Theories about why efficient for large plants to hire skilled labor

- Management Diseconomies (e.g. Walter Oi).
- Explanation for assortative matching
- Assume

$$
Q=\theta E
$$

where θ is management ability and E is labor in efficiency units.

- Suppose $E=q L$ where L is number of worker and q is quality.
- Suppose $L \leq \bar{L}$ (span of control)
- Then social planner allocates highest quality workers to highest θ managers.

Economies of Scale for replacing unskilled with capital. (Holmes and Mitchell)

- Unit measure of tasks z
- Level of task z denoted $x(z)$
- Gross output is Leontief

$$
q=\min \{x(z)\}
$$

- One unit of any factor delivers one unit of task:
- Tasks above $z_{\text {skill }}$ must be done by skilled labor.
- Tasks below $z_{\text {skill }}$ can be done by unskilled labor or capital (or skilled labor)
- To get capital to be able to perform a task, need to spend $\phi(z)>0$ in fixed cost, where $\phi(0)=0$ and $\phi^{\prime}(z)>0$.
- Optimal Allocation: A Cutoff Rule
- In any equilibrium

$$
w_{K}<w_{U} \leq w_{S}
$$

- Look at cost minimization problem for fixed q. Which factor does job $z<z_{\text {skill }}$? Between capital or unskilled labor pick

$$
\min \left\{w_{K} q+\phi(z), w_{U} q\right\}
$$

So cutoff rule \hat{z}, hire capital for $z<\hat{z}$ where \hat{z} solves

$$
q=\frac{\phi(z)}{\left(w_{U}-w_{K}\right)}
$$

- So $\phi(z)$ increasing implies \hat{z} increases with q.
- Capital Labor Ratio

$$
\text { Capital Labor Ratio }=\frac{\hat{z} q}{(1-\hat{z}) q}=\frac{\tilde{z}}{1-\hat{z}}
$$

increases with q (but what about with employment $=(1-\hat{z}) q$

- Skill share:

$$
\frac{z_{\text {skill }} q}{\left(z_{\text {skill }}-\hat{z}\right) q}
$$

- Paper deals with another issue: $z_{\text {skill }}$ could be endogenous....

Models of Grabbing

- Firms vary in productivity parameter θ density $h(\theta)$ on $[\underline{\theta}, \bar{\theta}]$.

$$
Q=\theta f(K, L)^{\gamma}
$$

where

$$
f(K, L)=\left(\alpha K^{\rho}+(1-\alpha) L^{\rho}\right)^{\frac{1}{\rho}}
$$

where

$$
\sigma=\frac{1}{1-\rho}<1
$$

- Setup cost ϕ
- Competitive wage w_{c}.
- Workers showing up to a particular firm of form a union at cost
- Directed search, given θ type firm $m(\theta)$ show up.
- Union makes take-it-or-leave it offer to supply up to $m(\theta)$ at a given wage that they pick $w(\theta)$.
- Now assume that $w(\theta)+\xi \leq w_{c}$
- In equilibrium $m(\theta) w_{c}=n(\theta) w(\theta)$, where $m(\theta)$ is the amount that show up, $n(\theta)$ is the amount that is used.

Firm Problem

given w

$$
\max _{K, L} \theta p f(K, L)^{\gamma}-w L-r K
$$

subject to

$$
\tilde{\pi}(w, \theta)=\theta p f(\tilde{K}(w), \tilde{L}(w))^{\gamma}-w \tilde{L}(w)-r \tilde{K}(w)-\phi \geq 0
$$

Where $\tilde{L}(w, \theta)$ solves the unconstrained problem. So labor demand is

$$
\begin{aligned}
L^{*}(w, \theta) & =\tilde{L}(w, \theta), \text { if } \tilde{\pi}(w, \theta)=0 \\
& =0 \text { if } \tilde{\pi}(w, \theta)<0
\end{aligned}
$$

Union Problem

- Given θ, and $m(\theta)$, solve

$$
\begin{aligned}
& \max L^{*}(w, \theta) w, \\
\text { subject to } L^{*}(w, \theta) & \leq m(\theta) \\
w & \leq w_{c}+\xi
\end{aligned}
$$

- Since labor demand inelastic, go to corner where either

$$
\begin{aligned}
w & =w_{c}+\xi \\
\pi^{*}(w, \theta) & =0
\end{aligned}
$$

- Let $w^{* *}(\theta)$ be solution to the union problem. Strictly increasing in θ until hits $w_{c}+\xi$.
- Let $n^{* *}(\theta)=L^{*}\left(w^{* *}(\theta), \theta\right)$.
- Equilibrium with directed search implies

$$
\frac{m^{* *}(\theta)}{n^{* *}(\theta)} w^{* *}(\theta)=w_{c}
$$

Main Point

- Show $q^{* *}(\theta)$ increasing in θ
- Since $w^{* *}(\theta)$ increasing in θ get firm size wage premium
- Also obviously get capital intensity increases (but with no grabbing, capital intensity is independent of firm size

Extensions

- Instead of just substituting away through capital, pick different kinds of goods
- Intermediates y_{1}, y_{2} and $q=\min \left\{y_{1}, y_{2}\right\}$
- Production technology, $\alpha_{1}<\alpha_{2}$

$$
y_{i}=f_{i}(K, L)=\left(\alpha_{i} K^{\rho}+\left(1-\alpha_{i}\right) L^{\rho}\right)^{\frac{1}{\rho}}
$$

$$
\begin{aligned}
& q_{1}=g_{1}\left(y_{1}, y_{2}, \theta\right)=\theta y_{1}\left(y_{1}+y_{2}\right)^{-(1-\gamma)} \\
& q_{2}=g_{1}\left(y_{1}, y_{2}, \theta\right)=\theta y_{2}\left(y_{1}+y_{2}\right)^{-(1-\gamma)}
\end{aligned}
$$

- Specialist: just do task 1 or task 2
- Intermediation. Make $y=y_{1}=y_{2}$ of both goods.
- Intermediation cost of τ per unit transfer
- With $\xi=0$, when $\tau>0$ all firms are vertically integrated
- $\xi>0 \tau>0$?
- (if $\tau=\infty$), just what we already did. Escape labor by K
- τ now escape by changing what you do.

Recent Vertical Disintegration Events

- NWA using contracters for cleaning rather than own employees
- Holdup problem? Yes: when get in the door will hold things up
- Ford and GM spinning off parts divisions
- Clear the things I am talking about above are first order
- Professional Employee Organizations?

