Economics 4113, Spring 2010. Instructor: David Rahman, University of Minnesota. REQUEST: Please substantiate your answers.

1. Given a matrix $A \in \mathbb{R}^{m \times n}$, define

span
$$A = \{ y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n \text{ s.t. } Ax = y \}$$

Intuitively, span A is the set of vectors that can be reached by multiplying a vector by the matrix A.

- (a) Prove that the span of a matrix is a linear subspace.
- (b) Sketch the span of the following matrix:

$$A = \left[\begin{array}{rrr} 2 & 0 & -1 \\ 1 & 1 & 2 \end{array} \right]$$

(c) Sketch the span of the following matrix:

$$A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$$

(d) Sketch the kernel of the matrices in (b) and (c) above. Recall that the kernel of a matrix A is defined as

$$\ker A = \{ x \in \mathbb{R}^n : Ax = \mathbf{0} \}.$$

2. Given a matrix A, the cone generated by A is defined as

cone
$$A = \{ y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n_+ \text{ s.t. } Ax = y \},\$$

where $\mathbb{R}^n_+ = \{x = (x_1, \dots, x_n) : x_i \ge 0 \ \forall i\}$ is the non-negative orthant of \mathbb{R}^n . (Notice how cone A differs from span A.)

- (a) Sketch the cones generated by the matrices defined in problems 1.(b) and 1.(c) above.
- (b) Consider the matrix B that remains from the one in problem 1.(b) after eliminating the second column. What is the cone generated by this matrix? If b = (1, 0), decide whether or not the system Bx = b has a solution $x \ge 0$.

(c) Sketch the cone generated by the following matrix:

$$A = \begin{bmatrix} 2 & 1 & -3 \\ -1 & 3 & -2 \end{bmatrix}$$

- 3. Consider the vectors a = (0, 1, -2), b = (1, 1, 1), c = (1, 2, 3) and d = (2, 0, 3). Are these four vectors linearly independent? If so, prove it. If not, exhibit a linear combination of these vectors that yields zero.
- 4. Let a_1, \ldots, a_m be *m*-vectors. Prove that the equations

$$a_i y = \beta_i \qquad \forall i \in \{1, \dots, m\}$$

have a unique solution y if and only if the equations

$$a_i y = 0 \qquad \forall i \in \{1, \dots, m\}$$

have no nonzero solution. (Hint: It's not as difficult as it looks!)

5. Sketch the hyperplane generated by the following equation in \mathbb{R}^2 :

$$x_1 - 2x_2 = 3.$$

Identify the set of vectors in \mathbb{R}^2 such that $x_1 - 2x_2 < 3$, as well as the set of points such that $x_1 - 2x_2 > 3$. Now repeat this exercise with the equation $x_1 + 2x_2 = 3$ instead.

- 6. This question is about finding solutions to equations and inequalities.
 - (a) Find all solutions of the equations

$$2x + 3y - z + w = 0$$
$$x - 5y + 2z = 0.$$

(b) Decide whether or not the following equations have a solution:

$$2x + 3y = 1$$
$$x - 3y = 1$$
$$-x + y = 0.$$

(c) Decide whether or not the following equations have a non-negative solution:

$$\begin{array}{rcl} x + 3y - 5z &=& 2 \\ x - 4y - 7z &=& 3. \end{array}$$

(d) Decide whether or not the following inequalities have a solution:

$$4x - 5y \ge 3$$

$$-2x - 7y \ge 1$$

$$-2x + y \ge -2$$

(e) Find a solution for the inequalities

$$5x - 4y \leq 7$$

$$-3x + 3y \leq -5.$$

Prove that there is no non-negative solution to these inequalities.

(f) Do the following equations have a non-negative solution?

$$3x - 5y + 2z = 0$$

$$2x - 4y + z = 0.$$

- 7. Show that a set of n homogeneous inequalities in n unknowns always has a nonzero solution.
- 8. Prove the following statements given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$:
 - (a) Either $Ax \ge b$ has a non-negative solution x or there is a non-negative solution y such that $yA \le 0$ and yb > 0, but not both.
 - (b) Either $Ax = \mathbf{0}$, $\sum_{i} x_{i} = 1$ has a non-negative solution or there exists $y \in \mathbb{R}^{m}$ such that $yA \gg \mathbf{0}$, but not both.
 - (c) Either $Ax = \mathbf{0}$, has a nonzero, non-negative solution or there exists $y \in \mathbb{R}^m$ such that $yA \gg \mathbf{0}$, but not both.
 - (d) Either $Ax \leq b$ has a solution or there exists $y \in \mathbb{R}^m_+$ such that $yA \geq \mathbf{0}$ and yb < 0, but not both.
 - (e) Either there exists $x \gg \mathbf{0}$ such that $Ax = \mathbf{0}$ or there exists $y \in \mathbb{R}^m$ such that $yA > \mathbf{0}$, but not both.
 - (f) The system $Ax \ll b$ has a solution if and only if $y = \mathbf{0}$ is the only solution to $\{yA = \mathbf{0}, yb \leq 0, y \geq \mathbf{0}\}.$
 - (g) Let $F = \{x \in \mathbb{R}^n : Ax \leq \mathbf{0}\}, c \in \mathbb{R}^n \text{ and } G = \{x \in \mathbb{R}^n : cx \leq \mathbf{0}\}.$ Prove that $F \subset G$ if and only if there exists $y \in \mathbb{R}^m_+$ such that c = yA.