Midterm 1—Suggested Answers

1. (a) Given the following linear program,

$$
\begin{aligned}
& \min _{\pi \in \mathbb{R}^{3}} \pi_{1}+\pi_{2}+\pi_{3} \text { subject to } \\
& \pi_{1}+\pi_{2} \geq 1 \\
& \pi_{1}+\pi_{3} \geq 1 \\
& \pi_{2}+\pi_{3} \geq 1 \\
& \pi_{1}, \pi_{2}, \pi_{3} \geq 0
\end{aligned}
$$

its dual is given by

$$
\begin{array}{r}
\max _{\sigma \in \mathbb{R}^{3}} \sigma_{1}+\sigma_{2}+\sigma_{3} \text { subject to } \\
\sigma_{1}+\sigma_{2} \leq 1, \\
\sigma_{1}+\sigma_{3} \leq 1, \\
\sigma_{2}+\sigma_{3} \leq 1, \\
\sigma_{1}, \sigma_{2}, \sigma_{3} \geq 0 .
\end{array}
$$

Adding the primal constraints, it follows that $\pi_{1}+\pi_{2}+\pi_{3} \geq 1.5$. Adding the dual constraints, it follows that $\sigma_{1}+\sigma_{2}+\sigma_{3} \leq 1.5$. The vector $\pi=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is a feasible primal solution with value 1.5 , and the vector $\sigma=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is a feasible dual solution with value 1.5. By duality, $1.5 \leq V=W \leq 1.5$, therefore π is an optimal primal solution and σ is an optimal dual solution.
(b) If $\alpha \leq \frac{3}{2}$ then the additional constraint $\pi_{1}+\pi_{2}+\pi_{3} \geq \alpha$ doesn't affect the problem, so the solution is the same as before. If $\alpha>\frac{3}{2}$ then the value of the problem equals α with an optimal solution $\pi=\left(\frac{\alpha}{3}, \frac{\alpha}{3}, \frac{\alpha}{3}\right)$. This is clearly feasible, since $\frac{\alpha}{3}+\frac{\alpha}{3}=\frac{2 \alpha}{3}>1$.
2. (a) We are given the linear program:

$$
\begin{aligned}
V(\alpha)=\max _{x_{1}, x_{2}} x_{1}+2 x_{2} \text { subject to } & \\
x_{1}+\frac{8}{3} x_{2} & \leq 2 \alpha \\
x_{1}+x_{2} & \leq \alpha \\
2 x_{1} & \leq 3 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

The dual of this problem is given below:

$$
\begin{aligned}
& W(\alpha)=\min _{y_{1}, y_{2}, y_{3}} 2 \alpha y_{1}+\alpha y_{2}+3 y_{3} \text { subject to } \\
& y_{1}+y_{2}+2 y_{3} \geq 1, \\
& \frac{8}{3} y_{1}+y_{2} \geq 2, \\
& y_{1}, y_{2} \geq 0 .
\end{aligned}
$$

Since the slope of the isovalue line lies between the slopes of the first and second constraints, the optimal solution will solve

$$
\begin{aligned}
x_{1}+\frac{8}{3} x_{2} & =2 \alpha \\
x_{1}+x_{2} & =\alpha,
\end{aligned}
$$

yielding $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{2}{5} \alpha, \frac{3}{5} \alpha\right)$, as long as $x_{1}^{*} \leq 3 / 2$, i.e., as long as $\alpha \leq 15 / 4$. If $\alpha>15 / 4$ then $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{3}{2}, \frac{4 \alpha-3}{16}\right)$. The remaining optimal solutions as well as the value are tabulated below.

α	x^{*}	$V=W$	y^{*}	$2 y_{1}^{*}+y_{2}^{*}$
$\alpha<0$	\emptyset	$-\infty$	unbounded	unbdd
$\alpha=0$	$(0,0)$	0	any feasible $\left(y_{1}, y_{2}, 0\right)$	$+\infty$
$0<\alpha<15 / 4$	$\left(\frac{2}{5} \alpha, \frac{3}{5} \alpha\right)$	$\frac{8}{5} \alpha$	$\left(\frac{3}{5}, \frac{2}{5}, 0\right)$	$\frac{8}{5}$
$\alpha=15 / 4$	$\left(\frac{3}{2}, \frac{9}{4}\right)$	6	$\left\{\lambda\left(\frac{3}{5}, \frac{2}{5}, 0\right)+(1-\lambda)\left(\frac{3}{4}, 0, \frac{1}{8}\right): \lambda \in[0,1]\right\}$	$\left[\frac{3}{2}, \frac{8}{5}\right]$
$15 / 4<\alpha$	$\left(\frac{3}{2}, \frac{12 \alpha-9}{16}\right)$	$\frac{3}{2} \alpha+\frac{3}{8}$	$\left(\frac{3}{4}, 0, \frac{1}{8}\right)$	$\frac{3}{2}$

Therefore, $2 y_{1}^{*}+y_{2}^{*}$ coincides with the slope of $V(\alpha)$.

The remaining graphs can be drawn from the table above.
(b) Now suppose that $\alpha=1$ is fixed, and vary β in the linear program below.

$$
\begin{aligned}
V(\alpha)=\max _{x_{1}, x_{2}} x_{1}+2 x_{2} \text { subject to } & \\
x_{1}+\frac{8}{3} x_{2} & \leq 2 \\
x_{1}+x_{2} & \leq 1+\beta \\
2 x_{1} & \leq 3+\beta \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The dual of this problem is given below:

$$
\begin{aligned}
& W(\alpha)=\min _{y_{1}, y_{2}, y_{3}} 2 y_{1}+(1+\beta) y_{2}+(3+\beta) y_{3} \text { subject to } \\
& y_{1}+y_{2}+2 y_{3} \geq 1, \\
& \frac{8}{3} y_{1}+y_{2} \geq 2, \\
& y_{1}, y_{2} \geq 0 .
\end{aligned}
$$

Using the same techniques as the previous problem leads to the following table:

β	x^{*}	y^{*}	$y_{2}^{*}+y_{3}^{*}$	
$\beta<-1$	\emptyset	$-\infty$	unbounded	unbdd
$\beta=-1$	$(0,0)$	0	unbounded	unbdd
$-1<\beta<-\frac{1}{4}$	$(0,1+\beta)$	$2(1+\beta)$	$(0,2,0)$	2
$\beta=-\frac{1}{4}$	$\left(0, \frac{3}{4}\right)$	$\frac{3}{2}$	$\left\{\lambda(0,2,0)+(1-\lambda)\left(\frac{3}{5}, \frac{2}{5}, 0\right): \lambda \in[0,1]\right\}$	$\left[\frac{2}{5}, 2\right]$
$-\frac{1}{4}<\beta<1$	$\left(\frac{2+8 \beta}{5}, \frac{3(1-\beta)}{5}\right)$	$\frac{8+2 \beta}{5}$	$\left(\frac{3}{5}, \frac{2}{5}, 0\right)$	$\frac{2}{5}$
$\beta=1$	$(2,0)$	2	$\left\{\lambda\left(\frac{3}{5}, \frac{2}{5}, 0\right)+(1-\lambda)(1,0,0): \lambda \in[0,1]\right\}$	$\left[0, \frac{3}{5}\right]$
$1<\beta$	$(2,0)$	2	$(1,0,0)$	0

Now, the slopes of $V(\beta)$ correspond to $y_{2}^{*}(\beta)+y_{3}^{*}(\beta)$, since in this case the third primal constraint never binds, so $y_{3}^{*}(\beta)=0$ for all β.

