Border Lecture

Anderson and van Wincoop: Gravity with Gravitas: A Solution to the Border Puzzle

- Start with McCallum (1995). Shipment data from Canadian provinces to other provinces and to U.S. states

$$
\begin{aligned}
\ln x_{i j}= & \alpha_{1}+\alpha_{2} \ln h_{i}+\alpha_{3} \ln y_{j} \\
& +\alpha_{4} \ln d_{i j}+a_{5} \delta_{i j}+\varepsilon_{i j}
\end{aligned}
$$

where
$x_{i j}$: exports from region i to j
y_{i} and $y_{j}:$ gross domestic production at i and j
$d_{i j}: \quad$ distance i to j
$\delta_{i j}:$ dummy $=1$, province/province, $=0$, state/province

- McCallum adds atheoretic "remoteness" variable (that will try to capture ideas in this paper)

$$
R E M_{i}=\sum_{m \neq j} \frac{d_{i m}}{y_{m}}
$$

- Results
- Notice large border coefficient for Canada. 16.4! (similar to McCallum of 22)
- Notice that get something very different when do same exercise with US orginations
- Notice the slick why the paper is transitioned into unitary income elasticity.
- Notice adding $R E M$ doesn't change anything.

Table 1-McCallum Regressions

Data	McCallum regressions			Unitary income elasticities		
	$\begin{aligned} & \text { (i) } \\ & \text { CA-CA } \\ & \text { CA-US } \end{aligned}$	$\begin{gathered} \text { (ii) } \\ \text { US-US } \\ \text { CA-US } \end{gathered}$	$\begin{gathered} \text { (iii) } \\ \text { US-US } \\ \text { CA-CA } \\ \text { CA-US } \end{gathered}$	$\begin{aligned} & \text { (iv) } \\ & \text { CA-CA } \\ & \text { CA-US } \end{aligned}$	$\begin{aligned} & \text { (v) } \\ & \text { US-US } \\ & \text { CA-US } \end{aligned}$	$\begin{aligned} & \text { (vi) } \\ & \text { US-US } \\ & \text { CA-CA } \\ & \text { CA-US } \end{aligned}$
Independent variable						
$\ln y_{i}$	$\begin{gathered} 1.22 \\ (0.04) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.03) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.03) \end{gathered}$	1	1	1
$\ln y_{j}$	$\begin{gathered} 0.98 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.02) \end{gathered}$	1	1	1
$\ln d_{i j}$	$\begin{gathered} -1.35 \\ (0.07) \end{gathered}$	$\begin{gathered} -1.08 \\ (0.04) \end{gathered}$	$\begin{gathered} -1.11 \\ (0.04) \end{gathered}$	$\begin{gathered} -1.35 \\ (0.07) \end{gathered}$	$\begin{gathered} -1.09 \\ (0.04) \end{gathered}$	$\begin{gathered} -1.12 \\ (0.03) \end{gathered}$
Dummy-Canada	$\begin{gathered} 2.80 \\ (0.12) \end{gathered}$		$\begin{gathered} 2.75 \\ (0.12) \end{gathered}$	$\begin{gathered} 2.63 \\ (0.11) \end{gathered}$		$\begin{gathered} 2.66 \\ \text { (0.12) } \end{gathered}$
Dummy-U.S.		$\begin{gathered} 0.41 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.40 \\ (0.05) \end{gathered}$		$\begin{gathered} 0.49 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.48 \\ (0.06) \end{gathered}$
Border-Canada	$\begin{gathered} 16.4 \\ (2.0) \end{gathered}$		$\begin{aligned} & 15.7 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 13.8 \\ & (1.6) \end{aligned}$		$\begin{aligned} & 14.2 \\ & (1.6) \end{aligned}$
Border-U.S.		$\begin{gathered} 1.50 \\ (0.08) \end{gathered}$	$\begin{gathered} 1.49 \\ (0.08) \end{gathered}$		$\begin{gathered} 1.63 \\ (0.09) \end{gathered}$	$\begin{gathered} 1.62 \\ (0.09) \end{gathered}$
\bar{R}^{2}	0.76	0.85	0.85	0.53	0.47	0.55
Remoteness variables added						
Border-Canada	$\begin{aligned} & 16.3 \\ & (2.0) \end{aligned}$		$\begin{aligned} & 15.6 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 14.7 \\ & (1.7) \end{aligned}$		$\begin{aligned} & 15.0 \\ & (1.8) \end{aligned}$
Border-U.S.		1.38	1.38		1.42	1.42
		(0.07)	(0.07)		(0.08)	(0.08)
R^{2}	0.77	0.86	0.86	0.55	0.50	0.57

