
Class Notes on New Economic Geography Models
Econ 8401-T.Holmes

(incomplete)

1 Overview

Last class we discussed various models of trade with increasing returns, e.g. those based on

Dixit and Stiglitz models. These models took the standard international trade stance that

goods are mobile while factors are fixed across locations. A second generation of models al-

lows for factor mobility. This literature, the “New Economic Geography Literature” or NEG

was initiated by Krugman (1991) and this work was cited extensively in the announcement

for his 2008 Nobel Prize, titled “Trade and Trade and Geography — Economies of Scale,

Differentiated Products and Transport Costs.” Often these are thought of as “regional

models,” since factors of production are often regarded as mobile within a country’s borders

but immobile across borders. Of course, factors also can move at the international level. In

any case, for anyone interested in understanding the movement of goods and services across

space, some basic knowledge of the NEG literature is useful.

The underpinning of the literature is a very simple idea. If we combine preference

for variety and scale economies with transportation costs, there will be an incentive to

concentrate economic activity in one place. By doing so, it is possible to produce a large

number of goods at high volumes in the same place (and achieve high variety and exploit scale

economies) yet not have to ship goods (and thereby avoid expenditures on transportation

costs). Of course, this sounds like something people might have thought of before Krugman

and of course this is true. What made the NEG literature big in the 1990s was the innovation

of applying the Dixit-Stiglitz models to make it tractible to work out equilibria in market

economies with these features. Regional scientists and economic geographers working earlier

on these issues did not have this tool, so the analysis was either informal or based on social
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planning problems.

I skip the original Dixit and Stiglitz CES treatment by Krugman. Instead I start with

a version by Ottaviano, Tabuchi and Thisse (2002) or OTT which uses a Linear quadratic

preference structure instead of the standard CES. You have already seen CES-based ap-

proaches. Linear quadratic approaches have attracted some attention (see also Melitz and

Ottaviano (2008)), so this is something useful for you to see.

Next I go through an version that is based on BEJK structure and is something I am

currently working on with Wen-Tai Hsu and Sanghoon Lee (two recent Minnesota Ph.D.

graduates). The main interest in this paper is understanding the link between agglomeration

and productivity.

Next I discuss an example empirical application: Redding and Sturm (2008)’s analysis

of the reunification of Germany,

The last part of the lecture discusses the recent Arkolakis, Costinot, and Rodriquez-

Clare (2010) paper on equivalence of various micro-based trade models for implications

about aggregates. There is no NEG in this paper. However, the issues the paper raises are

also relevant for NEG models, so this is a good place to talk about the paper.

2 The Linear Quadratic NEG model of OTT

2.1 Model

• Two regions,  and 

• Two factors

— Factor  evenly distributed

— Factor  perfectly mobile

• Two sectors
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— “Agriculture uses , constant returns to scale one for one. The numeraire.

— “Manufacturing” uses . Fixed cost of  to set up differentiated product, zero

marginal cost

• Transportation cost of  in units of numeraire. Note: It is not an iceberg cost.

• Preferences

— 0 consumption of agricultural good

— () consumption of differented good 

(0; ()  ∈ [0  ]) = 

Z 

0

()

− − 

2

Z 

0

[()]2− 

2

∙Z 

0

()

¸2
+ 0

for

  0

    0

(Note that with linear demand there are no income effects. This makes this

approach less likely to be useful for empirical applications compared to CES based

approaches which have sensible income effects).

• Budget constraint given income  and endowment 0.

Z 

0

()()+ 0 =  + 0

• Utility maximization for choice of () yields linear demand functions

− ( − ) ()− 

Z 

0

() = ()
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or

() = − () + 

Z 

0

[()− ()]

 =


 + ( − 1)
 =

1

 + ( − 1) 
 =



( − ) [ + ( − 1)]

2.2 Equilibrium

• Mobile workers select location to maximize utility. Let  be fraction that locate in  .

