference if, for every 7', w7 e R",,
'/ 7| # w2/ ||7?| and w"&(wr?)=0 imply w¥&(x')>0. That this condition is
sufficient for uniqueness of equilibrium in production economies was first demon-
strated by Wald (1951).

Theorem 5. If an economy (£ A} is such that £ satisfies the weak axiom of revealed
preference, then it has a unique equilibrium.

Proof. Suppose instead that (£ A) has multiple equilibria and let 7' and 72, 7% # 77,
be two of them. Then £(7') = Ay' and 7 A =0 imply that #*'£(#') =<0, Similarly,
£(wD=Ay? and 7w A=<0 imply that w"&(%%)=0. This, howcver, contradicts thc
assumption that £ satisfies the weak axiom. [

That the weak axiom ig actually necesgary for uniqueness of equilibrium if the
production technology is arbitrary was shown to the writer by Herbert Scarf.

Theorem 6. Suppose that the excess demand function ¢ violates the weak axiom of
revealed preference. Then there exists an activity analysis matrix A that satisfies A.6-A.7

and is such that (& A) has multiple equilibria,

Proof. If £ violates the weak axiom, then there exist #', »*eRY,, #='/l='| =
7%/ | 7|, such that #"¢(7*) <0 and 7" E(w")<0. Let a' = £(m"), a*=¢(w?), and
A=[~I a' a’]. A obviously satisfies A6 and A.7. Since both #'/(e'w') and
a*/(e'7") satisfy the equilibrium conditions, (£ A) has multiple equilibria. O

To understand the relationship between these two theorems concerning the weak
axiom and uniqueness with the index theorem, we need to characterize the weak

axiom in terms of the derivatives of &

Theorem 7. Suppose that ¢ satisfies the weak axiom of revealed preference on some
open set U< R, that contains . Then DE(m) is negative semi-definite on the null
space of £(w); that is, v’ DE(m)v <0 for all ve R" such that v'é(7)=0.
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Proof. Much of our argument follows onc given by Kihlstrom, Mas-Colell, and
Sonnenschein (1976). See also Freixas and Mas-Colell (1983) and Kehoe (1980b).
Letting 7 and o+ v be points in U such that #/ || # (7 +v)/ |7+ v|, we define
(1) — 7 + tv. Since each ¢; is continuously diffcrentiable, we can usc the definition
of partial derivative to establish that

&

(W) /4ol

O=lim &(m(6)) &) E('TJ(I) ),

=

Since tv; = m;(t) — m;, we can multiply this expression by (Jvll/ £){#:(t) — ) to abtain

O=lim | (1/P)(m,(t) = m) (& m (1)) - &(m)) - Evvja (7).

>0 j=1

Summing over i —1,..., n yields

0=lim (l/tz)(W(t) Ty (E(m(0) - - ¥ 3 vavj—(w)|

10 i=1j=1

Walras’s law implies that

(m (1) =m)) (&(m(0)) - £(m)) = ~ () é(m) — 7' E(ar (1)),

Now suppose that v'&(w)=0, Then #(t)'&(w)=w"E(w)+ w'é(m)=0. The weak
axiom therefore implies that #'£((1)) > 0. Consequently,

v'DE(m)v = Z ): vvj—f(w‘)<0 O

i=1j=1

Let A be an n X n matrix, not necessarily symmetric, and let B be an n Xk matrix,
k=n. A, denotes the i Xj matrix, 1<i<n, 1<j<n, formed by keeping only the
elements in the first i rows and j columns of A. B; denotes the matrix formed
similarly. Let p be a permutation of the first n integers. A” denotes the matrix
obtained from A by performing the permutation p on its rows and columns. B”
denotes the matrix obtained from B by performing the permutation p on its rows.
The following three lemmas are classical results from the theory of constrained
optimization (see, for example, Debreu (1952)).

Lemma 2. If v'Av>0 for all veR" such that v#0 and v'B=0 and if B has full
column rank, then

AL B
de‘[ﬂBﬁé 0 ]

Jorualli—k+1,...,n and all p.

Lemma 3. If v'Av=0 for all veR" such that v'B =0, then
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AZ B'.’k]
det , =
e [—Bfk '

foralli=k+1,...,n and all p.

Lemma 4. If

la,4+147 B
dt 25 248y ik]>0
e[ ~Bi 0

Joralli=k+1,...,n, then v Av=>0 for all ve R" such that v#0 and v'B=0.

