
Homework 2—Suggested Answers

4.2 There are several ways to write the dual. One way is the following:

min
y1,y2,y3

4y1 + 2y2 + 3y3 s.t.

y1 + y2 + 2y3 ≥ 1,

8
3
y1 + y2 ≥ 2,

y1 ≥ 0, y3 ≤ 0.

4.3 Given the primal problem

min
x1,x2,x3

x1 + x2 − 3x3 s.t.

x1 + 2x2 − 3x3 = 4,

4x1 + 5x2 − 9x3 = 13,

x1, x2, x3 ≥ 0,

its dual is given by

max
y1,y2

4y1 + 13y2 s.t.

y1 + 4y2 ≤ 1,

2y1 + 5y2 ≤ 1,

3y1 + 9y2 ≤ 3.

Since the first and second dual constraints together imply the third, eliminating

the third constraint from the dual is without loss of generality. Adding the two

times the first constraint to the third constraint, it follows that the value of the

dual is at most 3. Solving the system

y1 + 4y2 = 1,

2y1 + 5y2 = 1,

yields (y1, y2) = (−1
3
, 1

3
), whose value equals 3. Therefore, it is an optimal dual

solution. Notice that the third dual constraint is slack, so by complementary

slackness the optimal primal solution has x3 = 0. To solve the primal, we are

therefore left with the following two equations in two unknowns:

x1 + 2x2 = 4,

4x1 + 5x2 = 13.
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Solving this system yields x1 = 2 and x2 = 1, which also gives a value of 3.

Therefore, (x1, x2, x3) = (2, 1, 0) is an optimal primal solution.

4.4 Given the primal problem

min
x1,x2,x3,x4

−x1 + 2x2 + 8x3 + 2x4 s.t.

−x2 + x3 + x4 ≥ 1,

x1 + 2x2 − 2x3 + x4 ≤ 2,

x1, x2, x3, x4 ≥ 0,

its dual is given by

max
y1,y2

y1 + 2y2 s.t.

y2 ≤ −1,

−y1 + 2y2 ≤ 2,

y1 − 2y2 ≤ 8,

y1 + y2 ≤ 2,

y1 ≥ 0, y2 ≤ 0.

Assuming that the first constraint binds, the fourth constraint yields the follow-

ing feasible dual solution: (y1, y2) = (3,−1). It is easily checked that this attains

a value of 1 and satisfies the other two constraints, which are slack. Looking for

a primal solution consistent with this dual solution, by complementary slack-

ness we must have x2 = x3 = 0 and the primal constraints binding. Therefore,

it remains to solve the system

x4 = 1, x1 + x4 = 2,

which leaves a feasible primal solution (x1, x2, x3, x4) = (1, 0, 0, 1). Since the

value of this primal feasible solution equals 1 and therefore coincides with the

value of the dual feasible solution (3,−1) it follows by duality that these are

also optimal solutions.

4.7 The following table answers the questions:

Primal Dual

max{cx : Ax = b, x ≥ 0} min{yb : yA ≥ c}
min{cx : Ax = b, x ≥ 0} max{yb : yA ≤ c}
max{cx : Ax ≤ b, x ≥ 0} min{yb : yA ≥ c, y ≥ 0}
min{cx : Ax ≥ b, x ≥ 0} max{yb : yA ≤ c, y ≥ 0}
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4.8 Given the optimization problem

min
x,y,z
|x|+ |y|+ |z| s.t.

x+ y ≤ 1

2x+ z = 3

can be rewritten as a linear program as follows:

min
x±,y±,z±

x+ + x− + y+ + y− + z+ + z− s.t.

x+ − x− + y+ − y− ≤ 1

2x+ − 2x− + z+ − z− = 3

x+, x−, y+, y−, z+, z− ≥ 0.

4.9 Given the linear program

V = max
x≥0

n∑
j=1

cjxj s.t.
n∑
j=1

ajxj ≤ b,

we must show that V = bmaxj cj/aj. This follows by duality. Indeed, the dual

of this problem is given by

W = min
y≥0

yb s.t. ∀j ∈ {1, . . . , n}, yaj ≥ cj.

