Economics 4113, Spring 2009. Instructor: David Rahman, University of Minnesota.

Homework 2—Due February 19, 2009

- 1. Write down the duals of the following LPs: (a) $\max\{cx : Ax = b, x \ge 0\}$, (b) $\min\{cx : Ax = b, x \ge 0\}$, (c) $\max\{cx : Ax \le b\}$ (d) $\min\{cx : Ax \ge b\}$.
- 2. Find the optimal primal and dual solutions to the following LP:

 $\max_{x \ge \mathbf{0}} x_1 + x_2 - 3x_3 \quad \text{s.t.} \ x_1 + 2x_2 - 3x_3 = 4, \ 4x_1 + 5x_2 - 9x_3 = 13.$

3. Convert the following optimization into a linear program.

$$\min_{x,y,z} |x| + |y| + |z| \quad \text{s.t. } x + y \le 1, \ 2x + z = 3.$$

- 4. Let $V = \max\{\sum_{j=1}^{n} c_j x_j : \sum_{j=1}^{n} a_j x_j \le b, x \ge 0\}$. Assume that all c_j and a_j are positive. Show that $V = b \max_j c_j/a_j$.
- 5. Use strong duality to prove the Theorem of the Alternative.
- 6. Consider the following linear programming problem:

$$\max_{x_1, x_2} \alpha x_1 + \beta x_2 \text{ subject to}$$
$$x_1 + 2x_2 \leq 4,$$
$$2x_1 + x_2 \leq 5,$$
$$x_1, x_2 \geq 0,$$

where α and β are real numbers. Completely classify the optimal solutions x^* of this linear program as well as the value of the problem in terms of the possible range of values that α and β could take.