Economics 4113: Midterm 2—April 3, 2008

Instructions: You have 1 hour and 15 minutes to answer the questions below. Provide answers as complete as possible. Good luck!

An individual lives for two years. He earns income I_{1} during the first year and I_{2} during the second year. Each year, the individual may consume two goods, x and y. Let x_{1} denote the amount of good x consumed in the first year, and x_{2} the amount of good x consumed in the second year; similarly for y_{1} and y_{2}. Let p_{1} and q_{1} be the prices of goods x and y, respectively in the first year, and p_{2} and q_{2} those in the second year. Assume for now that the individual cannot borrow or save. The individual's budget problem is given below:

$$
\begin{array}{r}
\max _{x, y \geq \mathbf{0}} \alpha \ln \left(x_{1}\right)+\beta \ln \left(y_{1}\right)+\delta\left(\alpha \ln \left(x_{2}\right)+\beta \ln \left(y_{2}\right)\right) \text { subject to } \\
p_{1} x_{1}+q_{1} y_{1} \leq I_{1} \quad \text { and } \quad p_{2} x_{2}+q_{2} y_{2} \leq I_{2} .
\end{array}
$$

where α and β are positive, $0<\delta<1, I_{1}, I_{2}$ are also positive, and $\alpha+\beta=1$.

1. Solve the optimization problem, i.e., calculate the optimal consumption of each good at each date. Also calculate the marginal utility of money income at both dates 1 and 2. Find an expression for the indirect utility

$$
V\left(p_{1}, q_{1}, p_{2}, q_{2}, I_{1}, I_{2}\right)
$$

i.e., the value function of this budget problem.
2. Now suppose that the individual can borrow and save at the rate of interest $r>0$. Let s be the amount of money that the individual saves in the first year to have available in the second year. (If $s<0$ then we interpret this as borrowing.)
Thus, if an individual saves an amount s then the income has has available to purchase goods in date 1 equals $I_{1}-s$, whereas his income in date 2 equals $I_{2}+(1+r) s$. In date 2 , after saving an amount s, the individual receives principal (s) plus interest ($r s$). Implicitly we are assuming that the borrowing rate equals the lending rate.
Let $W(s)=V\left(p_{1}, q_{1}, p_{2}, q_{2}, I_{1}-s, I_{2}+(1+r) s\right)$ be the indirect utility after saving an amount s from date 1 for date 2 . The individual's saving problem is

$$
\max _{s} W(s) .
$$

Decide if W is a concave function or a convex function (or neither) of s. Find the optimal saving decision s^{*}. Under what conditions is $s^{*}=0$? What is the individual's optimal decision if $\delta=0$? Now, suppose that $\delta=1 /(1+r)>0$. How much money does the individual end up spending in date 1 and date 2 ? What is the intertemporal expenditure ratio $\left(I_{1}-s^{*}\right) /\left[I_{2}+(1+r) s^{*}\right]$? Find the intertemporal consumption ratios x_{1}^{*} / x_{2}^{*} and y_{1}^{*} / y_{2}^{*} after saving s^{*}.