• Manufacturing firms decide whether to enter, where to locate and what price to set at
each location, to maximize profit. (This setup implies zero profit.) Let  and 

be the number (or measure) of firms at each location.

• Agricultural firms (competitive sector) maximize profits

• The usual market clearing conditions hold.

2.3 Derivation of Equilibrium

• Labor market clearing implies (Remember marginal cost is normalized to zero. Such a
normalization never is used with CES structures, because price is a constant marginal

cost) With linear demand

 =




 = (1− )
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• Let  be sales of a firm at  at location . Demand of a representative firm is

() = − (+ )  + 

 ( ) = − (+ ) + 

where

 =  + 

 =  + 

• Variable profit
 = () +   ( )

• It is clear equilibrium price depends upon entry (   ), so different from standard

Dixit Stiglitz. The fact that markups are endogenous is considered a highlight of this

model and it is the most attractive feature of the modelling structure.

• Given  and  , and  and , solve linear equations to get profit maximizing

 and  . Then the above equations are used to eliminate  and  . It is

possible to derive linear pricing formulas,

∗ =
1

2

2+ (1− )

2+ 

∗ = ∗ +


2

• Make assumption that
    ≡ 2

2+ 

so that there is trade
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• Equilibrium wage sets profit equal to zero

∗() =
∗ + ∗



• Utility of a worker
() = () + ∗() + 0

where () is consumer surplus associated with the equilibrium prices. It is strictly

increasing and concave in .

• Equilibrium condition for worker location choice can be written as:

() = () if  ∈ (0 1)

() ≥ () if  = 1

() ≤ () if  = 0

2.4 Results

• As is usual in this literature, there always exists a dispersed equilibrium ( = 5). This

is obvious by symmetry.

• Add a stability definition (this is old fashioned since this is a static model, but com-
monly invoked in the literature.

Def. An allocation of workers  ∈ (0 1) is stable iff

∆() = ()− () = 0

∆0()  0

so “negative feedback.”
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• Main result: There exists a cutoff  ∗ such that

—    ∗, then the symmetric (dispersed) allocation is the only stable equilibrium.

—    ∗, then agglomeration ( = 1 or  = 0) is the only stable equilibrium.

(Called a "Black Hole” in the literature).

• Intuitive comparative static results can be derived analytically

—  ∗ increases with 

—  ∗ increases with more product differentiation (i.e. falls with ).

• Efficiency. Consider a social planner maximizing total surplus.

— There exists a  0   ∗, so that    0, agglomerate,    0, dispersion

— So in region  ∈ ( 0  ∗) have “excess agglomeration”

3 A BEJK NEG Model

3.1 Introduction (abbreviated)

This is work in progress that is joint with Wen-Tai Hsu and Sanghoon Lee. (These notes

are actually just me cutting and pasting pieces of the paper. Sorry about that!)

Let me provide some background motivation. As has been noted in this class, models

of firm heterogeneity that explicitly take into account exit by low productivity firms have

played a prominent role in the international trade literature, with Melitz-based models being

the market leader as compared to Bernard, Eaton, Jensen Kortum (2003) (BEJK). Recently,

these ideas have been applied to models of regions rather than countries and all of these new

papers follow a Melitz approach.

This paper develops a regional analysis that incorporates heterogeneity in productivity,

but in contrast to other papers, it follows the BEJK approach. To understand what we
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do, it is first necessary to highlight two essential differences between the BEJK and the

Melitz approaches. First, in BEJK, competition between firms is head-to-head. There is

more than one potential producer of any given product and the different producers engage

in Bertrand competition, market by market. In contrast, in the Melitz approach each firm

has a monopoly over a particular differentiated product, as in Dixit and Stiglitz. Second,

in BEJK, firms draw their productivity distribution from a distribution with a fat right tail.

(To be more specific, firms draw from the Frechet distribution, but more on that later.) In

contrast, in the Melitz approach, it is not essential that productivity be drawn from a fat

tail.

