Theories about why efficient for large plants to hire skilled labor

- Management Diseconomies (e.g. Walter Oi).
 - Explanation for assortative matching
 - Assume

$$Q = \theta E$$

where θ is management ability and E is labor in efficiency units.

- Suppose E = qL where L is number of worker and q is quality.
- Suppose $L \leq \overline{L}$ (span of control)

– Then social planner allocates highest quality workers to highest θ managers.

Economies of Scale for replacing unskilled with capital. (Holmes and Mitchell)

- Unit measure of tasks z
- Level of task z denoted x(z)
- Gross output is Leontief

 $q = \min\left\{x(z)\right\}$

- One unit of any factor delivers one unit of task:
- Tasks above z_{skill} must be done by skilled labor.
- Tasks below z_{skill} can be done by unskilled labor or capital (or skilled labor)
- To get capital to be able to perform a task, need to spend $\phi(z) > 0$ in fixed cost, where $\phi(0) = 0$ and $\phi'(z) > 0$.
- Optimal Allocation: A Cutoff Rule
- In any equilibrium

$$w_K < w_U \le w_S$$

• Look at cost minimization problem for fixed q. Which factor does job $z < z_{skill}$? Between capital or unskilled labor pick

 $\min\left\{w_K q + \phi(z), w_U q\right\}$

So cutoff rule $\hat{z},$ hire capital for $z<\hat{z}$ where \hat{z} solves

$$q = \frac{\phi(z)}{(w_U - w_K)}$$

• So $\phi(z)$ increasing implies \hat{z} increases with q.

• Capital Labor Ratio

Capital Labor Ratio
$$=rac{\hat{z}q}{\left(1-\hat{z}
ight)q}=rac{ ilde{z}}{1-\hat{z}}$$

increases with q (but what about with $employment = (1-\hat{z})q$

• Skill share:

$$rac{z_{skill}q}{\left(z_{skill}-\hat{z}
ight)q}$$

• Paper deals with another issue: z_{skill} could be endogenous....

• Firms vary in productivity parameter θ density $h(\theta)$ on $[\underline{\theta}, \overline{\theta}]$.

$$Q = \theta f(K, L)^{\gamma}$$

where

$$f(K,L) = (\alpha K^{\rho} + (1-\alpha) L^{\rho})^{\frac{1}{\rho}}$$

where

$$\sigma = rac{1}{1-
ho} < 1$$

• Setup cost ϕ

• Competitive wage w_c .

- Workers showing up to a particular firm of form a union at cost
- Directed search, given θ type firm $m(\theta)$ show up.
- Union makes take-it-or-leave it offer to supply up to $m(\theta)$ at a given wage that they pick $w(\theta)$.
 - Now assume that $w(\theta) + \xi \leq w_c$
 - In equilibrium $m(\theta)w_c = n(\theta)w(\theta)$, where $m(\theta)$ is the amount that show up, $n(\theta)$ is the amount that is used.

Firm Problem

given w

$$\max_{K,L} \theta p f(K,L)^{\gamma} - wL - rK$$

subject to

$$\tilde{\pi}(w,\theta) = \theta p f(\tilde{K}(w), \tilde{L}(w))^{\gamma} - w \tilde{L}(w) - r \tilde{K}(w) - \phi \ge 0$$

Where $\tilde{L}(w,\theta)$ solves the unconstrained problem. So labor demand is

$$L^*(w,\theta) = \tilde{L}(w,\theta), \text{ if } \tilde{\pi}(w,\theta) = 0$$

= 0 if $\tilde{\pi}(w,\theta) < 0.$

Union Problem

• Given θ , and $m(\theta)$, solve

$$\max L^*(w, heta)w,$$

subject to $L^*(w, heta) \leq m(heta)$
 $w \leq w_c + \xi$

• Since labor demand inelastic, go to corner where either

$$w = w_c + \xi$$

 $\pi^*(w, heta) = 0$

• Let $w^{**}(\theta)$ be solution to the union problem. Strictly increasing in θ until hits $w_c + \xi$.

- Let $n^{**}(\theta) = L^*(w^{**}(\theta), \theta)$.
- Equilibrium with directed search implies

$$\frac{m^{**}(\theta)}{n^{**}(\theta)}w^{**}(\theta) = w_c$$

Main Point

- Show $q^{**}(\theta)$ increasing in θ
- Since $w^{**}(\theta)$ increasing in θ get firm size wage premium
- Also obviously get capital intensity increases (but with no grabbing, capital intensity is independent of firm size

Extensions

- Instead of just substituting away through capital, pick different kinds of goods
- Intermediates y_1 , y_2 and $q = \min\{y_1, y_2\}$
- Production technology, $\alpha_1 < \alpha_2$

$$y_i = f_i(K, L) = (\alpha_i K^{\rho} + (1 - \alpha_i) L^{\rho})^{\frac{1}{\rho}}$$

$$q_1 = g_1(y_1, y_2, \theta) = \theta y_1 (y_1 + y_2)^{-(1-\gamma)}$$

$$q_2 = g_1(y_1, y_2, \theta) = \theta y_2 (y_1 + y_2)^{-(1-\gamma)}$$

- Specialist: just do task 1 or task 2
- Intermediation. Make $y = y_1 = y_2$ of both goods.
- \bullet Intermediation cost of τ per unit transfer

- With $\xi = 0$, when $\tau > 0$ all firms are vertically integrated
- $\xi > 0 \ \tau > 0$?

– (if $au = \infty$), just what we already did. Escape labor by K

– τ now escape by changing what you do.

Recent Vertical Disintegration Events

- NWA using contracters for cleaning rather than own employees
 - Holdup problem? Yes: when get in the door will hold things up
- Ford and GM spinning off parts divisions
 - Clear the things I am talking about above are first order
- Professional Employee Organizations?