Incentives and the Theory of the Firm

- Tradeoff between incentives and insurance (Holmstrom)
- Multi-Tasking: Get What You Pay For (Holmstrom and Milgrom)
- Holdup Problem (Grossman and Hart, Williamson)
- Tradeoff between centralization and decentralization (Alonso, Dessein, Matoushek, 2006)


## Classic Moral Hazard

- $a$ : agent effort, $c(a)$ cost of effort
- $\varepsilon$ : events beyond agent's control
$-y=a+\varepsilon$ total output, publicly observed
- $w(y)$ compenation scheme
-In classic case, cost of effort additively separable (cost in utils) so agent solves

$$
\max _{a} E u(w(y))-c(y)
$$

-Here consider effort cost in dollars,

$$
\max _{a} E[u(w(y))-c(y)]
$$

## Suppose

- 1. Restrict attention to linear compensation, $w(y)=s+b y$

2. Assume CARA, $u(x)=-\exp (-r x)$
3. Suppose $\varepsilon$ is $N\left(0, \sigma^{2}\right)$

Agent's problem

$$
\begin{gathered}
\max _{a}-e^{-r(s+b a-c(a)} \int_{\varepsilon} e^{-r b \varepsilon} \phi(\varepsilon) d \varepsilon \\
\text { So } a^{*}(b) \text { solves } c^{\prime}(a)=b .
\end{gathered}
$$

- Agent's certainty equivalent

$$
C E(s, b)=s+b a^{*}(b)-c\left(a^{*}(b)\right)-\frac{1}{2} r b^{2} \sigma^{2}
$$

- Principal expected profit

$$
E \Pi(s, b)=(1-b) a^{*}(b)-s
$$

- Total Surplus

$$
C E(s, b)+E \Pi(s, b)=a^{*}(b)-c\left(a^{*}(b)\right)-\frac{1}{2} r b^{2} \sigma^{2}
$$

- Optimal slope $b$

$$
b^{*}=\frac{1}{1+r \sigma^{2} c^{\prime \prime}}
$$

## Linearity?

- In problem described above can do better with some step function contract

$$
\begin{aligned}
w_{H}, \text { if } y & \geq y_{0} \\
w_{L}, \text { if } y & <y_{0}
\end{aligned}
$$

for some $w_{L}<w_{H}$ and some $y_{0}$

- In general optimal incentive contracts not even monotonic
- Holmstrom and Milgrom rescue linear contracts in reinterpretation.
- In more recent thinking goes beyond tradeoff between incentives and insurance...


## You Get What You Pay For

- Suppose

$$
\begin{aligned}
& -y=a+\varepsilon \\
& -p=a+\phi \\
& -w=s+b p \\
& -a=a_{1}+a_{2}
\end{aligned}
$$

- Ex 1. $y=a_{1}+a_{2}, p=a_{1}$.
- Ex 2. $y=a_{1}, p=a_{1}+a_{2}$
- Ex 3. $y=a_{1}, p=a_{2}$


## Ex. 4

- $y=f_{1} a_{1}+f_{2} a_{2}+\varepsilon$
- $p=g_{1} a_{1}+g_{2} a_{2}+\phi$
- $w=s+b p$
- $y-w$
- Payoff to risk neutral agent $w-c\left(a_{1}, a_{2}\right)$ where

$$
c\left(a_{1}, a_{2}\right)=\frac{1}{2} a_{1}^{2}+\frac{1}{2} a_{2}^{2}
$$

- Timing

1—Contract ( $w=s+b p$ ) determined

2—Agent picks $a_{1}$ and $a_{2}$
$3-\varepsilon$ and $\phi$ occur

4-Agent paid

- Agent solves

$$
\max _{\left(a_{1}, a_{2}\right)} s+E\left[b g_{1} a_{1}+b g_{2} a_{2}+b \phi\right]-\frac{1}{2} a_{1}^{2}-\frac{1}{2} a_{2}^{2}
$$

So $a_{1}^{*}(b)=g_{1} b$ and $a_{2}^{*}(b)=g_{2} b$

- Principal expected payoff

$$
E(y-w)=f_{1} a_{1}^{*}(b)+f_{2} a_{2}^{*}(b)-s-b\left[g_{1} a_{1}^{*}(b)+g_{2} a_{2}^{*}(b)\right]
$$

- Agent expected payoff

$$
E(w)-c\left(a_{1}, a_{2}\right)=s+b\left[g_{1} a_{1}^{*}(b)+g_{2} a_{2}^{*}(b)\right]-\frac{1}{2} a_{1}^{*}(b)^{2}-\frac{1}{2} a_{2}^{*}(b)^{2}
$$

- Total Surplus

$$
E[y]-c\left(a_{1}, a_{2}\right)=f_{1} a_{1}^{*}(b)+f_{2} a_{2}^{*}(b)-\frac{1}{2} a_{1}^{*}(b)^{2}-\frac{1}{2} a_{2}^{*}(b)^{2}
$$

- FONC

$$
\begin{aligned}
f_{1} a_{1}^{* \prime}(b)+f_{2} a_{2}^{* \prime}(b)-a_{1}^{*}(b) a_{1}^{* \prime}(b)-a_{2}^{*}(b) a_{2}^{* \prime}(b) & =0 \\
f_{1} g_{1}+f_{2} g_{2}-g_{1}^{2} b-g_{2}^{2} b & =0
\end{aligned}
$$

So

$$
b^{*}=\frac{f_{1} g_{1}+f_{2} g_{2}}{g_{1}^{2}+g_{2}^{2}}
$$

- Scaling and alignment
- Special cases.