This paper takes the two essential ingredients of the BEJK approach: head-to-head

competition and fat-tailed productivity draws. It adds to this: (1) labor mobility, and

(2) a model of freely-mobile entrepreneurial activity that endogenizes the distribution of

productivity across locations. The results we get can be divided into three parts.

First, we succeed in creating a regional version of BEJK. Second, we show that imposing

equilibrium conditions in the BEJK structure for mobile labor and mobile entrepreneurship

has content. In particular, if there is agglomeration, then plants in large locations tend

to be more productive than plants in small locations. Without imposing these equilibrium

location choice conditions, this doesn’t necessarily hold.

Third, we take the micro productivity data generated by our model and analyze it using

approaches taken in three well known papers: Syverson (2004), CDGPR, and Hsieh and

Klenow (2009). The analysis of the productivity data in our model yields very different

conclusions from what is found in these three papers.

3.2 Model

There are two locations,  = 1 2, that are ex ante identical. In the equilibrium of the model,

it may happen that one location attracts more people than the other. We label things in

such cases so that location 1 is the “big city” and location 2 is the “small city.”
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All agents have the same preferences for a composite good and land ; these preferences

are represented by the utility function

() = 1−

The composite is an aggregation of differentiated goods indexed by  on the unit interval.

It follows the standard CES form,

 =

µZ 1

0

(())
−1
 

¶ 
−1



where  is the elasticity of substitution.

The land supply in each location is the same and equals
_



There is a measure ̄ individuals in the economy. Individuals first choose whether to

live and work in city 1 or live and work in city 2. Next, they choose whether to be an

entrepreneur or to be employed as a worker. Let  be the number of individuals choosing

to be a worker in city  and let  be the number of entrepreneurs. The resource constraint

implies that

1 +1 +2 +2 = ̄

It will be convenient to work with fractions. Define these by

 =


̄
  =



̄


We now explain the process through which firms are created and productivies are de-

termined, beginning with the arrival of  entrepreneurs at location . Each entrepreneur

picks a product  ∈ [0 1] to attempt to enter. Let () be the density of entrepreneurs
attempting to enter product  (the number of startups for this product). All entrepreneurs
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arriving at  pick some industry; i.e.,

 =

Z 1

0

().

Each entrepreneur entering an industry obtains a plant. The productivity of a plant has

two components that enter multiplicatively. First, there is a term  that is constant across

all plants at location  and depends on the amount of labor market spillovers. If there are

 workers located at , then

 = 

 

The parameter  governs the significance of agglomeration spillovers. In particular, if  = 0,

then  = 1 and there are no spillovers. Second, there is a random term  to productivity

that depends upon the entrepreneur’s luck. An entrepreneur at location  with productivity

 for a particular good  can produce  units of good , per unit of labor procured at

location . For the purposes of this lecture, assume entrepreneurs draw from Frechet

() = −
−

(In the paper we assume the underlying draws come from the more general class of fat-tailed

distributions that include the Pareto. Taking extreme values of fat-tailed distributions maps

into Frechet)

We assume an iceberg transportation cost  between the two locations. To deliver one

unit of any differentiated good  to a different location,  ≥ 1 units must be shipped.
There are three stages in the model. In stage 1, individuals choose where to live and

what job to hold. We assume that the  units of land at location  are owned by landowners

who live at  but do not work. They have the same utility function as the other individuals.

In stage 2,  entrepreneurs at location  allocate themselves across the product space

 ∈ [0 1] so that () is the density choosing good . Each of the () entering product 
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at  obtains a single plant, with one draw of the random productivity term . We impose

as an equilibrium condition that the returns to entering each product  at a location are be

equalized. We ignore integer constraints

In stage 3, the 1() plants at location 1 and the 2() plants at location 2 engage in

Bertrand price competition for the product  market at each location. At the same time

there is market clearing in the labor markets and land markets.

3.3 Equilibrium for Fixed Location and Job Choices

We first show that entrepreneurs that enter a location spread out across the varous products

so () =  entrepreneurs enter each product. Given the properties of the Frechet, it

follows that the distribution of the highest productivity firm for a given product at  is

Frechet

() = −
−
 (1)

with scaling parameter

 = 

  (2)

Fixing  and , the model maps into the international trade model of BEJK that we

discussed earlier. We can then use their results.

