
Homework 3—Suggested Answers

Answers from Simon and Blume are on the back of the book. Answers to questions

from Dixit’s book:

2.1. We are to solve the following budget problem, where α, β, p, q, I are positive

and α+β ≤ 1 (this assumption is necessary for concavity of the utility function):

max
x,y≥0
{xαyβ : px+ qy ≤ I}

The utility function is concave and the constraint function is convex (being

linear) so Kuhn-Tucker conditions are necessary and sufficient for a maximum.

Given the Lagrangean

L(x, y, λ) = xαyβ + λ(I − px− qy),

the Kuhn-Tucker conditions are given by

∂L
∂x

= αxα−1yβ − λp ≤ 0, x ≥ 0, x(αxα−1yβ − λp) = 0 (1)

∂L
∂y

= βxαyβ−1 − λq ≤ 0, y ≥ 0, y(βxαyβ−1 − λq) = 0 (2)

∂L
∂λ

= I − px− qy ≥ 0, λ ≥ 0, λ(I − px− qy) = 0 (3)

Suppose that (x∗, y∗, λ∗) satisfies the Kuhn-Tucker conditions. If the budget

constraint is slack then λ∗ = 0, which implies that marginal utility for both

x and y is less than or equal to zero. This is only possible if both x∗ and

y∗ equal zero, by the non-negativity constraints. However, since I > 0, there

exists a feasible solution (x, y) such that both x and y are positive, yielding a

higher utility than zero. This contradicts optimality of (x∗, y∗, λ∗), therefore

the budget constraint must bind.

Both x∗ and y∗ must be positive. Indeed, if not then x∗ = 0 or y∗ = 0.

(We showed in the previous paragraph that both x∗ and y∗ equal to zero is

impossible.) Since both α and β are less than 1, marginal utility is infinity for

both goods, so the Kuhn-Tucker conditions are violated (because ∞ 6≤ λp and

similarly for λq). Therefore, (x∗, y∗, λ∗) has both x∗ and y∗ positive.

Therefore, the FOC (1), (2) and (3) hold with equality. We must now solve

αxα−1yβ = λp (4)

βxαyβ−1 = λq (5)

px+ qy = I (6)
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Dividing (4) by (5) and rearranging, we obtain

αxα−1yβ

βxαyβ−1
=
λp

λq
=
p

q
⇒ αy

βx
=
p

q
⇒ px

qy
=
α

β
.

The last equation says that the optimal expenditure ratio is α/β. Substituting

into the budget constraint, we obtain

px+ qy = I ⇒ px+ px
β

α
= I ⇒ px

(
1 +

β

α

)
= I

⇒ px =
I

1 + β
α

=
αI

α + β
⇒ qy =

βI

α + β

⇒ x∗ =
αI

p(α + β)
⇒ y∗ =

βI

q(α + β)

The multiplier λ∗ can be found by plugging x∗ and y∗ into either (4) or (5)

αx∗α−1y∗β = λp ⇒ α

[
αI

p(α + β)

]α−1 [
βI

q(α + β)

]β
= λ∗p

Rearranging, we obtain the following solution for λ∗:

λ∗ =
ααββIα+β−1

pαqβ(α + β)α+β

2.2. We are to solve the following budget problem:

max
x,y≥0
{α ln(x− x0) + β ln(y − y0) : px+ qy ≤ I}

We take as given the constants x0 and y0 which we will assume to be positive,

as well as the usual α, β, p, q and I, all positive. We assume that α + β = 1.

The Lagrangean of this problem is given by:

L(x, y, λ) = α ln(x− x0) + β ln(y − y0) + λ(I − px− qy)

The Kuhn-Tucker FOC are given by:

∂L
∂x

=
α

x− x0

− λp ≤ 0, x ≥ 0, x

(
α

x− x0

− λp
)

= 0 (7)

∂L
∂y

=
β

y − y0

− λq ≤ 0, y ≥ 0, y

(
β

y − y0

− λq
)

= 0 (8)

∂L
∂λ

= I − px− qy ≥ 0, λ ≥ 0, λ(I − px− qy) = 0 (9)
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The natural logarithm is not defined for non-positive values, so necessarily

x > x0 and y > y0. Since x0 and y0 are both positive and marginal utility is

always positive, it follows that all three first-order conditions hold with equality.

