Homework 3—Suggested Answers

Answers from Simon and Blume are on the back of the book. Answers to questions

from Dixit’s book:

2.1. We are to solve the following budget problem, where «, (3, p, q, I are positive

and a+( < 1 (this assumption is necessary for concavity of the utility function):
max{z®y” : pr + qy < I}
z,y>0

The utility function is concave and the constraint function is convex (being
linear) so Kuhn-Tucker conditions are necessary and sufficient for a maximum.

Given the Lagrangean
L(z,y,A) =z + M — pr — qy),

the Kuhn-Tucker conditions are given by

g_ﬁ —az* Yy = Ap <0, >0, z(az* 'y’ —Ap) =0 (1)
x
oL
dy By’ = Xg <0, y>0, y(Bay’ = Ag) =0 (2)
oL
a:[—px—qyzo, A>0, MI—pxr—qy)=0 (3)

Suppose that (z*,y*, A*) satisfies the Kuhn-Tucker conditions. If the budget
constraint is slack then A* = 0, which implies that marginal utility for both
x and y is less than or equal to zero. This is only possible if both z* and
y* equal zero, by the non-negativity constraints. However, since I > 0, there
exists a feasible solution (x,y) such that both z and y are positive, yielding a
higher utility than zero. This contradicts optimality of (z*,y*, A*), therefore

the budget constraint must bind.

Both z* and y* must be positive. Indeed, if not then z* = 0 or y* = 0.
(We showed in the previous paragraph that both z* and y* equal to zero is
impossible.) Since both o and [ are less than 1, marginal utility is infinity for
both goods, so the Kuhn-Tucker conditions are violated (because oo £ Ap and

similarly for Aq). Therefore, (z*,y*, A*) has both x* and y* positive.
Therefore, the FOC (1), (2) and (3) hold with equality. We must now solve

ar® 8 = \p (4)
By’ = N\q (5)
pr+qy=1 (6)
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Dividing (4) by (5) and rearranging, we obtain

pr o«
= = =_,
q B

ey’ N _p oy _p
Bxey~t  Ag ¢ pr g

The last equation says that the optimal expenditure ratio is a/3. Substituting

into the budget constraint, we obtain

pr+qy=1 = px+px§:_f = px(l—i—é):I
o o)
N I al N Bl
r = —_= —_=
b 1+2 a+p Y=ars
al . BI

*

> TS n T VT

The multiplier A* can be found by plugging z* and y* into either (4) or (5)

xa—1_x0B ol o |: ﬂI :|ﬂ_ *
SR P I P

Rearranging, we obtain the following solution for \*:
aaﬁﬁla-ﬁ-,@—l
- pogP(a+ B)ets

*

2.2. We are to solve the following budget problem:

max{aln(z —z¢) + SIn(y — yo) : px +qy < I}

z,y>0

We take as given the constants xg and y, which we will assume to be positive,
as well as the usual «, 3, p, ¢ and I, all positive. We assume that a + 3 = 1.
The Lagrangean of this problem is given by:

L(z,y,\) = aln(z — o) + S1n(y — yo) + A1 — pz — qy)

The Kuhn-Tucker FOC are given by:

%: a —Ap <0, x>0, x< a —)\p):O (7)
or x—xg T — To
oL __F —Ag <0, y>0, y< 0 —)\Q): (8)
9y Y=y Y — Yo

oL

5:]—px—qy20, A>0, MI—pr—qy)=0 9)



2.3.

The natural logarithm is not defined for non-positive values, so necessarily
x > xg and y > yo. Since xg and yo are both positive and marginal utility is

always positive, it follows that all three first-order conditions hold with equality.

Hence, we must solve the following system of equations:

(6%
=\ 10
e (10)

B
Y—"%Y (1)
pr+qy=1 (12)

Dividing (10) by (11) and rearranging, we obtain

a(y — o) _&:Ij
B(x—xo)_)\q q -

w2
(]
<

|
S

= aq(y —yo) = Bp(z — o) = aqy = Bp(r — x0) + q¥o
= Bpx = aq(y — yo) + po.

Plugging this into the budget constraint and using a + § = 1 yields

al = apr + aqy = apx + Bp(r — x0) + qyo = pr* = ol + Bpxo — qyo
= qy” = B1 + aqyy — pxo.