Figure 1:

Model (Armington Model from Last Class)

- Utility of j is CES over location i goods,

$$
U_{j}=\left(\sum_{i} \beta_{i}^{(1-\sigma) / \sigma} c_{i j}^{(\sigma-1) / \sigma}\right)^{\sigma /(\sigma-1)}
$$

maximize subject to

$$
\sum_{i} p_{i j} c_{i j}=y_{j}
$$

- Endowment of good i at location i Trade costs $p_{i j}=p_{i} t_{i j}$. Total income

$$
y_{i}=\sum_{j} x_{i j}
$$

- To get total revenues from sales from location i to j, of course

$$
Q_{j}=\frac{y_{j}}{P_{j}}
$$

and demand per unit from i at j is $\beta_{i j}\left(\beta_{i j} p_{i j}\right)^{-\sigma} P_{j}^{\sigma}$, so spending by j at i is

$$
\begin{aligned}
x_{i j} & =p_{i j} \beta_{i j}\left(\beta_{i j} p_{i j}\right)^{-\sigma} P_{j}^{\sigma} \frac{y_{j}}{P_{j}} \\
& =\left(\frac{\beta_{i} p_{i} t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j}
\end{aligned}
$$

where we use $p_{i j}=p_{i} t_{i j} . \quad$ And as usual,

$$
P_{j}=\left[\sum_{i}\left(\beta_{i} p_{i} t_{i j}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}
$$

- General equilibrium

$$
\begin{aligned}
y_{i} & =\sum_{j} x_{i j} \\
& =\sum_{j}\left(\frac{\beta_{i} p_{i} t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j} \\
& =\left(\beta_{i} p_{i}\right)^{1-\sigma} \sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j}
\end{aligned}
$$

So solve out for $\beta_{i} p_{i}$

$$
\left(\frac{y_{i}}{\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j}}\right)^{\frac{1}{1-\sigma}}=\beta_{i} p_{i}
$$

Then get the gravity equation

$$
\begin{aligned}
x_{i j} & =\left(\frac{\beta_{i} p_{i} t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j}=\left(\beta_{i} p_{i}\right)^{1-\sigma}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j} \\
& =\frac{y_{i}}{\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j}}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} y_{j} \\
& =\frac{y_{i} y_{j}}{y^{W}}\left(\frac{t_{i j}}{\left[\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} \frac{y_{j}}{y^{W}}\right]^{\frac{1}{1-\sigma}} P_{j}}\right) \\
& =\frac{y_{i} y_{j}}{y^{W}}\left(\frac{t_{i j}}{\prod_{i} P_{j}}\right)^{(1-\sigma)}
\end{aligned}
$$

for

$$
\Pi_{i} \equiv\left(\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{1-\sigma} \theta_{j}\right)^{1 /(1-\sigma)}
$$

We can substitute into the equilibrium scaled prices to get

$$
\begin{aligned}
P_{j} & =\left[\sum_{i}\left(\beta_{i} p_{i} t_{i j}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \\
& =\left[\sum_{i}\left(\beta_{i} p_{i}\right)^{1-\sigma}\left(t_{i j}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \\
& =\left[\sum_{i} \frac{y_{i}}{\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)}}\left(t_{i j}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \\
& =\left[\sum_{i} \frac{\theta_{i}}{\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{(1-\sigma)} \theta_{j}}\left(t_{i j}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \\
& {\left[\sum_{i} \theta_{i}\left(\frac{t_{i j}}{\Pi_{i}}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} }
\end{aligned}
$$

