I. BACKGROUND: SOME BASIC CONCEPTS FROM GAME THEORY

A. A GAME IS AN ABSTRACT REPRESENTATION OF STRATEGIC INTERACTION

Strategic interaction means that my payoff from what I do depends also on what you do.
$>$ Before I decide what I should do, I have to think about what you will do
$>$ And vice versa.

B. SOME EXAMPLES

Some games can be represented by a payoff matrix that shows how each player's payoff depends on each player's actions.
Consider matching pennies. Following table show's player R's payoff:
Player C

And consider the game of a submarine and a ship captain choosing whether to go North or South of an island.
$>$ If they both choose the same side, the submarine wins (+1).
$>$ If they choose different sides, the captain wins (-1 to the submarine)
Captain

In abstract form, they're the same game. They are both
$>$ Two-player games
$>$ Zero-sum games (what one wins, the other loses)
$>$ Games of complete information.
$>$ There is no winning pure strategy.
$>$ There is a winning mixed strategy, though "winning" does not mean that you can do better than break even:
$>$ The winning strategy is to toss a coin to decide whether to choose head or tail, or whether to go north or south of the island.
$>$ A change in the payoff will change the winning mixed strategy. E. g., suppose if both go North, the payoff to the submarine is 0.5 (because there is a 50% chance of missing due to rock formations under water).

North
South
Submarine

	North	South
North	+0.5	-1
South	-1	+1

Then if the submarine kept flipping coins, the captain should go north. But if the captain goes north, the submarine should go North too.
$>$ We won't solve the problem of finding the best strategy for each here, though it is possible.

A new game to consider:

Column

		L	M	R
Row	U	4,3	5,1	6,2
	M	2,1	8,4	3,6
	D	3, 0	9,6	2, 8

> This shows R's payoff followed by C's payoff, in each cell.
$>$ The game is no longer zero-sum. Combined payoffs range from 3 to 15 .
$>$ C's Middle strategy is dominated by Right: No matter what R does, C is better off with R than with M. So he should never choose M.
$>$ If the payoff matrix is common knowledge, so R know's C 's payoffs, R can reason that C will never choose M. So R should choose U .
$>$ Then, following the same reasoning, C will know that R will choose U , so C will choose L.
$>$ Each player is using the reasoning of iterated dominance to choose a strategy.

- But consider this game:

$>$ What is R's solution based on iterated dominance?
> What strategy would you play as R?

C. PRISONERS' DILEMMA

- Two suspected thieves are caught, put in separate cells, and offered the following deal:
$>$ Implicate the other thief, and you'll get a reward.
$>$ Unless he implicates you too, you'll go free.
$>$ Each thief knows that if both stay quiet, there is no evidence to convict, and they both go free.
$>$ Here's the game (Rat means to implicate your partner, Don't rat means keep quiet):

$>$ Clearly no matter what Column does, Row is better off if he rats.
$>$ Similarly no matter what Row does, Column is better off if he rats.
$>$ The equilibrium is for both to implicate the other - rat, even though they would both be better off if they both kept quiet.
- The prisoners' dilemma game is an extreme form of a cooperation game. In a less extreme form, cooperation may turn out to be the equilibrium. Consider this game (C means cooperate, D means don't):

Column

- I calculated those payoffs from the formulas:

$$
\begin{aligned}
\text { Row's payoff } & =1.5(\mathrm{x}+\mathrm{y})-\mathrm{x} \\
\text { Column's payoff } & =1.5(\mathrm{x}+\mathrm{y})-\mathrm{y}
\end{aligned}
$$

Where x is Row's contribution to a common cause and y is Column's contribution, each limited to the value 0 if she doesn't cooperate or 1 if she does.

- If $0.5<\mathrm{a}<1$, the game becomes a prisoners' dilemma.

D. PRISONERS' DILEMMA IN THE REAL WORLD

- (Thaler) How do you set up each of the following situations as a prisoners' dilemma?
$>$ Contributions to public TV
$>$ United Way contributions
> Tipping the server in a restaurant you don't expect to visit again.
$>$ Tipping the room service maid in a hotel
- Thaler reports on a game exactly like that of the exercise, with a set so that it produces a prisoner's dilemma (p. 10).
$>$ What is the outcome, for a 1-shot game?
$>$ For a repeated game?
$>$ Do you understand the distinction between a game with a finite number of repetitions and one which has no known cut-off ("infinitely repeated games")
- Note: Prisoners' dilemma is also called the "free rider problem" or "the tragedy of the commons".