We are asked to minimize cost, which in this case amounts to expenditure on

inputs, subject to a production constraint. The optimization problem is:

C(Q) = min {rK +wL : VK +VL > Q}

K,L>0

The Lagrangean is given by:
L(x,y,\) = —rK —wL + MVEK +VL - Q)

The Kuhn-Tucker conditions are given by

oL _ -

g = T TS0, K20, K(-rdpAKT) =00 (13)
oL _ -
ﬁ:—er%)\L Y2<0, L>0, L(-w+3AL7"?) =0 (14)

%zx/?er/Z—on, A>0, A\WK+VL-Q)=0 (15)

Since the objective is concave (being linear) and the constraint function is con-
vex (Q — VK —+/L < 0) any solution to the Kuhn-Tucker conditions solves the
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optimization. By (15), we must have either K or L or both positive. Therefore,
if K is positive, say, then (13) must hold with equality, so A > 0. If L equals
zero then (14) is violated. Similarly, we get a contradiction if K is zero and
L is positive. Hence, both K and L must be positive with A > 0, so all three

conditions above hold with equality.

We must therefore solve the following three equations:

r=1AK? (

2
w = %)\L_I/Q

VK +VL=Q

Dividing (16) by (17), we obtain

r KTV L\ L /r\?
w L7 \K ~ E‘(E)‘

Substituting into the production constraint yields

—~
—_ =
c N O
~— ~— ~—

VEAVE=VE K (L) = (Le)vE=q = x=].¢ }
w(

T4+ w

2
= K*:{ } = L

I
M
+

=1°

By (16), the Lagrange multiplier is given by

2
N=2rvK* = ru@

r+w
The quantity A\* is the marginal cost of production at Q.

Now we are given that the price of output equals p, and that output is a choice.

The firm’s profit-maximization problem is:

max {pQ—rK—wL:\/E—i-\/ZZQ}

K,L,Q>0

Since it would not be profit-maximizing to waste inputs, we may assume that
the production constraint holds with equality. Then we may write directly the

optimization problem as:

[r(ng(o{p(\/EJr VL) —rK —wL}



3.1.

This is a concave function of K and L, so FOC are necessary and sufficient for

a maximum. The two conditions are:

op\ 2
WK =r = K= (l> (19)
p
2w\ 2
WLV —w = L= (—w) (20)
p
Therefore,
O = VE V=L P v o plrtw)
2r 2w 2rw  2rw 2rw

Since the firm takes output prices as given, average revenue—or price—equals
marginal revenue. Optimizing behavior implies that the firm equates marginal

revenue with marginal cost, i.e.,

_ 2rwQ* 0 = p(r + w)

=\ =
p P r+w 2rw

Let us first solve the budget problem without a rationing constraint:

max_ {oq In(x1) + o In(xs) + agIn(xs) : proy + pexs + psas < I}

z1,72,23>0

We are given that a; + as + ag = 1. The Lagrangean is given by:
L(xq, 29,23, \) = o In(z1) + ag In(z2) + azIn(xs) + NI — p1axy — pary — p3x3)

The utility function is concave, so a Kuhn-Tucker vector is necessary and suf-
ficient for a maximum. By the same arguments as in question 2.1, 7 > 0 and
A" > 0, so all FOCs hold with equality. Therefore, finding a Kuhn-Tucker point

boils down to solving the following equations:

03]

=\ 21
) D1 ( )
(6)
2\ 22
2 D2 ( )
Q3
=\ 23
3 D3 ( )
D121 + Pato + p3xs = 1 (24)

Equations (21-23) imply that 7 = «;/(A\*p;). Substituting this into the budget
constraint yields
Qp Qa2 Qa3

+—=+—==1 = N =1/1

T T Tg =1 = —
P1T1 + PaXa + P3T3 ORIV
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Therefore, 27 = ;1 /p; and p;x;/I = ;. In other words, the consumer’s optimal

expenditure share of income on good 7 equals «;.

Now consider the rationing problem. The new maximization problem looks like:

max 0{a1 In(z1) + ao In(xe) + azln(wzs) : proy + poxs + p3r3 < I, z1 < k}

@1, w,m3>
Clearly, if k > «;I/p; then the consumer can purchase his optimal bundle as if
the rationing constraint were not there, which must be optimal. On the other
hand, if k& < a;1/p; then the rationing constraint will bind. Therefore, 27* = k.
(We will use ** to denote optimal solutions of the rationed problem.) Denote

by p the multiplier on the rationing constraint. The Lagrangean looks like:
L= oy n(zy) + agln(xe) + azIn(xs) + A — proy — pexs — p3xs) + pu(k — 1)
By the same arguments as before, all the FOCs will hold with equality, so we

are left with solving:

Xt (25)

I

€%)
=\ 26
s D2 (26)
a3
— = 27
3 D3 (27)
p1z1 + paro + psry =1 (28)
Substituting the last equation and defining T=1- p1k implies

(6%)
2\ 30
7 D2 (30)

as
==\ 31
3 D3 (31)
P22 + p3xs =1 (32)

Dividing (30) by (31) yields
Qaols _ P2 N Dax2 _ %'
32 Ps3 p3xs a3

Therefore, the ratio of expenditure on good 2 relative to good 3 equals as/as.