In particular, define Φ by

Φ =

2X
=1

()
− (3)

This parameter Φ =
P2

=1 ()
− distills the parameters of productivity distributions,

wages, and the trade cost into one single term governing the cost and price distributions.

The price distribution at location  is given by

() = 1−
£
1 + Φ(1− −)

¤
−Φ





The BEJK’s analytical results that are useful for our paper are listed as follows.
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BEJK Result 1 The probability that location  provides a good at the lowest price in

location  is

 =
()

−P2

=1 ()−
=

()
−

Φ



BEJK Result 2 In any location , the probability of buying a good with price lower than

 is independent from where the good is purchased from. Letting  be the total

expenditure of location  on the goods from , and  be the total expenditure, we

have

 = 

BEJK Result 3 Assume that +1  . Let Γ denote the gamma function; the price index

is

 = [
1 +  −  + ( − 1)−

1 +  − 
Γ

µ
 + 1− 



¶
]

1
1−Φ

− 1




≡ Φ
− 1


  (4)

BEJK Result 4 A fraction (1 + ) of revenue goes to variable cost.

Finally, we note that since trade between locations 1 and 2 is balanced, total expenditure

 on goods at  is the same as total revenues of plants located at .

3.4 Equilibrium Location and Job Choices

We begin by looking at job choice. Let  be the wage at  and  the expected profit of

being an entrepreneur. Since the share of revenues going to workers and entrepreneurs is

(1+) and 1 (1 + ), and since there are  and of each, the returns to each job equal

 =


1 + 





 (5)

 =
1

1 + 





 (6)
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Free mobility between the two jobs implies that  = , which implies a constant ratio

between workers and entrepreneurs in each location  that is,





=




=  (7)

We can use this result to rewrite the Frechet scale parameter from equation (2) for the

distribution of the maximum productivity plant at  as

 = 

  = 

+1
  (8)

Since the utility is Cobb-Douglas in goods and land, the indirect utility for an individual

choosing to locate at  given composite goods price  land rental  and wage  equals

 = 
−
 

−(1−)
 . (9)

Since the local land-owners have the same Cobb-Douglas, expenditures on the ̄ units of

land at  must equal the land expenditure share times location  income,

 = (1− )[+ ( +)].

solving for the rent  and substituting this into utility (9) yields

 = 

µ




¶ µ
1

 +

¶1−
 (10)

where  is constant across the two locations.

Let  denote the fraction of individuals choosing to locate at 1,  ≡ ( +) ̄. For

a fixed value of the population shares 1 (and hence fixed 2 = 1− 1), we can impose the

equilbrium condition for job choice (7) and we can solve for the 1, 2, 1 and 2 that are

consistent with equilibrium in the output market. Plug these into (10) and let ̃(1) be
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Figure 1:

the utility conditioned on 1. Let (1) = ̃1(1)̃2(1) be the ratio of utilities. For an

interior value 1 ∈ (0 1) to be an equilibrium of location choice, it must be that (1) = 1.
As is standard in this literature, a symmetric equilibrium always exists at ∗1 = 05, where

half of the individuals go to each location. Given symmetry, we can restrict attention to

the range 1 ≥ 1
2
where location 1 is weakly larger than location 2. An equilibrium with

∗1  05 is called an agglomeration equilibrium. If (1) ≥ 1, then ∗1 = 1 is an equilibrium

where everyone goes to location 1. Call this a black-hole equilibrium. Define an interior

equilibrium ∗1 ∈ [12  1) as stable if 1  0 at ∗1 and unstable if 1  0. The

Proposition below shows that depending on the parameters, there are three possibilities for

how things can look. Figure 1 illustrates the three cases, showing how the utility ratio 

depends upon the share 1.