Suppose that £ satisfies the weak axiom. Then —v'D¢(7)v =0 for all v such that

t'[B e]=0 since v'Bj=v'#(#) implies that v'£(#)=0. Consequently, Lemma 4
implies that

0 ¢ 0 -Dg(#) B e
(—1)"det| e Dé&{#) B =det -B 0 0)]=0
0 B’ 0 —e' 0 0

This can be viewed as an alternative proof of Theorem 5, that the weak axiom
implies uniqueness of equilibrium. It actually proves more, that a local version of
the weak axiom implies uniqueness of equilibrium, In fact, since the weak axiom

is necessary for uniqueness of equilibrium if the production technology is arbitrary,
but the local version of the weak axiom in Theorem 7 is sufficient for uniqueness,

at least in the case where the above determinantal expression is strictly positive, we
have demonstrated the following result.

Theorem 8. Suppese that, for every weRY,, v'DE(w)v <0 for all veR" such that
v#0, v/|v|| #7/|7w|, and v'&(w) =0. Then ¢ satisfies the weak axiom of revealed
preference.

Freixas and Mas-Colell (1983) provide a direct proof of this theorem.
The next result provides us with a simple test for checking whether the weak
axiom is satisfied.

Theorem 9. Suppose that

—3DE(m); —3DE(m)  E(m),
e AT 7o

forall i=2,...,n~1 and all weR . Then ¢ satisfies the weak axiom of revealed
preference.

Proof. Let J denote D&(ar) with the last row and column deleted and let ® denote
£(7r) with the last element deleted. If the above inequalities are satisfied, then



T.J. Kehoe | A numerical investigation of multiplicity of equilibria 251

~v'Jv>0 for every ve R"™" such that v 0 and v'% =0 by Lemma 4. Suppose that
B is an (n—1) Xk matrix such that Bj = x for some € R%. Then —v'Jy > 0 for every
v€R"™! such that v %0 and v'B=0, Lemma 2 therefore implies that

~J B
_ > (.
det[_ 7 o ]
The desired result now follows directly from Theorem 6. M1

Our investigations have produced another result, which is an immediate con-
sequence of Theorem 4 and Theorem 6.

Theorem 10. If £ exhibits gross substitutability and n <3, then ¢ satisfies the weak
axiom of revealed preference,

Kehoe and Mas-Colell (1984} provide a direct proof of this theorem, one that
dispenses with the assumption of differentiability.

4. A numerical example

In this section we study a numerical example of an economy with four goods
that has multiple equilibria. An interesting feature of this example is that the excess
demand function & exhibits gross substitutability.

To construct this example, we begin by searching for matrices J and B that satisfy
the relevant properties and are such that

-J B
det[—B" 0] <.
Let us normalize quantities of the good so that #=e=(1, 1, 1, 1). It can easily be
verified that this has no effect on the sign of the above determinant because it merely
rescales the first n — 1 rows and n — 1 columns. The homogeneity assumption implies
that DE(7)# =0; that is, that the row sums of D¢{#) must equal zero. Walras’s
law implies that #'DE(ar) = —£&(7)'. The condition that demand equals supply in
equilibrium requires that +'Dg(#)=—3'B’ for some § 0. The condition that the
activities in B earn zero profit requires that 7'B =0; that is, that the column sums
of B equal zero.
A pair of matrices that satisfy these conditions are

267 43 200 24 6 -1

20 —200 80 100 103

Ay B-= .
Dei#) 2 1 -4 1] -4 -1

2 1 1 -4 -1 -1
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The row sums of DE(#) are zero, as are the column sums of B. Furthermore

~267 20 2 21 243 6 -1
43 —200 1 11| | 155 |-1 3 [52
200 80 -4 11 oyl
1

~277|7 -4 =1
24 100 1 -4 121 -1 -1

Although D¢(#) satisfics the conditions required for gross substitutability, it violates
those required for the weak axiom: We can easily see this by deleting the first row
and column from D&(#) to form J, deleting the first element from —Dé&(7)'# to
form %, and computing

A Y
-5 0l"

MI-—

det

The answer is —23 072 119. Lemma 3 and Theorem 7 imply that any demand function '
£ consistent with D£(#7) must violate the weak axiom.
Let us compute index(#):

. AN _j B-
1ndex(1r)—sgn(dct _5 0})

200 -—80 —-100 -1 3
1 4 -1 -4 -
=ggn(det| ~1 -1 4 -1 —1]|=sgn(-323)=-1.

—
a
—
L]

0
0

Theorem 3 implies that any economy (£ A) consistent with D¢g() and B has
multiple equilibria. To construct such an economy is relatively easy: To construct
A we merely augment B with disposal activities. To construct { we find four
Cobb-Douglas consumers whose aggregate excess demand function £ generates
D¢(#). Suppose that consumer b maximizes ZL, a! log x; subject to the budget
constraint ZL, mx;=Y,., mw;. Then his excess demand for good j is

gim=a( L mwt)/m-w.