So now have:

$$
\begin{aligned}
\Pi_{i} & \equiv\left(\sum_{j}\left(\frac{t_{i j}}{P_{j}}\right)^{1-\sigma} \theta_{j}\right)^{1 /(1-\sigma)} \\
P_{j} & =\left[\sum_{i} \theta_{i}\left(\frac{t_{i j}}{\Pi_{i}}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}
\end{aligned}
$$

- Can solve for Π_{i} and P_{i} in terms of income shares θ_{i} and $\left\{t_{i j}\right\}$ and σ.
- Suppose symmetry: $t_{i j}=t_{j i}$. Then get a solution where
$P_{j}=\Pi_{i}$,

$$
\begin{aligned}
P_{j}^{1-\sigma} & =\sum_{i} \theta_{i}\left(\frac{t_{i j}}{P_{i}}\right)^{1-\sigma} \\
& =\sum_{i} P_{i}^{\sigma-1} \theta_{i} t_{i j}^{1-\sigma}
\end{aligned}
$$

Now the gravity equation can be written

$$
\begin{aligned}
x_{i j} & =\frac{y_{i} y_{j}}{y^{W}}\left(\frac{t_{i j}}{\Pi_{i} P_{j}}\right)^{(1-\sigma)} \\
& =\frac{y_{i} y_{j}}{y^{W}}\left(\frac{t_{i j}}{P_{i} P_{j}}\right)^{(1-\sigma)}
\end{aligned}
$$

- Call $\left\{P_{i}\right\}$ multilateral resitance, as they depend upon bilateral resitance $t_{i j}$.
- A rise in trade barriers with all trading partners will raise the index.
- If $t_{i j}=1$, then $P_{i}=1$
- Intuition for why trade depends on multilateral resitance of both the importer j and the exporter i.
- What happens then $t_{i j}$ all increase proportionately (including $t_{i i}$). Homeogeneous of degree zero, while P_{i} are homogeneous of degree $1 / 2$.

Implications

- Implication 1: Trade Barriers reduce size adjusted trade between the large countries more than between small countries

On one basis can such a claim be made? Paper considers the following. Start at $t_{i j}=1$. Then set $d t_{i j}=d t, i \neq j$, and $d t_{i i}=0$. Start with

$$
P_{j}^{1-\sigma}=\sum_{i} P_{i}^{\sigma-1} \theta_{i} t_{i j}^{1-\sigma}
$$

Totally differentiate

$$
\begin{aligned}
(1-\sigma) P_{j}^{-\sigma} d P_{j}= & \sum_{i}(\sigma-1) P_{i}^{\sigma} d P_{i} \theta_{i} t_{i j}^{1-\sigma} \\
& +\sum_{i} P_{i}^{\sigma-1} d \theta_{i} t_{i j}^{1-\sigma} \\
& +(1-\sigma) \sum_{i} P_{i}^{\sigma-1} \theta_{i} t_{i j}^{-\sigma} d t_{i j}
\end{aligned}
$$

set $P_{j}=1=t_{i j}$,

$$
(1-\sigma) d P_{j}=\sum_{i}(\sigma-1) d P_{i} \theta_{i}+\sum_{i} d \theta_{i}+(1-\sigma) \sum_{i} \theta_{i} d t_{i j}
$$

or

$$
d P_{j}=-\sum_{i} d P_{i} \theta_{i}+\sum_{i} \theta_{i} d t_{i j}
$$

Multiply by θ_{j} gives

$$
\theta_{j} d P_{j}=-\theta_{j} \sum_{i} d P_{i} \theta_{i}+\sum_{i} \theta_{j} \theta_{i} d t_{i j}
$$

Sum over j ?

$$
\sum_{j} \theta_{j} d P_{j}=-\sum_{j} \theta_{j} \sum_{i} d P_{i} \theta_{i}+\sum_{j} \sum_{i} \theta_{j} \theta_{i} d t_{i j}
$$

using $d t_{i j}=1$, for $i \neq j$ and $d t_{i i}=0$, somehow gets to

$$
d P_{i}=\left(\frac{1}{2}-\theta_{i}+\frac{1}{2} \sum_{k} \theta_{k}^{2}\right) d t
$$

Form this conclude that a uniform increase in trade barriers raises multilaterial resistance more for a small country than a large country.