Hence, we must solve the following system of equations:

α

x− x0

= λp (10)

β

y − y0

= λq (11)

px+ qy = I (12)

Dividing (10) by (11) and rearranging, we obtain

α(y − y0)

β(x− x0)
=
λp

λq
=
p

q
⇒ α

β
=
p(x− x0)

q(y − y0)

⇒ αq(y − y0) = βp(x− x0) ⇒ αqy = βp(x− x0) + qy0

⇒ βpx = αq(y − y0) + px0.

Plugging this into the budget constraint and using α + β = 1 yields

αI = αpx+ αqy = αpx+ βp(x− x0) + qy0 ⇒ px∗ = αI + βpx0 − qy0

⇒ qy∗ = βI + αqy0 − px0.

2.3. We are asked to minimize cost, which in this case amounts to expenditure on

inputs, subject to a production constraint. The optimization problem is:

C(Q) = min
K,L≥0

{rK + wL :
√
K +

√
L ≥ Q}

The Lagrangean is given by:

L(x, y, λ) = −rK − wL+ λ(
√
K +

√
L−Q)

The Kuhn-Tucker conditions are given by

∂L
∂K

= −r + 1
2
λK−1/2 ≤ 0, K ≥ 0, K

(
−r + 1

2
λK−1/2

)
= 0 (13)

∂L
∂L

= −w + 1
2
λL−1/2 ≤ 0, L ≥ 0, L

(
−w + 1

2
λL−1/2

)
= 0 (14)

∂L
∂λ

=
√
K +

√
L−Q ≥ 0, λ ≥ 0, λ(

√
K +

√
L−Q) = 0 (15)

Since the objective is concave (being linear) and the constraint function is con-

vex (Q−
√
K−
√
L ≤ 0) any solution to the Kuhn-Tucker conditions solves the
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optimization. By (15), we must have either K or L or both positive. Therefore,

if K is positive, say, then (13) must hold with equality, so λ > 0. If L equals

zero then (14) is violated. Similarly, we get a contradiction if K is zero and

L is positive. Hence, both K and L must be positive with λ > 0, so all three

conditions above hold with equality.

We must therefore solve the following three equations:

r = 1
2
λK−1/2 (16)

w = 1
2
λL−1/2 (17)

√
K +

√
L = Q (18)

Dividing (16) by (17), we obtain

r

w
=
K−1/2

L−1/2
=

(
L

K

)1/2

⇒ L

K
=
( r
w

)2

.

Substituting into the production constraint yields

√
K +

√
L =
√
K +

√
K
( r
w

)2

=
( r
w

+ 1
)√

K = Q ⇒ K =

[
Q

r
w

+ 1

]2

⇒ K∗ =

[
wQ

r + w

]2

⇒ L∗ =

[
rQ

r + w

]2

By (16), the Lagrange multiplier is given by

λ∗ = 2r
√
K∗ =

2rwQ

r + w

The quantity λ∗ is the marginal cost of production at Q.

Now we are given that the price of output equals p, and that output is a choice.

The firm’s profit-maximization problem is:

max
K,L,Q≥0

{pQ− rK − wL :
√
K +

√
L ≥ Q}

Since it would not be profit-maximizing to waste inputs, we may assume that

the production constraint holds with equality. Then we may write directly the

optimization problem as:

max
K,L≥0

{p(
√
K +

√
L)− rK − wL}
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This is a concave function of K and L, so FOC are necessary and sufficient for

a maximum. The two conditions are:

1
2
pK−1/2 = r ⇒ K∗ =

(
2r

p

)−2

(19)

1
2
pL−1/2 = w ⇒ L∗ =

(
2w

p

)−2

(20)

Therefore,

Q∗ =
√
K∗ +

√
L∗ =

p

2r
+

p

2w
=

pw

2rw
+

pr

2rw
=
p(r + w)

2rw
.

