
Homework 4—Suggested Answers

Answers from Simon and Blume are on the back of the book. Answers to questions

from Varian’s chapter:

17.4. By free disposal, all prices must be non-negative. To calculate market-clearing

prices, notice that if both prices are positive then B will consume xB1 = xB2 ,

i.e., the same amount of both goods. If one price is negative and the other

equals zero then one consumer will buy some amount of the free good and the

other consumer will not be able to afford anything, so the market will not clear.

Also, if both prices equal zero then both consumers will demand an unbounded

amount, which clearly fails to clear the market. Therefore, both prices must be

strictly positive, so xB1 = xB2 . By market-clearing, xA1 + xB1 = ωA1 + ωB1 = 1 and

xA2 +xB2 = ωA2 +ωB2 = 1. Hence, xA1 = xA2 . To pin down (relative) prices, notice

that these must be equated to players’ marginal rates of substitution. Looking

at consumer A’s budget problem, we find that his first-order conditions lead to

axA2
(1− a)xA1

=
p1

p2

.

Since A consumes as much of good 1 as of good 2, p1/p2 = a/(1 − a). This

pins down the price as much as possible, since demand curves are homogeneous

of degree zero. As regards equilibrium allocations, these are obtained from the

budget constraints, which will bind because individuals have strictly increasing

utility functions. Therefore, we are left with solving the following two equations

in two unknowns:

p1x
A + p2x

A = p2

p1x
B + p2x

B = p1

where xA = xA1 = xA2 and xB = xB1 = xB2 . Substituting the relative prices

obtained previously, it follows that

a

1− a
p2x

A + p2x
A = p2

⇒ (
a

1− a
+ 1)xA = 1

⇒ xA = 1− a
⇒ xB = a.
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17.11. The Edgeworth box looks like Figure 1 below. The straight line denotes A’s

indifference curve and the “L” denotes B’s indifference curve. To understand

equilibrium, notice that every individual can afford not to trade. Therefore, the

equilibrium price line must always pass through the endowment point (1/2, 1/2).

A

B

(1/2,1/2)

Figure 1: Edgeworth Box.

Notice that if prices are not equal then A will demand more of the cheaper good

than is available. To see this, let p1 > p2 and consider A’s budget problem:

max
xA
1 ,x

A
2 ≥0
{xA1 + xA2 : p1x

A
1 + p2x

A
2 ≤ p1

1
2

+ p2
1
2
}

This is a linear programming problem. Its dual is given by

min
λ≥0

1
2
{λ(p1 + p2) : λp1 ≥ 1, λp2 ≥ 1}

Since p1 > p2, it follows that λp2 ≥ 1 implies that λp1 > 1, so only the second

constraint will bind. Therefore, by complementary slackness, consumer A will

only consume a positive amount of good 2, the cheaper good. Since utility is

strictly increasing, A will end up spending all of p1
1
2
+p2

1
2

on good 2. Therefore,

xA2 =
p1

1
2

+ p2
1
2

p2

>
p2

1
2

+ p2
1
2

p2

= 1,

but this amount is larger than the amount of good 2 available in the economy.

Therefore, markets cannot clear if p1 > p2. A symmetric argument implies that

markets cannot clear if p1 < p2. Therefore, equilibrium requires that p1 = p2.

Since equilibrium prices are equal, consumer A is indifferent between any al-

location on the budget line. On the other hand, consumer B has a preference

for extremes, so will maximize utility by spending all income on just one good.

Either one will do. Hence, there are two equilibrium allocations: xA1 = 1 = xB2 ,

xB1 = 0 = xA2 , and xA2 = 1 = xB1 , xB2 = 0 = xA1 .
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9.1. Terminal wealth is given by W = W0 + (1− τ)xr, where r is a random variable.

Expected utility over terminal wealth is given by

V (x) =

∫ r

r

U(W0 + (1− τ)xr)f(r)dr.

The first-order condition for an interior optimum is given by

Vx = (1− τ)

∫ r

r

rU ′(W0 + (1− τ)xr)f(r)dr = 0.

Dividing both sides by (1− τ), we obtain the condition∫ r

r

rU ′(W0 + (1− τ)xr)f(r)dr = 0.

If τ changes, the investor will change x optimally, i.e., so as to keep Vx =

0, where now it is acknowledged that Vx depends both on x and τ . Totally

differentiating the first-order conditions on both sides yields

Vxτdτ + Vxxdx = 0 ⇒ dx

dτ
= −Vxτ

Vxx
.

Differentiating Vx with respect to τ yields

Vxτ = −(1− τ)x

∫ r

r

r2U ′′(W0 + (1− τ)xr)f(r)dr

−
∫ r

r

rU ′(W0 + (1− τ)xr)f(r)dr

= −(1− τ)x

∫ r

r

r2U ′′(W0 + (1− τ)xr)f(r)dr,

where the second equality follows by the first-order condition. Similarly,

Vxx = (1− τ)2

∫ r

r

r2U ′′(W0 + (1− τ)xr)f(r)dr.

Therefore, the derivative dx/dτ is given by

dx

dτ
= −

−(1− τ)x
∫ r
r
r2U ′′(W0 + (1− τ)xr)f(r)dr

(1− τ)2
∫ r
r
r2U ′′(W0 + (1− τ)xr)f(r)dr

=
x

1− τ
.