Next

$$
d\left(x_{i j} \frac{y^{W}}{y_{i} y_{j}}\right)=-(\sigma-1)\left[\theta_{i}+\theta_{j}-\sum_{k} \theta_{k}^{2}\right] d t
$$

and this gets us implication 1 .

- skip some other stuff
- get to a comparison of theoretical gravity equation and McCallum
- Assume this specification:

$$
\begin{gathered}
t_{i j}=b_{i j} d_{i j}^{\rho} \\
\ln x_{i j}=\begin{array}{l}
k+\ln y_{i}+\ln y_{j}+(1-\sigma) \rho \ln d_{i j} \\
+(1-\sigma) \ln b_{i j}-(1-\sigma) \ln P_{i} \\
-(1-\sigma) \ln P_{j}
\end{array}
\end{gathered}
$$

- Now how estimate? Given model parameters $t_{i j}=b_{i j} d_{i j}^{\rho}$ and
data θ_{i}

$$
\begin{aligned}
P_{j}^{1-\sigma} & =\sum_{i} P_{i}^{\sigma-1} \theta_{i} t_{i j}^{1-\sigma} \\
& =\sum_{i} P_{i}^{\sigma-1} \theta_{i} b_{i j}^{(1-\sigma)} d_{i j}^{\rho(1-\sigma)} \\
& =\sum_{i} P_{i}^{\sigma-1} \theta_{i} e^{a_{1} \ln d_{i j}+a_{2}\left(1-\delta_{i j}\right)}
\end{aligned}
$$

for

$$
b_{i j}=b^{1-\delta_{i j}}
$$

where $\delta_{i j}=1$ if in same country

$$
\begin{aligned}
& a_{1}=(1-\sigma) \rho \\
& a_{2}=(1-\sigma) \ln b
\end{aligned}
$$

So have nonlinear equations to be solved in $P_{i}^{\sigma-1}$. So solve equation for this (note

- Note allow locations to have own internal distance $d_{i i}>1$.
- Get it down to

$$
\begin{aligned}
\ln z_{i j}= & \ln \left(\frac{x_{i j}}{y_{i} y_{j}}\right)=k+a_{1} \ln d_{i j}+a_{2}\left(1-\delta_{i j}\right) \\
& -\ln P_{i}^{1-\sigma}-\ln P_{j}^{1-\sigma}+\varepsilon_{i j}
\end{aligned}
$$

take $\varepsilon_{i j}$ to be measurement error. Take as given $\sigma=5$, then given k, a_{1}, a_{2}, have nonlinear least squares

$$
\ln z=h\left(d, \delta, \theta ; k, a_{1}, a_{2}\right)+\varepsilon
$$

- Estimates

Table 2-Estimation Results

		Two-country model	Multicountry model
Parameters	$(1-\sigma) \rho$	-0.79	-0.82
	$(1-\sigma) \ln b_{U S . C A}$	(0.03)	(0.03)
	$(1-\sigma) \ln b_{U S . R O W}$	-1.65	-1.59
	$(1-\sigma) \ln b_{C A, R O W}$		(0.08)
	$(1-\sigma) \ln b_{\text {ROW.ROW }}$		-1.68
			$-2.07)$
			(0.08)
			-1.66
		0.06	(0.06)
Average error terms:	US-US	-0.17	0.06
	CA-CA	-0.05	-0.02
	US-CA	-0.04	

Figure 2:

Table 3-Average of $P^{1-\sigma}$

	US	Canada
Two-country model		
With border barrier (BB)	0.77	2.45
	(0.03)	(0.12)
Borderless trade (NB)	0.75	1.18
	(0.03)	(0.01)
Ratio (BB/NB)	1.02	2.08
	(0.00)	(0.08)

Figure 3:

- Estimates: Resulting average of $P^{1-\sigma}$

