Economics 4113: Midterm 2-Suggested Answers

1. We are given the problem

$$
\begin{array}{r}
\max _{x, y \geq \mathbf{0}} \alpha \ln \left(x_{1}\right)+\beta \ln \left(y_{1}\right)+\delta\left(\alpha \ln \left(x_{2}\right)+\beta \ln \left(y_{2}\right)\right) \text { subject to } \\
p_{1} x_{1}+q_{1} y_{1} \leq I_{1} \quad \text { and } \quad p_{2} x_{2}+q_{2} y_{2} \leq I_{2} .
\end{array}
$$

To solve it, take the Lagrangean:

$$
\begin{aligned}
\mathcal{L}=\alpha & \ln \left(x_{1}\right)+\beta \ln \left(y_{1}\right)+\delta\left(\alpha \ln \left(x_{2}\right)+\beta \ln \left(y_{2}\right)\right) \\
& +\lambda_{1}\left(I_{1}-p_{1} x_{1}-q_{1} y_{1}\right)+\lambda_{2}\left(I_{2}-p_{2} x_{2}-q_{2} y_{2}\right)
\end{aligned}
$$

The objective is concave and the constraints are linear, so Kuhn-Tucker conditions are necessary and sufficient. Since utility is strictly increasing, budget constraints will hold with equality, and since marginal utility is unbounded at 0 , first-order conditions hold with equality, too. They are for every $i=1,2$:

$$
\frac{\alpha}{x_{i}}=\lambda_{i} p_{i} \quad \frac{\beta}{y_{i}}=\lambda_{i} q_{i} .
$$

Therefore, $p_{i} x_{i} / \alpha=q_{i} y_{i} / \beta$ for every i. Substituting into the budget constraints,

$$
x_{i}^{*}=\frac{\alpha I_{i}}{p_{i}} \quad y_{i}^{*}=\frac{\beta I_{i}}{q_{i}} .
$$

Substituting this into the previous equations, we obtain

$$
\lambda_{1}=\frac{1}{I_{1}} \quad \lambda_{2}=\frac{\delta}{I_{2}} .
$$

Finally, plugging in x_{i}^{*} and y_{i}^{*} into \mathcal{L}, we obtain

$$
\begin{array}{r}
V\left(p, q, I_{1}, I_{2}\right)=\alpha \ln \left(\alpha I_{1} / p_{1}\right)+\beta \ln \left(\beta I_{1} / q_{1}\right)+\delta\left(\alpha \ln \left(\alpha I_{2} / p_{2}\right)+\beta \ln \left(\beta I_{2} / q_{2}\right)\right) \\
=\ln I_{1}+\delta \ln I_{2}+C
\end{array}
$$

where C is a constant that does not depend on I_{i}.
2. $W(s)=\ln \left(I_{1}-s\right)+\delta \ln \left(I_{2}+(1+r) s\right)+C$. Its derivatives are

$$
\begin{array}{r}
W^{\prime}(s)=\frac{-1}{I_{1}-s}+\frac{\delta(1+r)}{I_{2}+(1+r) s} \\
W^{\prime \prime}(s)=\frac{-2}{\left(I_{1}-s\right)^{2}}-\frac{2 \delta(1+r)^{2}}{\left(I_{2}+(1+r) s\right)^{2}}<0 .
\end{array}
$$

Since $W^{\prime \prime}(s)<0$ for all s, it follows that W is a concave function.

The optimal savings decision can be found by solving for s^{*} from the condition $W^{\prime}\left(s^{*}\right)=0$. This gives

$$
s^{*}=\frac{\delta(1+r) I_{1}-I_{2}}{(1+\delta)(1+r)}
$$

Therefore, $s^{*}=0$ exactly if $\delta(1+r) I_{1}=I_{2}$. If $\delta=0$, the optimal decision is $s^{*}=-I_{2} /(1+r)$, i.e., the consumer brings all his money forward to consume only on date 1 .
Now suppose that $\delta=1 /(1+r)>0$. Optimal expenditure becomes

$$
\begin{array}{r}
\widehat{I}_{1}=I_{1}-s^{*}=I_{1}-\frac{\delta\left(I_{1}-I_{2}\right)}{1+\delta}=\frac{I_{1}+\delta I_{2}}{1+\delta} \\
\widehat{I}_{2}=I_{2}+(1+r) s^{*}=I_{2}+\frac{I_{1}-I_{2}}{1+\delta}=\frac{I_{1}+\delta I_{2}}{1+\delta} .
\end{array}
$$

To find the expenditure ratio, notice that by the envelope theorem

$$
-\lambda_{1}^{*}+\lambda_{2}^{*}(1+r)=0 \quad \Rightarrow \quad \widehat{I}_{2}=\delta(1+r) \widehat{I}_{1}
$$

Therefore, $\delta=1 /(1+r)$ implies that $\widehat{I}_{1}=\widehat{I}_{2}$ and the intertemporal expenditure ratio equals one. The intertemporal consumption ratios are given by

$$
\frac{x_{1}^{*}}{x_{2}^{*}}=\frac{\alpha \widehat{I}_{1} p_{2}}{\alpha \widehat{I}_{2} p_{1}}=\frac{p_{2}}{p_{1}}
$$

and similarly $y_{1}^{*} / y_{2}^{*}=q_{2} / q_{1}$.