## Holmstrom and Milgrom

- Multi-tasking and multidimensional contracts
- Observe $p_{1}, p_{2,,,} p_{n}$
- Payment is $s+b_{1} p_{2}+b_{2} p_{2}+\ldots+b_{n} p_{n}$
- Cases where go to corner .
—Extreme case 1: $b_{1}=0, b_{2}=0 \ldots . b_{n}=0$ (employee)
—Extreme case 2: $b_{1}=1, b_{2}=1 \ldots b_{n}=1$ (separate firm)


## The Holdup Problem

## Property Rights and the Nature of the Firm

- Two agents, supplier and buyer and one asset.
- Supplier makes investment $x$ in the asset.
$-f(x)$ is benefit if continue with relationship, $f^{\prime}>0 f^{\prime \prime}<0$, $f(0)=0$.
- $f_{r}(x)$ if walk away and can reuse it with another party $f_{r}(0)=0$, $f_{r}^{\prime}(x)<f^{\prime}(x), x>0$.
- 0 if buyer takes asset away.
- Buyer makes investmet $y$
$-g(y)$ if continue with the relationship
- $g_{r}(y)$ is walk away and find it new supplier, $g_{r}(0)=0, g_{r}^{\prime}(y)<$ $g^{\prime}(y), y>0$
- 0 if supplier take asset away.
- Incomplete contracts

1—Sign contract (assign residual rights to control). Agree to lump sum transfer and who gets to walk away with the asset.

2-Supplier and buyer pick $x$ and $y$
3-Whoever is assigned residual rights of control can exercise this right. Nash Bargaining with parameter $\alpha$ on the supplier.

## Case 1—assign supplier residual rights of control

- Stage 3: Outside option
-Supplier has value $f_{r}(x)$
—Buyer has value 0
-Total value when agree is $f(x)+g(y)$
—Distribution is

$$
\begin{aligned}
v_{S} & =f_{r}(x)+\alpha\left[f(x)+g(y)-f_{r}(x)\right] \\
v_{B} & =0+(1-\alpha)\left[f(x)+g(y)-f_{r}(x)\right]
\end{aligned}
$$

- Stage 2 :
—Supplier problem

$$
\begin{aligned}
& \max _{x}-x+f_{r}(x)+\alpha\left[f(x)+g(y)-f_{r}(x)\right] \\
F O N C: & \alpha f^{\prime}(x)+(1-\alpha) f_{r}^{\prime}(x)-1=0
\end{aligned}
$$

Let $x_{S}^{* *}$ solve above. Let $x^{*}$ solve $f^{\prime}(x)=1$. Note $x_{S}^{* *}<x^{*}$ if $\alpha<1$.
—Buyer problem

$$
\begin{aligned}
& \max _{y}-y+0+(1-\alpha)\left[f(x)+g(y)-f_{r}(x)\right] \\
F O N C: & (1-\alpha) g^{\prime}(y)-1=0
\end{aligned}
$$

Let $y_{S}^{* *}$ solve above. Let $y^{*}$ solve $g^{\prime}(y)=1, y_{S}^{* *}<y^{*}$.

## Case 2—assign buyer residual rights of control

- Stage 3: Outside option
—Supplier has value 0
—Buyer has value $g_{r}(y)$
-Total value when agree is $f(x)+g(y)$
-Distribution is

$$
\begin{aligned}
v_{S} & =0+\alpha\left[f(x)+g(y)-f_{r}(x)\right] \\
v_{B} & =g_{r}(y)+(1-\alpha)\left[f(x)+g(y)-f_{r}(x)\right]
\end{aligned}
$$

- Stage 2 :


## —Supplier problem

$$
\begin{aligned}
& \max _{x}-x+\alpha\left[f(x)+g(y)-f_{r}(x)\right] \\
F O N C: & \alpha f^{\prime}(x)-1=0
\end{aligned}
$$

Let $x_{B}^{* *}$ solve above. Note $x_{B}^{* *}<x_{S}^{* *}<x^{*}$.
—Buyer problem

$$
\max _{y}-y+g_{r}(y)+(1-\alpha)\left[f(x)+g(y)-f_{r}(x)\right]
$$

$F O N C: \alpha g_{r}^{\prime}(y)+(1-\alpha) g^{\prime}(y)-1=0$
Let $y_{B}^{* *}$ solve above. $y_{S}^{* *}<y_{B}^{* *} \leq y^{*}\left(y_{B}^{* *}<y^{*}\right.$ if $\left.\alpha>0\right)$