Proposition 1 Define two thresholds for  as a function of other model parameters,

̂ ≡
1¡

 + 1 + 1


¢  (1 + 2) + 1
 (1 + 2)− 1  ̂ =

1 + 

1 +  + 
.

(i) The parameter space {(    ) :  ∈ (0 1)   1   1  ≥ 0} can be partitioned
into the the following three subspaces each of which is associated with a distinct char-

acterization of equilibria.

(a) When  ≤ ̂, the symmetric equilibrium is stable and the only equilibrium.
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(b) When   ̂ the symmetric equilibrium is unstable, and there exists a unique

agglomeration equilibrium that is stable. If  ∈ (̂ ̂) the agglomeration equi-
librium is interior, ∗1 ∈ (05 1), and if  ≥ ̂  the agglomeration is a black-hole,

∗1 = 1

(ii) If there is an interior agglomeration equilibrium ∗1 ∈ (05 1), then ∗1 increases in ,

 , and .

(iii) For large enough  , if there is an interior agglomeration equilibrium ∗1 ∈ (05 1), then
∗1 increases as  decreases.

As shown in Helpman (1998), agglomeration increases with the weight  placed on goods

consumption relative to land consumption and with the transportation cost  . That ag-

glomeration increases with the knowlege spillover parameter  is a standard finding.

The new result here is the way selection is highlighted as a force of agglomeration. The

shape parameter  of the Frechet determines the dispersion of productivity. The lower is

, the more disperse is productivity ,and therefore the more important is selection. When

 is big, making selection more important by decreasing  leads to more agglomeration.

Selection over productivity replaces the role of preference for variety (through lower )

found in standard NEG models as an agglomerating force.

3.5 Productivity and Agglomeration

This section analyzes the distribution of productivities of surviving plants at the two lo-

cations. The first part derives the implications of the equilibrium conditions of worker

and enterpreneurial choice. The conditions imply that the distribution of productivity is

higher in the large city compared to the small city. The second part compares the observed

productivity distributions to those generated in a benchmark model where selection over

productivity is shut down. The analysis shows it is impossible to distinguish these two cases
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with data on observed productivity distributions. The analysis also shows that it matters to

distinguish the two cases–the two cases differ fundamentally in their underlying economics.

3.5.1 The Productivity Distribution is Higher in the Large City

We begin by deriving two equations from the equilibrium conditions. Recall that Φ defined

in (3) is the summary statistic that pins down the distribution of prices at location , gather-

ing together all the various forces including the productivity distributions at each location.

Define  ≡ Φ1Φ2 as the ratio of this key statistic between the large and small cities and

analogously define  ≡ 12 to be the ratio of population shares. We derive two conditions

linking  and  . One equation uses indifference between wage work and entrepreneurship;

the other uses indifference about where to live.

Using BEJK Results 1 and 2, expenditure by location 1 on goods from location 2 equals

12 = 12 (2)
−

Φ1. Using the analogous expession for 21 and the market clearing

condition 12 = 21 implies

1

2

=
1

−
1 Φ1

2
−
2 Φ2

=


+1
1


+1
2

−,

where we substitute in equation (8)  = 
+1
 for the productivity distribution scaling

parameter and we let  ≡ 12 be the wage ratio. The equilibrium job choice condition

(7) implies 12 = 12 =  . Also,  = 12 (equation (5)). Plugging these in

gives

1+ = . (11)

Next we use the definition (3) of Φ to obtain

 =
Φ1

Φ2
=

1
−
1 + 2

−
2 −

1
−
1 − + 2

−
2

=
 +1− + −

 +1−− + 1


where again we use the job choice equilibrium condition to substitute in  for 12.
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Solving this expression for  and substituting into (11) yields our first equation linking 

and ,

++1 =

µ
− −

1− −

¶1+
. (12)

To derive the second equation in  and , we use the indifference condition from the

individual’s choice of where to live. This implies that the ratio of utilities (1) = 1 for an

interior equilibrium, ∗1  1, i.e.,

1 =
1

2
=

³
1
1

´−
(1 +1)

−(1−)³
2
2

´−
(2 +2)

−(1−)

= 

 −(1−).