Substituting this ratio into (32), we obtain

~ Q9 ~ (e % —+ Qg ~
PaTo + p3wg =1 = —p3x3 + p3r3 =1 = psry =1
a3 a3
Oég]
= p3rsy =
Qi + o3
0421
= Pty =
Qg + Q3



3.2.

3.3.

Notice that rationing of good 1 implies that demand for the other goods in-
creases, so goods are substitutes. However, if bread and butter are complements

then rationing bread diminishes demand for butter.
We are to solve the following social planning problem:

max{yy — kys + 1o — kyl sy +ys <V}

We are given that £ > 0. Suppose that Y > 1/k. We must show that the

resource constraint is slack at the optimum. The Lagrangean is given by
L=y —kyy +yo = kyi + MY —y1 — )

The Kuhn-Tucker conditions are

oL
—=1-2ky; —A=0 33
Em Y1 (33)
oL
—=1-2 — A= 4
9 ky—A=0 (34)
oL
a:Y—yl—yQZO, )\20, )\(Y—yl—yg):O (35)

Notice that A* = 0 together with y; = 1/(2k) = y5 solves the system above.

Since the objective is concave this Kuhn-Tucker point solves the problem.

The interpretation is that envy implies that eventually the goods become bads,

in that more of the good (beyond 1/(2k) destroys value due to envy.

The optimization problem is:

n n
19 .2. ,
max E ;T — Eﬁjxj : 5 z; <C
T xpn>0
Jj=1 Jj=1

.....

We assume that «;, 3;,C > 0. The Lagrangean is given by:

C— Zn: xj]
j=1

The objective is concave, so the Kuhn-Tucker conditions are necessary and

L = ZO&j.Tj — %6]$j2 + A
7=1

sufficient to solve the problem. The Kuhn-Tucker conditions are:

. oL
VJ, 87 =5 — ﬁjxj - A < 0, T > 0, .’L’j(Oéj — ﬁj.ﬁlﬁj — )\) =0 (36)
J

C—ixj] =0 (37

oL -
a:C—;%ZO, )\ZO, )\

7



Define . .
H=>Y a;/B, K=Y 1/8
j=1 j=1
(i) Suppose that C' > H. In this case, notice that by (36), we have that
aj =By <A = a2 (a; = N)/0;

Letting \* = 0 and 2} = «a;/3; satisfies (36) for every j. Furthermore, since
C > H, it follows that C'— .7 > 0, so (37) is satisfied, too. Therefore, this
is an optimal solution to the problem. Since ) ;T < C, a part of the total

sum available is left unused.

(ii) Suppose that o; > (H — C)/K for every j. By the Kuhn-Tucker Theorem,
if we find a solution to the Kuhn-Tucker conditions then it will solve the op-
timization problem. Firstly, notice that ) 2% > 0, since otherwise this would
imply that A* = 0 and z} = 0 for every j, which would not be a Kuhn-Tucker
solution. If 27 > 0 for all j then rearranging (36) and adding with respect to j,

we obtain

)\ aj " )\ " Oéj "
— =2y = — =) 2L g = MK =H - Y z;.
g B ;@‘ =6 ; ’

The resource constraint C' > 3. x; implies that A < (H — C)/K.
Let \* = (H — C)/K and choose 7 so that

)\* = CYj — ﬂJ.ZC;k

Since a; > (H —C')/K for every j, it follows that z} = (a; —\)/B; > 0. Finally,
IR S
j=1 j=1 J

Therefore, (x7,...,x%, A*) is a Kuhn-Tucker vector, since it satisfies all the

conditions in (36) and (37).

—H—-(H-C)K/K =C.

(iii) Suppose that project jy receives zero funding but j; receives some funding.
By (36), it follows that oy, < A and o, — 8,2, = A. Therefore,

Ay = Q5 — 5j1xj1 < Qjy,

since x;, > 0.



