Economics 4113, Spring 2009. Instructor: David Rahman, University of Minnesota.

Homework 1—Due February 9, 2009

1. Sketch the cone generated by the columns of the following matrix:

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$

What is the cone generated by the first and third columns of the matrix? If b = (1, 0), decide whether or not the system Ax = b has a solution $x \ge 0$.

2. Sketch the cone generated by the columns of the following matrix:

$$A = \left[\begin{array}{rrr} 2 & 1 & -3 \\ -1 & 3 & -2 \end{array} \right]$$

3. Sketch the hyperplane generated by the following equation in \mathbb{R}^2 :

$$x_1 - 2x_2 = 3.$$

Identify the set of vectors in \mathbb{R}^2 such that $x_1 - 2x_2 < 3$, as well as the set of points such that $x_1 - 2x_2 > 3$. Now repeat this exercise with the equation $x_1 + 2x_2 = 3$ instead.

- 4. Prove the following statements given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$:
 - (a) Either $Ax \ge b$ has a non-negative solution x or there is a non-negative solution y such that $yA \le 0$ and yb > 0, but not both.
 - (b) Either Ax = 0, $\sum_i x_i = 1$ has a non-negative solution or there exists $y \in \mathbb{R}^m$ such that $yA \gg 0$, but not both.
 - (c) Either $Ax = \mathbf{0}$, has a nonzero, non-negative solution or there exists $y \in \mathbb{R}^m$ such that $yA \gg \mathbf{0}$, but not both.
 - (d) Either $Ax \leq b$ has a solution or there exists $y \in \mathbb{R}^m_+$ such that $yA \geq \mathbf{0}$ and yb < 0, but not both.
 - (e) Either there exists $x \gg \mathbf{0}$ such that $Ax = \mathbf{0}$ or there exists $y \in \mathbb{R}^m$ such that $yA > \mathbf{0}$, but not both.
 - (f) The system $Ax \ll b$ has a solution if and only if $y = \mathbf{0}$ is the only solution to $\{yA = \mathbf{0}, yb \leq 0, y \geq \mathbf{0}\}.$
 - (g) Let $F = \{x \in \mathbb{R}^n : Ax \leq \mathbf{0}\}, c \in \mathbb{R}^n \text{ and } G = \{x \in \mathbb{R}^n : cx \leq 0\}$. Prove that $F \subset G$ if and only if there exists $y \in \mathbb{R}^m_+$ such that c = yA.

- 5. A put option gives the holder the right to sell a stock at a prearranged price, K. If tomorrow's stock price S satisfies S < K then the option holder's optimal strategy is to exercise her put option, i.e., sell the stock at price K to obtain a benefit of K - S. Otherwise, if $S \ge K$ then the put option becomes worthless.
 - (a) Sketch the graph of the terminal value of a put option with strike price K as a function of the terminal value of the stock S.
 - (b) If the stock price increases by a factor of u with probability p and decreases by a factor of d with probability 1-p and interest rates on bonds are equal to r, determine the price of a put option.
- 6. Consider the following multi-period version of the previous model. There are three periods, indexed by t = 0, 1, 2, with t = 0 signifying today. There are two assets: a bond that pays an interest rate equal to r every period, and a stock. In every period, the price of the stock can either increase by a factor of u with probability p or decrease by a factor of d with probability 1 p.
 - (a) A European call with maturity date T and strike price K gives its holder the right to buy a stock at price K on date T. Suppose that T = 2. Calculate the price of the European call ...
 - i. . . . in period t = 1 assuming that the stock price went up.
 - ii. ... in period t = 1 assuming that the stock price went down.
 - iii. ... in period t = 0.
 - (b) An American call with maturity date T and strike price K gives its holder the right to buy a stock at price K on any date up to and including T. Suppose that T = 2. Calculate the price of the American call ...
 - i. . . . in period t = 1 assuming that the stock price went up.
 - ii. ... in period t = 1 assuming that the stock price went down.
 - iii. ... in period t = 0.
 - (c) Is it ever optimal to exercise the American call early, i.e., at any period t less than T?

Acknowledgement: Questions 1,2 and parts of 4 were taken from Vohra's (2005) book, specifically his exercises at the end of Chapter 2.