Economics 4113, Spring 2009. Instructor: David Rahman, University of Minnesota.

Homework 2—Due February 19, 2009

1. Write down the duals of the following LPs: (a) $\max \{c x: A x=b, x \geq 0\}$, (b) $\min \{c x: A x=b, x \geq 0\}$, (c) $\max \{c x: A x \leq b\}$ (d) $\min \{c x: A x \geq b\}$.
2. Find the optimal primal and dual solutions to the following LP:

$$
\max _{x \geq \mathbf{0}} x_{1}+x_{2}-3 x_{3} \quad \text { s.t. } x_{1}+2 x_{2}-3 x_{3}=4,4 x_{1}+5 x_{2}-9 x_{3}=13 .
$$

3. Convert the following optimization into a linear program.

$$
\min _{x, y, z}|x|+|y|+|z| \quad \text { s.t. } x+y \leq 1,2 x+z=3
$$

4. Let $V=\max \left\{\sum_{j=1}^{n} c_{j} x_{j}: \sum_{j=1}^{n} a_{j} x_{j} \leq b, x \geq \mathbf{0}\right\}$. Assume that all c_{j} and a_{j} are positive. Show that $V=b \max _{j} c_{j} / a_{j}$.
5. Use strong duality to prove the Theorem of the Alternative.
6. Consider the following linear programming problem:

$$
\begin{array}{r}
\max _{x_{1}, x_{2}} \alpha x_{1}+\beta x_{2} \text { subject to } \\
x_{1}+2 x_{2} \leq 4, \\
2 x_{1}+x_{2} \leq 5, \\
x_{1}, x_{2} \geq 0,
\end{array}
$$

where α and β are real numbers. Completely classify the optimal solutions x^{*} of this linear program as well as the value of the problem in terms of the possible range of values that α and β could take.