Using (11) to substitute in for , we obtain our second equation

 (1−)(1+)− = (1+2). (13)

With the derivation of conditions (12) and (13) complete, we can now analyze productiv-

ity and selection. If a plant for a particular product  at location  survives, it is necessarily

the most efficient plant for product  at . As derived in Section 3, the distribution of the

most efficient plant at  for a given  is Fréchet, with density () = 
−−1−

−
, where

 and  are the scaling and shape parameters. In addition, for the plant to survive, its

cost must be lower than what it would cost the most efficient plant at the other location to

export. Recalling our notation that 1 is the productivity of the most efficient plant at ,

then the most efficient firm at location 1 survives if and only if

1

11


2

12


We can use this to calculate the productivity distribution of the most efficient plant at 1,
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conditioned on beating the competition at 2,

Pr(11 ≤  11 
1
2

12)

Pr(11 
1
2

12)
=

1

11
Pr(11 ≤  11 

1

2
12),

=
1

11

Z 

0

Z 2

1
11

0

1(11)2(12)1211

= −(

1Φ1)− 

Thus the productivity distribution of surviving plants at 1 is Fréchet with shape parameter

, and scaling parameter equal to

b1 = 
1Φ1

= 1 + 2

µ
1

2

¶−


The selection induced by competition with the other location increases the scaling from 1

to a higher level ̂1; i.e., it shifts the distribution to the right. Similarly, the productivity

distribution of survivors in location 2 has scale parameter b2 = 
2Φ2, but otherwise has

the same shape parameter . Therefore the surviving plants at location 1 have a higher

distribution than the survivors at 2 (in the sense of first-order stochastic dominance) if if

̂1  ̂2. Our result is

Proposition 2 Suppose there is an agglomeration at location 1 (the large city), i.e.,   1.

(i) The productivity distributions of survivors are Fréchet at both locations with the same

same shape parameter , but the scaling parameter b1 = 
1Φ1 at location 1 is strictly

higher than the scaling parameter b2 = 
2Φ2 at the large city.

(ii) The ratio of the mean productivities of the survivors equals

 [1|survive]
 [2|survive] =

1
1
2
2

= 
1−
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which is strictly greater than one. The variance of the productivity distribution of

survivors is higher at the large city.

(iii) The mean of the logarithm of survivors’ productivities is higher in the large city, while

the variance of log productivity is constant across the two locations.

Proof of (i). We need to show that b1b2 =   1. This equals

 = (

1+ )


1+

= 
(1−)

  1

To obtain the first line, we substitute in for  using (11). To obtain the second line, we

solve out (13) for  in terms of  and substitute in. Proof of (ii). For the Fréchet with

scaling parameter  , the mean and variance equal  1Γ (( − 1)) and  2[Γ (( − 2))−
Γ2 (( − 1))]. Hence,

 [1|survive]
 [2|survive] =

Ã
̂1

̂2

! 1


= 
1
 .

That this equals 
(1−)

 follows from the proof of part (i). That it equals the ratio of the

real wages follows from the definition of  and BEJK Result 3. That variance is higher in

the big city follows from the formula for variance.

3.5.2 Shutting Down Selection: Does it Look Different and Does it Matter?

We highlight the role of selection in our model by contrasting a version of model in which

spillovers are shut down with a benchmark model in which selection is completely shut down.

While the economics of the benchmark model is different, the two models look the same in

terms of observed productivity distributions.

The key assumption of the benchmark model is that there is a monopoly entrepreneur

for each product  ∈ [0 1] rather than free entry and head-to-head competition. Each of

the unit measure of entrepreneurs chooses where to locate. After the location decision is
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fixed, each entrepreneur draws a random productivity term  from the Frechet with scale

parameter   and shape parameter . (We use the superscript “” to denote parameters

of the benchmark model.) There are a unit measure of workers that also choose where to

live. Let  be the fraction of workers locating at  and  be the fraction of entrepreneurs,

1 + 2 = 1, 1 +2 = 1. The productivity of an entrepreneur at  drawing  equals ,

where  = 


 , for spillover parameter 
. To complete the model, let  be the elasticity

of substitution for the composite utility function, let   be the transportation cost, and 

be the goods share of utility.

