Economics 4113, Spring 2010. Instructor: David Rahman, University of Minnesota. REQUEST: Please substantiate your answers.

Homework 1—Due February 2, 2010

1. Given a matrix $A \in \mathbb{R}^{m \times n}$, define

$$
\operatorname{span} A=\left\{y \in \mathbb{R}^{m}: \exists x \in \mathbb{R}^{n} \text { s.t. } A x=y\right\}
$$

Intuitively, span A is the set of vectors that can be reached by multiplying a vector by the matrix A.
(a) Prove that the span of a matrix is a linear subspace.
(b) Sketch the span of the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
1 & 1 & 2
\end{array}\right]
$$

(c) Sketch the span of the following matrix:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
6 & 3
\end{array}\right]
$$

(d) Sketch the kernel of the matrices in (b) and (c) above. Recall that the kernel of a matrix A is defined as

$$
\operatorname{ker} A=\left\{x \in \mathbb{R}^{n}: A x=\mathbf{0}\right\}
$$

2. Given a matrix A, the cone generated by A is defined as

$$
\text { cone } A=\left\{y \in \mathbb{R}^{m}: \exists x \in \mathbb{R}_{+}^{n} \text { s.t. } A x=y\right\}
$$

where $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0 \forall i\right\}$ is the non-negative orthant of \mathbb{R}^{n}. (Notice how cone A differs from span A.)
(a) Sketch the cones generated by the matrices defined in problems 1.(b) and 1.(c) above.
(b) Consider the matrix B that remains from the one in problem 1.(b) after eliminating the second column. What is the cone generated by this matrix? If $b=(1,0)$, decide whether or not the system $B x=b$ has a solution $x \geq \mathbf{0}$.
(c) Sketch the cone generated by the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
-1 & 3 & -2
\end{array}\right]
$$

3. Consider the vectors $a=(0,1,-2), b=(1,1,1), c=(1,2,3)$ and $d=(2,0,3)$. Are these four vectors linearly independent? If so, prove it. If not, exhibit a linear combination of these vectors that yields zero.
4. Let a_{1}, \ldots, a_{m} be m-vectors. Prove that the equations

$$
a_{i} y=\beta_{i} \quad \forall i \in\{1, \ldots, m\}
$$

have a unique solution y if and only if the equations

$$
a_{i} y=0 \quad \forall i \in\{1, \ldots, m\}
$$

have no nonzero solution. (Hint: It's not as difficult as it looks!)
5. Sketch the hyperplane generated by the following equation in \mathbb{R}^{2} :

$$
x_{1}-2 x_{2}=3
$$

Identify the set of vectors in \mathbb{R}^{2} such that $x_{1}-2 x_{2}<3$, as well as the set of points such that $x_{1}-2 x_{2}>3$. Now repeat this exercise with the equation $x_{1}+2 x_{2}=3$ instead.
6. This question is about finding solutions to equations and inequalities.
(a) Find all solutions of the equations

$$
\begin{array}{r}
2 x+3 y-z+w=0 \\
x-5 y+2 z=0
\end{array}
$$

(b) Decide whether or not the following equations have a solution:

$$
\begin{aligned}
2 x+3 y & =1 \\
x-3 y & =1 \\
-x+y & =0
\end{aligned}
$$

(c) Decide whether or not the following equations have a non-negative solution:

$$
\begin{aligned}
& x+3 y-5 z=2 \\
& x-4 y-7 z=3
\end{aligned}
$$

(d) Decide whether or not the following inequalities have a solution:

$$
\begin{aligned}
4 x-5 y & \geq 3 \\
-2 x-7 y & \geq 1 \\
-2 x+y & \geq-2
\end{aligned}
$$

(e) Find a solution for the inequalities

$$
\begin{aligned}
5 x-4 y & \leq 7 \\
-3 x+3 y & \leq-5 .
\end{aligned}
$$

Prove that there is no non-negative solution to these inequalities.
(f) Do the following equations have a non-negative solution?

$$
\begin{aligned}
3 x-5 y+2 z & =0 \\
2 x-4 y+z & =0
\end{aligned}
$$

7. Show that a set of n homogeneous inequalities in n unknowns always has a nonzero solution.
8. Prove the following statements given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^{m}$:
(a) Either $A x \geq b$ has a non-negative solution x or there is a non-negative solution y such that $y A \leq 0$ and $y b>0$, but not both.
(b) Either $A x=\mathbf{0}, \sum_{i} x_{i}=1$ has a non-negative solution or there exists $y \in \mathbb{R}^{m}$ such that $y A \gg \mathbf{0}$, but not both.
(c) Either $A x=\mathbf{0}$, has a nonzero, non-negative solution or there exists $y \in \mathbb{R}^{m}$ such that $y A \gg \mathbf{0}$, but not both.
(d) Either $A x \leq b$ has a solution or there exists $y \in \mathbb{R}_{+}^{m}$ such that $y A \geq \mathbf{0}$ and $y b<0$, but not both.
(e) Either there exists $x \gg \mathbf{0}$ such that $A x=\mathbf{0}$ or there exists $y \in \mathbb{R}^{m}$ such that $y A>\mathbf{0}$, but not both.
(f) The system $A x \ll b$ has a solution if and only if $y=\mathbf{0}$ is the only solution to $\{y A=\mathbf{0}, y b \leq 0, y \geq \mathbf{0}\}$.
(g) Let $F=\left\{x \in \mathbb{R}^{n}: A x \leq \mathbf{0}\right\}, c \in \mathbb{R}^{n}$ and $G=\left\{x \in \mathbb{R}^{n}: c x \leq 0\right\}$. Prove that $F \subset G$ if and only if there exists $y \in \mathbb{R}_{+}^{m}$ such that $c=y A$.
