1. (a) Given the following linear program,

$$\min_{\pi \in \mathbb{R}^3} \pi_1 + \pi_2 + \pi_3 \text{ subject to} \pi_1 + \pi_2 \geq 1, \pi_1 + \pi_3 \geq 1, \\ \pi_2 + \pi_3 \geq 1, \\ \pi_1, \pi_2, \pi_3 \geq 0,$$

its dual is given by

$$\max_{\sigma \in \mathbb{R}^3} \sigma_1 + \sigma_2 + \sigma_3 \text{ subject to}$$
$$\sigma_1 + \sigma_2 \leq 1,$$
$$\sigma_1 + \sigma_3 \leq 1,$$
$$\sigma_2 + \sigma_3 \leq 1,$$
$$\sigma_1, \sigma_2, \sigma_3 \geq 0.$$

Adding the primal constraints, it follows that $\pi_1 + \pi_2 + \pi_3 \ge 1.5$. Adding the dual constraints, it follows that $\sigma_1 + \sigma_2 + \sigma_3 \le 1.5$. The vector $\pi = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ is a feasible primal solution with value 1.5, and the vector $\sigma = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ is a feasible dual solution with value 1.5. By duality, $1.5 \le V = W \le 1.5$, therefore π is an optimal primal solution and σ is an optimal dual solution.

(b) If $\alpha \leq \frac{3}{2}$ then the additional constraint $\pi_1 + \pi_2 + \pi_3 \geq \alpha$ doesn't affect the problem, so the solution is the same as before. If $\alpha > \frac{3}{2}$ then the value of the problem equals α with an optimal solution $\pi = (\frac{\alpha}{3}, \frac{\alpha}{3}, \frac{\alpha}{3})$. This is clearly feasible, since $\frac{\alpha}{3} + \frac{\alpha}{3} = \frac{2\alpha}{3} > 1$.

2. (a) We are given the linear program:

$$V(\alpha) = \max_{x_1, x_2} x_1 + 2x_2 \text{ subject to}$$

$$x_1 + \frac{8}{3}x_2 \leq 2\alpha,$$

$$x_1 + x_2 \leq \alpha,$$

$$2x_1 \leq 3$$

$$x_1, x_2 \geq 0.$$

The dual of this problem is given below:

$$W(\alpha) = \min_{y_1, y_2, y_3} 2\alpha y_1 + \alpha y_2 + 3y_3 \text{ subject to} y_1 + y_2 + 2y_3 \ge 1, \frac{8}{3}y_1 + y_2 \ge 2, y_1, y_2 \ge 0.$$

Since the slope of the isovalue line lies between the slopes of the first and second constraints, the optimal solution will solve

$$x_1 + \frac{8}{3}x_2 = 2\alpha$$
$$x_1 + x_2 = \alpha,$$

yielding $(x_1^*, x_2^*) = (\frac{2}{5}\alpha, \frac{3}{5}\alpha)$, as long as $x_1^* \leq 3/2$, i.e., as long as $\alpha \leq 15/4$. If $\alpha > 15/4$ then $(x_1^*, x_2^*) = (\frac{3}{2}, \frac{4\alpha-3}{16})$. The remaining optimal solutions as well as the value are tabulated below.

α	x^*	V = W	y^*	$2y_1^* + y_2^*$
$\alpha < 0$	Ø	$-\infty$	unbounded	unbdd
$\alpha = 0$	(0, 0)	0	any feasible $(y_1, y_2, 0)$	$+\infty$
$0 < \alpha < 15/4$	$\left(\frac{2}{5}\alpha,\frac{3}{5}\alpha\right)$	$\frac{8}{5}\alpha$	$(rac{3}{5},rac{2}{5},0)$	$\frac{8}{5}$
$\alpha = 15/4$	$(\frac{3}{2}, \frac{9}{4})$	6	$\{\lambda(\frac{3}{5}, \frac{2}{5}, 0) + (1 - \lambda)(\frac{3}{4}, 0, \frac{1}{8}) : \lambda \in [0, 1]\}$	$[\frac{3}{2}, \frac{8}{5}]$
$15/4 < \alpha$	$\left(\frac{3}{2},\frac{12\alpha-9}{16}\right)$	$\frac{3}{2}\alpha + \frac{3}{8}$	$(rac{3}{4},0,rac{1}{8})$	$\frac{3}{2}$

Therefore, $2y_1^* + y_2^*$ coincides with the slope of $V(\alpha)$.

The remaining graphs can be drawn from the table above.

(b) Now suppose that $\alpha = 1$ is fixed, and vary β in the linear program below.

$$V(\alpha) = \max_{x_1, x_2} x_1 + 2x_2 \text{ subject to}$$

$$x_1 + \frac{8}{3}x_2 \leq 2,$$

$$x_1 + x_2 \leq 1 + \beta,$$

$$2x_1 \leq 3 + \beta,$$

$$x_1, x_2 \geq 0.$$

The dual of this problem is given below:

$$W(\alpha) = \min_{y_1, y_2, y_3} 2y_1 + (1+\beta)y_2 + (3+\beta)y_3 \text{ subject to}$$
$$y_1 + y_2 + 2y_3 \ge 1,$$
$$\frac{8}{3}y_1 + y_2 \ge 2,$$
$$y_1, y_2 \ge 0.$$

Using the same techniques as the previous problem leads to the following table:

β	x^*	V = W	y^*	$y_2^* + y_3^*$
$\beta < -1$	Ø	$-\infty$	unbounded	unbdd
$\beta = -1$	(0,0)	0	unbounded	unbdd
$\boxed{-1 < \beta < -\frac{1}{4}}$	$(0,1+\beta)$	$2(1+\beta)$	(0, 2, 0)	2
$\beta = -\frac{1}{4}$	$(0, \frac{3}{4})$	$\frac{3}{2}$	$\{\lambda(0,2,0) + (1-\lambda)(\frac{3}{5},\frac{2}{5},0) : \lambda \in [0,1]\}$	$[\frac{2}{5}, 2]$
$\boxed{-\frac{1}{4} < \beta < 1}$	$\left(\frac{2+8\beta}{5},\frac{3(1-\beta)}{5}\right)$	$\frac{8+2\beta}{5}$	$(rac{3}{5},rac{2}{5},0)$	$\frac{2}{5}$
$\beta = 1$	(2, 0)	2	$\{\lambda(\frac{3}{5}, \frac{2}{5}, 0) + (1 - \lambda)(1, 0, 0) : \lambda \in [0, 1]\}$	$[0, \frac{3}{5}]$
$1 < \beta$	(2, 0)	2	(1, 0, 0)	0

Now, the slopes of $V(\beta)$ correspond to $y_2^*(\beta) + y_3^*(\beta)$, since in this case the third primal constraint never binds, so $y_3^*(\beta) = 0$ for all β .