Let F (x, τ) = x(1 − τ). To find dx/dτ on the constraint F (x, τ) = C, i.e.,

subject to F (x, τ) remaining at some constant C, we totally differentiate:

Fτdτ + Fxdx = 0 ⇒ dx

dτ
= −Fτ

Fx
= − −x

1− τ
=

x

1− τ
.

Therefore, the optimal response with x to a change in τ is to keep the product

x(1− τ) constant.
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9.2. The investor’s maximization problem is to choose saving S in order to solve:

max
S

V (S) = U(Y1 − S) + δE[U(Y2 + rS)]

The first- and second-order conditions are given by

VS = −U ′(Y1 − S) + δE[rU ′(Y2 + rS)] = 0

VSS = U ′′(Y1 − S) + δE[r2U ′′(Y2 + rS)] < 0.

As Y1 increases, S changes so as to keep the first-order condition satisfied, i.e.,

VSY1dY1 + VSSdS = 0 ⇒ dS

dY1

= −VSY1

VSS
.

Therefore,

dS

dY1

= − −U ′′(Y1 − S)

U ′′(Y1 − S) + δE[r2U ′′(Y2 + rS)]

=
−U ′′(Y1 − S)

−U ′′(Y1 − S)− δE[r2U ′′(Y2 + rS)]

Since U ′′ < 0, the numerator is clearly positive. But since r2 > 0 and the

expectation of a negative-valued random variable (namely r2U ′(Y2 + rS)) is

negative, it follows that the denominator is negative, too. Hence, dS/dY1 > 0.

At the same time, since E[r2U ′′(Y2 + rS)] < 0, it follows that

0 < −U ′′(Y1 − S) < −U ′′(Y1 − S)− δE[r2U ′′(Y2 + rS)],

therefore dS/dY1 < 1, too.

If Y2 is sure but r is random, to obtain dS/dY2 we calculate −VSY2/VSS:

dS

dY2

= − δE[rU ′′(Y2 + rS)]

U ′′(Y1 − S) + δE[r2U ′′(Y2 + rS)]

The sign of this is not determined. It could be positive or negative depending

on whether E[rU ′′(Y2 + rS)] is negative or positive. If U ′′ is very negative when

r is positive and not very negative when r is negative then this quantity will be

negative, and vice versa.

Finally, if r is sure but Y2 is random, to obtain dS/dr we calculate −VSr/VSS:

dS

dr
= −δE[rSU ′′(Y2 + rS) + U ′(Y2 + rS)]

U ′′(Y1 − S) + δE[r2U ′′(Y2 + rS)]

Again, the sign of this derivative is indeterminate except for when the optimal

amount of saving and or return is either relatively very small or very large. If

it is very small then then the sign of the derivative is negative. Otherwise, if it

is very large then the sign of the derivative will be positive.
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10.1. Solving the problem of Example 10.1 with U(c) = c1−ε/(1−ε) amounts to finding

the optimal consumption path. The capital accumulation equation stays the

same:

k̇ = w + rk − c

The Hamiltonian becomes

H = U(c)e−ρt + π[w + rk − c] =
c1−ε

1− ε
e−ρt + π[w + rk − c].

The first-order condition for c to maximize H is

c−εe−ρt = π ⇒ c =

[
e−ρt

π

]1/ε

The differential equation satisfied by π is still

π̇ = −∂H
∗

∂k
= −rπ,

which is solved by π(t) = π(0)e−rt. (Here, H∗ is the value function of the

Hamiltonian.) The differential equation for k is

k̇ =
∂H∗

∂π
= w + rk − e−ρt

π

Substituting the solution for π, we obtain

k̇ = w + rk − e(r−ρ)t

Just as in Example 10.1, we obtain from here that

k(T )e−rT − k(0) =
w(1− e−rT )

r
− 1− e−ρt

π0ρ
.

Therefore,

π(0) =
r(1− e−ρt)

ρ[w(1− e−rT )− r(k(T )e−rT − k(0))]
.

The problem becomes infeasible if

w(1− e−rT )− r(k(T )e−rT − k(0)) < 0,

i.e., if k(T ) > ert[w(1− e−rT )/r + k(0)].

10.2. We are to derive the differential equations below:

k̇ = F (k)− δk −G(ϕ)

ϕ̇ = −ϕ[F ′(k)− ρ− δ]
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The variable ϕ is defined in Example 10.2 as follows: ϕ = πeρt. Since by the

first-order conditions for the Hamiltonian we obtain

U ′(c)e−ρt = π

it follows that ϕ = U ′(c) is the marginal utility of consumption. Let G be

the inverse function for U ′. That is, G(ϕ) = c by definition if ϕ = U ′(c).

Therefore we obtain the first differential equation by substituting c for G(ϕ),

i.e., k̇ = F (k)−δk−G(ϕ). For the second equation, recall the equation derived

in Example 10.2, namely

ċ

c
=

F ′(k)− (ρ+ δ)

η(c)
,

where η(c) = −cU ′′(c)/U ′(c). Canceling out c yields

ċ = −F
′(k)− (ρ+ δ)

U ′′(c)/U ′(c)
.

Rearranging,

U ′′(c)ċ = −U ′(c)[F ′(k)− (ρ+ δ)].

Finally, notice that ϕ = U ′(c) implies that ϕ̇ = U ′′(c)ċ, and U ′(c) = ϕ, hence

ϕ̇ = −ϕ[F ′(k)− (ρ+ δ)].
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