The partial derivatives of the aggregate excess demand function £ can easily be
computed as

35'( )= (éla?w?)/m— Lo« (Z W )/“"

h=1
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Since we have normalized all prices cqual to unity, the problem of paramcterizing

this economy is reduced to finding sixteen numbers «! and sixteen numbers w!
that satisfy wi =0, a?=0, ¥_ al=1, and

ol a2 ot o (wl owi owl o wi * 43 200 24
ay a} o} af||wi wi wi wi| |20 = 80 100
al o o) aeiflwl wi owl wi| |2z 1 = ik
ab o) o} eillw! wi wi wi 2 1 1 #

where the elements denoted *, ¥, _, awl', are of no consequence. It greatly facilitates
the calculation of these parameters, but is by no means necessary, to choose one

of the matrices on lefthand side of the above equation to be diagonal. One pair of
matrices, out of an infinite number of possibilities, that satisfy these restrictions is

[al o} o} af] [0.5200 0.8600 0.5000 0.0600
a, a) a3 o 0.4000 0.1000 0.2000 0.2500

al a2 a3 af| |0.0400 0.0200 02975 0.0025|
la) @i ai oil |0.0400 00200 0.0025 0.6875

wlowl o owlowl 50 0 0 0
wh owl owi wl 0 50 0 0
wiowl owl wil |0 o 400 of
L wh wi wi wi 0 0 0 400

This economy, and indeed any other whose parameters satisfy the above restric-
tions, has an equilibrium where # = (1,1, 1, 1), #=(0,0, 0, 0, 52, 69), and index() =
—1. Therefore it has multiple equilibria. Usually this is all we can say if we cannot
guarantee that an economy has a unique equilibrium: In general it is an impossible
task to compute all of the equilibria of an economy. Kehoe (1984), however,
exploits some special features of this example to show that it has exactly two more
equilibria, one where 7= (0.637, 1.000, 0.155, 2.208) and 7= (0, 0, 0, 0, 42.701,
81.198) and another where # = (1.100, 1.000, 1.235, 0.665) and # = (0, 0, 0, 0, 53.180,
65.148). Another choice of parameters that satisfy the above restrictions would, of
course result in different equilibria. The essential feature of our example is that any
choice of parameters, and indeed of functional forms, of the consumer’s demand
functions that generates the Jacobian matrix D&(#) at 7 =(1, 1, 1, 1) results in an
economy with multiple equilibria. '

5. A numerical investigation

In this section we attempt to answer the question of how perverse is the example
presented in the previous section. In particular we ask how commen it is for a 4 X4
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matrix DE(#) that satisfies the gross substitutability conditions to violate the condi-
tions required for the weak axiom. In one obvious sense there is nothing at all
perverse about the example: The example is.a regular economy, and any small
perturbation in ¢ or A results in another economy with multiple equilibria. Further-
more any small perturbation in ¢ results in an excess demand function that satisfies
gross substitutability but violates the weak axiom. Fven so, numerical investigation
seems to indicate that, at least in the case where i = 4, such excess demand functions
are rare.

The focus of our investigation is on 4 x4 matrices I? whose elements satisfy the
properties d; <0, d;>0 for i # j, and Z?_,l d; =0, As we have seen in the previous
section such a matrix is a Jacobian matrix DEg(ar) evaluated at #=(1,1,1,1) of an
excess demand function that satisfies gross substitutability. The condition that
Z;=| dy = 0 says that the matrix D is completely determined by the twelve off-diagonal
elements dj, i # j. Furthermore, we can scale these elements so that 0 < dy<1; The
Jacobian matrix in the previous example could have been scaled as

—-1.068 0172 0800 0.096
0.080 0800 0320  0.400 .
0.008 0.004 —0.016 0.004 |’
0.008 0004 0.004 -0.016

it would have given rise to an economy with the same equilibria, except for a
rescaling of activity levels, as the previous one,

Let us assume that twelve numbers dy, i# j, are independently and identically
distributed uniformly on the interval [0, 1]. The question that we ask is what is the
probability of finding a matrix D that corresponds to an excess demand function
that satisfies gross substitutability but violates the weak axiom. The procedure that
we follow can be best understood by considering an example: Suppose we choose
twelve numbets at random from the unit interval and get (0.5, 0.4, 0.7, 0.1, 0.5, 0.3,
0.2, 0.8, 0.9, 0.6, 0.0, 0.3). We arrange them in order in the matrix D, filling in the
diagonal elements so that row sums are zero:

-16 05 04 07
0.1 =09 05 03
0.2 0.8 -1.9 0.9 |
06 00 03 -09

D:

Walras’s law says that the value of ¢(#) can be computed as the negative of the
column sums:
0.7
—0.4
0.7 |
~1.0

()=
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To test whether D corresponds to an excess demand function that satisfies the weak
axiom we nieed only check that