Since the firm takes output prices as given, average revenue—or price—equals

marginal revenue. Optimizing behavior implies that the firm equates marginal

revenue with marginal cost, i.e.,

p = λ∗ ⇒ p =
2rwQ∗

r + w
⇒ Q∗ =

p(r + w)

2rw
.

3.1. Let us first solve the budget problem without a rationing constraint:

max
x1,x2,x3≥0

{α1 ln(x1) + α2 ln(x2) + α3 ln(x3) : p1x1 + p2x2 + p3x3 ≤ I}

We are given that α1 + α2 + α3 = 1. The Lagrangean is given by:

L(x1, x2, x3, λ) = α1 ln(x1) + α2 ln(x2) + α3 ln(x3) + λ(I − p1x1 − p2x2 − p3x3)

The utility function is concave, so a Kuhn-Tucker vector is necessary and suf-

ficient for a maximum. By the same arguments as in question 2.1, x∗i > 0 and

λ∗ > 0, so all FOCs hold with equality. Therefore, finding a Kuhn-Tucker point

boils down to solving the following equations:

α1

x1

= λp1 (21)

α2

x2

= λp2 (22)

α3

x3

= λp3 (23)

p1x1 + p2x2 + p3x3 = I (24)

Equations (21–23) imply that x∗i = αi/(λ
∗pi). Substituting this into the budget

constraint yields

p1x1 + p2x2 + p3x3 = I ⇒ α1

λ∗
+
α2

λ∗
+
α3

λ∗
= I ⇒ λ∗ = 1/I
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Therefore, x∗i = αiI/pi and pixi/I = αi. In other words, the consumer’s optimal

expenditure share of income on good i equals αi.

Now consider the rationing problem. The new maximization problem looks like:

max
x1,x2,x3≥0

{α1 ln(x1) + α2 ln(x2) + α3 ln(x3) : p1x1 + p2x2 + p3x3 ≤ I, x1 ≤ k}

Clearly, if k ≥ αiI/pi then the consumer can purchase his optimal bundle as if

the rationing constraint were not there, which must be optimal. On the other

hand, if k < αiI/pi then the rationing constraint will bind. Therefore, x∗∗1 = k.

(We will use ∗∗ to denote optimal solutions of the rationed problem.) Denote

by µ the multiplier on the rationing constraint. The Lagrangean looks like:

L = α1 ln(x1) + α2 ln(x2) + α3 ln(x3) + λ(I − p1x1 − p2x2 − p3x3) + µ(k − x1)

By the same arguments as before, all the FOCs will hold with equality, so we

are left with solving:
α1

x1

= λp1 + µ (25)

α2

x2

= λp2 (26)

α3

x3

= λp3 (27)

p1x1 + p2x2 + p3x3 = I (28)

x1 = k (29)

Substituting the last equation and defining Î = I − p1k implies
α2

x2

= λp2 (30)

α3

x3

= λp3 (31)

p2x2 + p3x3 = Î (32)

Dividing (30) by (31) yields
α2x3

α3x2

=
p2

p3

⇒ p2x2

p3x3

=
α2

α3

.

Therefore, the ratio of expenditure on good 2 relative to good 3 equals α2/α3.

Substituting this ratio into (32), we obtain

p2x2 + p3x3 = Î ⇒ α2

α3

p3x3 + p3x3 = Î ⇒ α2 + α3

α3

p3x3 = Î

⇒ p3x
∗
3 =

α3Î

α2 + α3

⇒ p2x
∗
2 =

α2Î

α2 + α3
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Notice that rationing of good 1 implies that demand for the other goods in-

creases, so goods are substitutes. However, if bread and butter are complements

then rationing bread diminishes demand for butter.