Notice that, since there is only one primal constraint, the dual variable y is just

a scalar. Since b > 0 by assumption, the dual is solved by picking the smallest

feasible number y. For y to be feasible it must satisfy, for every j, the inequality

yaj ≥ cj, which, since aj > 0 by assumption, is equivalent to y ≥ cj/aj. Since

this must hold for every j, it must also hold for the ĵ with the maximum such

ratio, i.e., y ≥ maxj cj/aj = cbj/abj. Finally, since we are minimizing with respect

to y, this is attained at y = cbj/abj, therefore W = V = bmaxj cj/aj, as required.

4.16 We are given a zero-sum game with payoff matrix

A =

 3 −2 1

1 3 −2

−2 1 3


The symmetry of the matrix suggests that we try x∗ = (1

3
, 1

3
, 1

3
) = y∗ as a
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candidate equilibrium. The column player’s problem is given by

W = min
R,x1,x2,x3

R s.t.

3x1 − 2x2 + x3 ≤ R

x1 + 3x2 − 2x3 ≤ R

−2x1 + x2 + 3x3 ≤ R

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

Plugging x∗ into the constraints above yields a value W ≤ 2
3
. Taking the dual

yields the row player’s problem.

V = max
C,y1,y2,y3

C s.t.

3y1 + y2 − 2y3 ≥ C

−2y1 + 3y2 + y3 ≥ C

y1 − 2y2 + 3y3 ≥ C

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0.

Plugging y∗ into the dual constraints yields a value V ≥ 2
3
. By duality, V ≤ W ,

therefore V = W , so by duality x∗ and y∗ are optimal solutions, which finally

implies that they form an equilibrium.

2. We are given the following linear programming problem:

V = max
x1,x2

3x1 + 2x2 subject to

x1 + 2x2 ≤ β,

2x1 + x2 ≤ 5,

x1, x2 ≥ 0.

The dual problem is given by

W = min
y1,y2

βy1 + 5y2 subject to

y1 + 2y2 ≥ 3,

2y1 + y2 ≥ 2,

y1, y2 ≥ 0.
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The optimal solutions are tabulated below:

β x∗ V = W y∗

β < 0 ∅ −∞ unbounded (e.g., (4n, 0) ∀n ∈ N)

0 ≤ β < 2.5 (β, 0) 3β (3, 0)

β = 2.5 (β, 0) 3β {λ(3, 0) + (1− λ)(1
3
, 4

3
) : λ ∈ [0, 1]}

2.5 < β < 10 (10−β
3
, 2β−5

3
) (20 + β)/3 (1

3
, 4

3
)

β = 10 (10−β
3
, 2β−5

3
) (20 + β)/3 {λ(1

3
, 4

3
) + (1− λ)(0, 2) : λ ∈ [0, 1]}

10 < β (0, 5) 10 (0, 2)
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Figure 1: Plot of V (β) and y∗1(β) as a function of β.

The slopes of V (β) coincide with the optimal solutions y∗1(β).

Now suppose that the linear programming problem looks like this:

V = max
x1,x2

αx1 + 2x2 subject to

x1 + 2x2 ≤ 4,

2x1 + x2 ≤ 5,

x1, x2 ≥ 0.

The dual problem is given by

W = min
y1,y2

4y1 + 5y2 subject to

y1 + 2y2 ≥ α,

2y1 + y2 ≥ 2,

y1, y2 ≥ 0.

The optimal solutions are tabulated below:
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α x∗ V = W y∗

α < 1 (0, 2) 4 (1,0)

α = 1 {λ(0, 2) + (1− λ)(2, 1) : λ ∈ [0, 1]} 4 (1, 0)

1 < α < 4 (2, 1) 2α + 2 (4−α
3
, 2(α−1)

3
)

α = 4 {λ(2, 1) + (1− λ)(2.5, 0) : λ ∈ [0, 1]} 10 (4−α
3
, 2(α−1)

3
)

4 < α (2.5, 0) 2.5α (0, 2)

Now, the slopes of V (α) coincide with x∗1(α).
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