## Stage 1

- Supplier ownership. Total surplus is

$$
\begin{aligned}
T S_{S} & =f\left(x_{S}^{* *}\right)+g\left(y_{S}^{* *}\right)-x_{S}^{* *}-y_{S}^{* *} \\
& <f\left(x^{*}\right)+g\left(y^{*}\right)-x^{*}-y^{*}
\end{aligned}
$$

- Buyer ownership

$$
\begin{aligned}
T S_{B} & =f\left(x_{B}^{* *}\right)+g\left(y_{B}^{* *}\right)-x_{B}^{* *}-y_{B}^{* *} \\
& <f\left(x^{*}\right)+g\left(y^{*}\right)-x^{*}-y^{*}
\end{aligned}
$$

- Pick ownership structure to solve

$$
\max \left\{T S_{S}, T S_{B}\right\}
$$

- Divide ex ante surplus somehow.


## Generalization to Multiple Assets

- Suppose $A_{1}, A_{2} \ldots A_{n}$
- Can have general functions $f(x, y), g(x, y)$ where $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Can specify walkaway returns for various partitions of the assets
- Have vertical integration if one party has all resisual rights of control.
- Williamson vs. Hart and Moore


## Williamson Hold-up Model

- Two kinds of individuals, type $A$ and type $B$.
$-N_{i}$ measure of type $i, N_{A}<.5 N_{B}$.
- $t=\{0,1\} . \quad \beta=1$.
- Each individual has a single labor unit in each period
- Technology 1: Regular
-type $j$ produces $q_{j}$ per unit of time, $q_{A}>q_{B}$
- Technology 2: Special
—period 0, type $A$ builds a factory of quality $i$ with $i$ labor units
—period 0 factor has no output
—period 1: output is $f(i)+q_{S}$, where $f(0)=0, f^{\prime}(0)>0$, and $f^{\prime \prime}(0)<0$ when managed with one unit of time (of any type)
—factory must be customized in period 0 . If another person manages it, output is $q_{S}$ instead of $f(i)$

Alonso, Dessein, Matoushek

## When Does Coordination Require Centralization?

- Two divisions. Profits depend upon decisions $d_{1}$ and $d_{2}$ and local conditions $\theta_{1}$ and $\theta_{2}$

$$
\begin{aligned}
& \pi_{1}=-\left(d_{1}-\theta_{1}\right)^{2}-\delta\left(d_{1}-d_{2}\right)^{2} \\
& \pi_{2}=-\left(d_{1}-\theta_{2}\right)^{2}-\delta\left(d_{1}-d_{2}\right)^{2}
\end{aligned}
$$

- Information: Manager 1 sees $\theta_{1}$. Common knowledge uniform draw from $\left[-s_{1}, s_{1}\right]$. Analogous for manager 2. $\theta_{1}$ and $\theta_{2}$ independent
- Manager 1 maximizes $\lambda \pi_{1}+(1-\lambda) \pi_{2}, \lambda>\frac{1}{2}$. Analogous for manager 2
- Headquarters manager maximizes $\pi_{1}+\pi_{2}$.


## Incomplete contracts.

- Centralization. Managers 1 and 2 communicate with HQs, cheap talk message $m_{1}$ and $m_{2}$ then HQ manage picks $d_{1}$ and $d_{2}$ to solve

$$
\max _{d_{1}, d_{2}} E\left[\pi_{1}+\pi_{2} \mid m_{1}, m_{2}\right]
$$

- Decentralization. Managers 1 and 2 communicate with each other. Then manager 1 picks $d_{1}$ to solve

$$
\max _{d_{1}} E\left[\lambda \pi_{1}+(1-\lambda) \pi_{2} \mid \theta_{1}, m_{2}\right]
$$

Centralization problem

$$
\begin{aligned}
& E\left[\pi_{1}+\pi_{2} \mid m_{1}, m_{2}\right] \\
= & E\left[-\left(d_{1}-\theta_{1}\right)^{2}-\left(d_{2}-\theta_{2}\right)^{2}-2 \delta\left(d_{1}-d_{2}\right)^{2}\right] \\
= & E\left[\begin{array}{c}
-d_{1}^{2}-\theta_{1}^{2}+2 d_{1} \theta_{1}-d_{2}^{2}-\theta_{2}^{2}+2 d_{2} \theta_{2} \\
-2 \delta d_{1}^{2}-2 \delta d_{2}^{2}+4 \delta d_{1} d_{2}
\end{array}\right] \\
= & -d_{1}^{2}-\theta_{1}^{2}+2 d_{1} E \theta_{1}-d_{2}^{2}-\theta_{2}^{2}+2 d_{2} E \theta_{2} \\
& -2 \delta d_{1}^{2}-2 \delta d_{2}^{2}+4 \delta d_{1} d_{2}
\end{aligned}
$$

So rule solves:

$$
\begin{aligned}
& -2 d_{1}+2 E \theta_{1}-2 \delta d_{1}+4 \delta d_{2}=0 \\
& -2 d_{2}+2 E \theta_{2}-2 \delta d_{1}+4 \delta d_{1}=0
\end{aligned}
$$