The benchmark model is exactly the Helpman NEG model with two exceptions. The

first exception is a fixed set of monopolist over a fixed variety of products, rather than the

usual free entry with fixed costs. This makes no difference for what we do. The second

exception is that productivity is random rather than deterministic. The makes no difference

in deriving the equilibrium, as the integral involving the expection of productivity draws

factors out. (It does make a difference in the data as it will generate a Frechet distribution

of productivities.) In the equilibrium of the model, the fraction of entrepreneurs locating

at  is the same as the fraction of workers,  =  = , so let  = 12 be the population

ratio as before. Fixing  , the model is standard Dixit-Stlitz, such that a firm at  drawing

 sets price equal to a constant markup over cost, () =

−1.

We compare the benchmark model to a version of our model in which knowledge spillovers

are shut down. We will refer to this as the selection model, with parameters (   ),

and spillover  = 0. First, we draw a connection between the way equilibria look in the

selection and benchmark models.

Proposition 3 Fix the parameters (   ) of our selection model, with  = 0. Assume

the conditions in Proposition 1 for an interior agglomeration equilibrium hold and let ∗ be

the equilibrium population ratio. Define a parameter set for the benchmark model with

the exact same values for transportation costs and goods consumption share,   =   =  ,

 =  = . Let  = , and  =  + 1, and set the knowledge spillover parameter equal
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to

 =
1− 




(i) The equilibrium population ratio ∗ is the same in both the selection and the bench-

mark models.

(ii) The distribution of productivities of producing plants at each location is that same in

both the selection and benchmark models.

We will discuss the proof in class. This relates to the equivalance of Dixit-Stigltz and

the BEJK model pointed out by Arkolakis, Costinot, and Rodriquez-Clare (2010)

While these models look similar in the data they generate, the underlying economics are

different and optimal policy is different. We illustrate this by considering the welfare impacts

of a zoning policy that permits production only at location 1, i.e., suppose 1 = 1 and 2 = 0

are mandated by policy. (See Rossi-Hansberg (2004), for example.) The differing impacts

of zoning in the two models are put in sharp contrast by an analysis of the limiting case

where there is no transportation cost.

Proposition 4 Assume  = 1. The equilibrium outcome is the same in both models, equal

dispersion across the two locations, 1 = 2 =
1
2
. However, the welfare effect of the zoning

policy differs across the two models. The zoning policy strictly decreases aggregate utility in

the selection model for any value of the model parameters. In the benchmark model, zoning

increases aggregate utility if and only if

 
1− 


.

Proof. That the zoning policy reduces aggregate utility in the selection model is immediate.

In the benchmark model, if 1 and 2 are the population fractions then aggregate utility

equals

  =
³

1+
1

´
1− +

³

1+
2

´
1−
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To see this, observe that if  locate at , then goods production there equals 
1+
 , taking

account of the knowledge spillover. Staightforward calculations show that if   1−

, this

is maximized at 1 = 1 and 2 = 0, while if  
1−

, this is maximized at 1 = 2 = 05.

Let us now bring all the ideas of this subsection together. Imagine we have a data

generating process that is either the benchmark model or the selection model, we don’t

know which. Suppose we observe transportation cost and it is initially positive,   1, and

we have an agglomeration at location 1. We observe the productivity distribution in both

cities and see that it is higher at location 1, but, as we know from Proposition 3, access to the

micro data doesn’t help distinguish between the two models. Suppose transportation costs

fall to zero, i.e.,  = 1. Both models have the same prediction for equilibrium comparative

statics: agglomeration disappears and we move to an equal split of population. However,

the policy implications are very different in the two models. If selection is the true source

of the productivity gains in the large city, then a zoning policy at the new transportation

cost strictly decreases welfare. In contrast, if the source is knowledge spillovers, the policy

is welfare neutral. (From Proposition 3,  = 1−

, and this value is the borderline case for

welfare in Proposition 4.)

