## Homework 2-Due February 28, 2008

1. Do questions $4.2,4.3,4.4,4.7,4.8,4.9$ and 4.16 from the handout.
2. Consider the following linear programming problem:

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} \alpha x_{1}+2 x_{2} \text { subject to } \\
& x_{1}+2 x_{2} \leq \beta, \\
& 2 x_{1}+x_{2} \leq 5, \\
& x_{1}, x_{2} \geq 0,
\end{aligned}
$$

where $\alpha$ and $\beta$ are real numbers. Suppose that $\alpha=3$ is fixed.

- Completely classify the optimal solutions $x^{*}$ of this linear program as well as the value of the problem in terms of the range of possible values $\beta$ could take.
- Find the dual problem associated with the primal above and completely classify the optimal solutions $y^{*}$ of the dual as well as the value of the problem in terms of the range of possible values $\beta$ could take.
- Plot the value of the primal, $V(\beta)$, as a function of $\beta$. Compare the slopes of $\beta$ with the dual solutions you found previously.
- Now suppose that $\beta=4$ is fixed and repeat the previous exercises by varying $\alpha$ instead. How does the slope of $V(\alpha)$, the value of the primal as a function of $\alpha$, vary with the primal solutions?