3.2. We are to solve the following social planning problem:

max
y1,y2
{y1 − ky2

2 + y2 − ky2
1 : y1 + y2 ≤ Y }

We are given that k > 0. Suppose that Y > 1/k. We must show that the

resource constraint is slack at the optimum. The Lagrangean is given by

L = y1 − ky2
2 + y2 − ky2

1 + λ(Y − y1 − y2)

The Kuhn-Tucker conditions are

∂L
∂y1

= 1− 2ky1 − λ = 0 (33)

∂L
∂y2

= 1− 2ky2 − λ = 0 (34)

∂L
∂λ

= Y − y1 − y2 ≥ 0, λ ≥ 0, λ(Y − y1 − y2) = 0 (35)

Notice that λ∗ = 0 together with y∗1 = 1/(2k) = y∗2 solves the system above.

Since the objective is concave this Kuhn-Tucker point solves the problem.

The interpretation is that envy implies that eventually the goods become bads,

in that more of the good (beyond 1/(2k) destroys value due to envy.

3.3. The optimization problem is:

max
x1,...,xn≥0

{
n∑
j=1

αjxj − 1
2
βjx

2
j :

n∑
j=1

xj ≤ C

}

We assume that αj, βj, C > 0. The Lagrangean is given by:

L =
n∑
j=1

αjxj − 1
2
βjx

2
j + λ

[
C −

n∑
j=1

xj

]

The objective is concave, so the Kuhn-Tucker conditions are necessary and

sufficient to solve the problem. The Kuhn-Tucker conditions are:

∀j, ∂L
∂xj

= αj − βjxj − λ ≤ 0, xj ≥ 0, xj(αj − βjxj − λ) = 0 (36)

∂L
∂λ

= C −
n∑
i=1

xj ≥ 0, λ ≥ 0, λ

[
C −

n∑
j=1

xj

]
= 0 (37)
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Define

H =
n∑
j=1

αj/βj, K =
n∑
j=1

1/βj.

(i) Suppose that C > H. In this case, notice that by (36), we have that

αj − βjxj ≤ λ ⇒ xj ≥ (αj − λ)/βj.

Letting λ∗ = 0 and x∗j = αj/βj satisfies (36) for every j. Furthermore, since

C > H, it follows that C −
∑

j x
∗
j > 0, so (37) is satisfied, too. Therefore, this

is an optimal solution to the problem. Since
∑

j x
∗
j < C, a part of the total

sum available is left unused.

(ii) Suppose that αj > (H −C)/K for every j. By the Kuhn-Tucker Theorem,

if we find a solution to the Kuhn-Tucker conditions then it will solve the op-

timization problem. Firstly, notice that
∑
x∗j > 0, since otherwise this would

imply that λ∗ = 0 and x∗j = 0 for every j, which would not be a Kuhn-Tucker

solution. If x∗j > 0 for all j then rearranging (36) and adding with respect to j,

we obtain

λ

βj
=
αj
βj
− xj ⇒

n∑
j=1

λ

βj
=

n∑
j=1

αj
βj
− xj ⇒ λK = H −

n∑
j=1

xj.

The resource constraint C ≥
∑

j xj implies that λ ≤ (H − C)/K.

Let λ∗ = (H − C)/K and choose x∗j so that

λ∗ = αj − βjx∗j .

Since αj > (H−C)/K for every j, it follows that x∗j = (αj−λ)/βj > 0. Finally,

n∑
j=1

x∗j =
n∑
j=1

αj − λ
βj

= H − (H − C)K/K = C.

Therefore, (x∗1, . . . , x
∗
n, λ

∗) is a Kuhn-Tucker vector, since it satisfies all the

conditions in (36) and (37).

(iii) Suppose that project j0 receives zero funding but j1 receives some funding.

By (36), it follows that αj0 ≤ λ and αj1 − βj1xj1 = λ. Therefore,

αj0 = αj1 − βj1xj1 < αj1 ,

since xj1 > 0.
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