1.6 -05 -04 07
-~0.1 09 -035 -04
-0.2 -038 1.9 0.7
0.7 04 -07 0

det

is positive becaunse we already know that the determinant of this matrix with one
row and column deleted, in this case

1.6 —-04 07
det| -02 19 0.7/,
=07 -7 0

is positive because it has the right sign pattern. That these conditions are sufficient
for the weak axiom to be satisfied locally by any demand function £ that generates
Dg(#) = D follows immediately from Theorem 9 and a reordering of rows and
columns of D. In this example the weak axiom is satisfied because the crucial
determinant is equal 10 1.1643. '

To estimate the percentage of matrices of the form D, distributed as described
above, that correspond to an excess demand function that violates the weak axiom,
250 000 twelve-tuples of random numbers were generated on a computer and the
properties of the corresponding D matrices analyzed as above. Unlike the numbers
in the above exatmple, each of the elements d; was stored as a double precision real
numbcr, which has about fiftcen significant figurcs. Of theae 250 000 examples exactly
250 000 corresponded to demand functions that satisfy the weak axiom and 0 to
ones that do not.

This result is startling: We have an example, the one in the previous section, that
violates the weak axiom. Furthermore, we know that any small perturbation in this
example still ‘violates the weak axiom. In other words, we know that there is a
nonempty open set of matrices I in the space of all 4 X4 matrices parameterized
by the twelve numbers dy, i# j, that correspond to violations of the weak axiom.
Since an open set cannot have measure zero, it follows that the true answer to the
question we are asking cannot he that 0% of the I2 matrices correspond to violations
of the weak axiom, We can, however, put very stringent upper bounds on what this
number must be: Let p be the proportion of matrices that correspond to violations
of the weak axiom. Suppose that our prior distribution of p is that it is uniformly
distributed between 0 and 1. We can calculate the Bayesian 1 — « probability interval
[0, x] by finding the value of x that solves

a=Pr(p=x|n=0)=Pr(n=0|p=x)Pr(p=x)/Pr(n=0)
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(J v/ ([0

Y L 1 b
= (250 TR )(1 -/ (250 001)
= (] — x)250002,

A list of values for @ and corresponding upper bounds for p are given below:

o X

0.05 0.00001198

0.01 0.00001842

0.001 0.00002763

0.00001 000004605

1.0x 1071 0.00092060
N 6.1649 x 1071992 0.01

Notice that we can be sure with very high probability that p is a miniscule number.

As another measure of how rare we would now estimate violations of the weak
axiom to be we can calculate the mean of the posterior distribution of p. The
posterior cumulative distribution is F(y)=1—(1-y)*%"" as we have calculated
above. The posterior density function is its derivative, 250 002(1 ~ »)**°°°". The mean
of the posterior distribution is, therefore,

1
B _ 250001 —_
E(p)= L 250 000y (1 =)™ dy = 5ie3

Notice how small this number is compared with the mean of the prior distribution,
1. Notice too how little effect the prior has on any of our calculations because of
the large number of observations.

To appreciate how startling this result is let us compare them with analogous
results obtained for 250 000 random examples where the numbers dy, i+ j, were
independently and identically distributed uniformly on the interval [-1, 1]. We are
now trying to estimate the proportion of all Jacobian matrices D(#), not just those
that satisfy the gross substitutability conditions, that violate the conditions required
for the weak axiom. In this case of these 250 000 examples 49 308 corresponded to
demand functions that satisfy the weak axiom and 200 692 to ones that do not. Our
estimate of the proportion of general Jacobian matrices that violate the weak axiom
is 0.802768. Incidentally, the proportion of general Jacobian matrices that satisfy
the gross substitutability conditions is 27'? = 0.000244. Of the 250 000 examples 66
actually satisfied the gross substitutahility conditions. We would have estimated that
61 = (250 000)(27'%) would satisfy these conditions. All of these 66 examples satisfied
the conditions required for the weak axiom.
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6. Concluding remarks

Although the results we have obtained are indeed startling, caution should be
used before drawing any conclusions from them. Perhaps they do no more than
reminding us, in a very vivid way, that, although a non-empty open set cannot have
measure zero, it can be very small, It may be the case that the major reason we get
our results is simply that 4 is the next integer after 3: Gross substitutability coupled
with a violation of the weak axiom is impossible when n =3, rare when n=4, but
more and more common as n increases. It would be worth investigating this point.
Itis alse worth reminding ourselves that gross substitutability itself is a very restrictive
property of demand functions. Nevertheless, our resulis indicate that perhaps too
much emphasis has been put on studying qualitative restrictions that guarantee
uniqueness of equilibrium. Perhaps nonuniqueness is common in practice, but our
results give some hope that it is not.
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