Economics 4113, Spring 2009. Instructor: David Rahman, University of Minnesota.
Homework 1—Due February 9, 2009

1. Sketch the cone generated by the columns of the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
1 & 1 & 2
\end{array}\right]
$$

What is the cone generated by the first and third columns of the matrix? If $b=(1,0)$, decide whether or not the system $A x=b$ has a solution $x \geq \mathbf{0}$.
2. Sketch the cone generated by the columns of the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
-1 & 3 & -2
\end{array}\right]
$$

3. Sketch the hyperplane generated by the following equation in \mathbb{R}^{2} :

$$
x_{1}-2 x_{2}=3 .
$$

Identify the set of vectors in \mathbb{R}^{2} such that $x_{1}-2 x_{2}<3$, as well as the set of points such that $x_{1}-2 x_{2}>3$. Now repeat this exercise with the equation $x_{1}+2 x_{2}=3$ instead.
4. Prove the following statements given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^{m}$:
(a) Either $A x \geq b$ has a non-negative solution x or there is a non-negative solution y such that $y A \leq 0$ and $y b>0$, but not both.
(b) Either $A x=\mathbf{0}, \sum_{i} x_{i}=1$ has a non-negative solution or there exists $y \in \mathbb{R}^{m}$ such that $y A \gg \mathbf{0}$, but not both.
(c) Either $A x=\mathbf{0}$, has a nonzero, non-negative solution or there exists $y \in \mathbb{R}^{m}$ such that $y A \gg \mathbf{0}$, but not both.
(d) Either $A x \leq b$ has a solution or there exists $y \in \mathbb{R}_{+}^{m}$ such that $y A \geq \mathbf{0}$ and $y b<0$, but not both.
(e) Either there exists $x \gg \mathbf{0}$ such that $A x=\mathbf{0}$ or there exists $y \in \mathbb{R}^{m}$ such that $y A>\mathbf{0}$, but not both.
(f) The system $A x \ll b$ has a solution if and only if $y=\mathbf{0}$ is the only solution to $\{y A=\mathbf{0}, y b \leq 0, y \geq \mathbf{0}\}$.
(g) Let $F=\left\{x \in \mathbb{R}^{n}: A x \leq \mathbf{0}\right\}, c \in \mathbb{R}^{n}$ and $G=\left\{x \in \mathbb{R}^{n}: c x \leq 0\right\}$. Prove that $F \subset G$ if and only if there exists $y \in \mathbb{R}_{+}^{m}$ such that $c=y A$.
5. A put option gives the holder the right to sell a stock at a prearranged price, K. If tomorrow's stock price S satisfies $S<K$ then the option holder's optimal strategy is to exercise her put option, i.e., sell the stock at price K to obtain a benefit of $K-S$. Otherwise, if $S \geq K$ then the put option becomes worthless.
(a) Sketch the graph of the terminal value of a put option with strike price K as a function of the terminal value of the stock S.
(b) If the stock price increases by a factor of u with probability p and decreases by a factor of d with probability $1-p$ and interest rates on bonds are equal to r, determine the price of a put option.
6. Consider the following multi-period version of the previous model. There are three periods, indexed by $t=0,1,2$, with $t=0$ signifying today. There are two assets: a bond that pays an interest rate equal to r every period, and a stock. In every period, the price of the stock can either increase by a factor of u with probability p or decrease by a factor of d with probability $1-p$.
(a) A European call with maturity date T and strike price K gives its holder the right to buy a stock at price K on date T. Suppose that $T=2$. Calculate the price of the European call ...
i. ... in period $t=1$ assuming that the stock price went up.
ii. ... in period $t=1$ assuming that the stock price went down.
iii. ... in period $t=0$.
(b) An American call with maturity date T and strike price K gives its holder the right to buy a stock at price K on any date up to and including T. Suppose that $T=2$. Calculate the price of the American call \ldots
i. ... in period $t=1$ assuming that the stock price went up.
ii. ... in period $t=1$ assuming that the stock price went down.
iii. ... in period $t=0$.
(c) Is it ever optimal to exercise the American call early, i.e., at any period t less than T ?

Acknowledgement: Questions 1,2 and parts of 4 were taken from Vohra's (2005) book, specifically his exercises at the end of Chapter 2.

