
Border Lecture

Anderson and van Wincoop: Gravity with Gravitas: A Solution to
the Border Puzzle

• Start with McCallum (1995). Shipment data from Canadian
provinces to other provinces and to U.S. states

ln = 1 + 2 ln + 3 ln 
+4 ln  + 5 + 

where

 : exports from region  to 

 and  : gross domestic production at  and 

 : distance  to 

 : dummy=1, province/province, =0, state/province



• McCallum adds atheoretic “remoteness” variable (that will try
to capture ideas in this paper)
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• Results

— Notice large border coefficient for Canada. 16.4! (similar
to McCallum of 22)

— Notice that get something very different when do same
exercise with US orginations

— Notice the slick why the paper is transitioned into unitary
income elasticity.

— Notice adding  doesn’t change anything.
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Model (Armington Model from Last Class)

• Utility of  is CES over location  goods,
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• Endowment of good  at location Trade costs  = .
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• To get total revenues from sales from location  to , of course
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where we use  = . And as usual,

 =

⎡⎣X


³


´1−⎤⎦ 1
1−



• General equilibrium
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So solve out for ⎛⎜⎜⎜⎜⎝ P


µ



¶(1−)


⎞⎟⎟⎟⎟⎠
1
1−

= 



Then get the gravity equation
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We can substitute into the equilibrium scaled prices to get
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So now have:
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• Can solve for Π and  in terms of income shares  and
n

o

and .

• Suppose symmetry:  = . Then get a solution where
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Now the gravity equation can be written
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• Call {} multilateral resitance, as they depend upon bilateral
resitance 



• A rise in trade barriers with all trading partners will raise the
index.

• If  = 1, then  = 1

• Intuition for why trade depends on multilateral resitance of
both the importer  and the exporter .

• What happens then  all increase proportionately (including
). Homeogeneous of degree zero, while  are homogeneous

of degree 12.



Implications

• Implication 1: Trade Barriers reduce size adjusted trade be-
tween the large countries more than between small countries

On one basis can such a claim be made? Paper considers the

following. Start at  = 1. Then set  = ,  6= , and
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Totally differentiate
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Multiply by  gives
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Sum over ?X
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using  = 1, for  6=  and  = 0, somehow gets to
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Form this conclude that a uniform increase in trade barriers raises

multilaterial resistance more for a small country than a large coun-

try.

Next
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and this gets us implication 1.



• skip some other stuff

• get to a comparison of theoretical gravity equation and Mc-
Callum

• Assume this specification:
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• Now how estimate? Given model parameters  = 
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where  = 1 if in same country
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So have nonlinear equations to be solved in −1
 . So solve

equation for this (note



• Note allow locations to have own internal distance   1.

• Get it down to
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take  to be measurement error. Take as given  = 5, then

given  1 2, have nonlinear least squares
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• Estimates
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Figure 3:

• Estimates: Resulting average of  1−