We can use this analysis to examine an idea in Combes, Duranton, Gobillon, Puga, and

Roux (2009) (hearafter CDGPR) to distinguish selection from spillovers. This is what one

gets when using Melitz-style models with no head-to-head competition. The idea is to look

for truncation on the left as evidence of selection and any smooth overall rightward shift

as evidence of spillovers. In their empirical analysis, CDGPR find little evidence of any

kind of increased truncation in large cities. Rather they find productivity distributions

shift to the right in a relatively smooth way. They conclude that spillovers must be what

drives productivity gains. However, in our model, the pattern they document in the data

is equally consistent with all productivity gains being due to selection and none being due

to spillovers. As shown in Proposition 3, “Selection with No Spillover” and “Spillover with

No Selection” generate the same kind of productivity data, shifting the distribution to the
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right in a smooth way in large cities.

Proposition 3 is related to Arkolakis, Costinot, and Rodriguez-Clare (2010), that argues

that adding firm heterogeneity in either a Melitz or BEJK fashion does not add anything

new in terms of aggregate impacts beyond what is already in the Dixit-Stiglitz symmetric

firm model. They show these different models of international trade are equivalent at the

aggregate level. The equivalence result between Dixit-Stiglitz and BEJK appears here as

well. As noted above, the benchmark model is essentially Helpman (1998) and Helpman is

Dixit-Stigliz. The benchmark model looks the same (with the same comparative statics from

a change in transportation cost ) as the selection model, which is BEJK in its underlying

moving parts. While the connections noted by Arkolakis, Costinot, and Rodriguez-Clare

(2010) show up here as well, the bottom line point that we get in our regional model with

mobile labor and entrepreneurship is quite different from what they get in their trade model

with fixed factors. The welfare effects of policies that impact the movement of factors of

production do depend upon the underlying model. Whether it is the benchmark or the

selection model matters.

4 Redding and Sturm (2008)

Redding and Sturm apply NEG theory to understand how cutting offmarket access–through

the division of postwar Germany–impacts where people live. The paper does two things.

First, through a dif-dif exercise the paper shows the impacts are consistent with the qualita-

tive implications of NEG theory. Second, the paper calibrates an NEG model are it argues

that the quantitative implications of the theory work well. Rather than say discuss the

qualitative results in the notes, we will just put the pdf of the paper up in the overheads in

class and scan through some of the tables and maps. Here we will just discuss a little bit

about the model. I should say that the quantitative aspects of this kind of research is where

the interesting work is going forward. In general, simple two location models NEG models
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have been worked out and people are tired of them.

The model is based on Helpman (1998). (Some of these equations come from the

appendix for the Redding and Sturm paper at the AER website.)

• There are  mobile consumers each with a unit of time.

•  =
¡



¢ ¡



¢1−
, 0    1, at city .

• tradeable consumption 
 standard CES,  is elasticity of substitution

• 
 is nontradeable amenity, exogenously distributed across locations.

•   1 iceberg cost to ship from  to .

• Fixed cost of  (labor units) to set up a new product, constant marginal marinal cost

of one unit of labor. So to produce  units requires  =  +  units of labor

4.1 Equilibrium conditions on the Demand Side

The price index is at city  is


 =

"X


 ()
1−
#1(1−)

where  is variety at location 

Define consumer market access  by


 = []

1(1−)

 ≡
X


 ()
1−

Now expenditure is (where  is total expenditure at ),

 = 
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From Shepard’s Lemma (an envelope theorem),


£



¤


 = 

Or

1

1− 

"X


 ()
1−
#1(1−)−1

(1− ) ()
−

 = 

But can write the above as

"X


 ()
1−
#−1

 ()
−



  = 

Or ⎡⎣"X


 ()
1−
# 1
1−
⎤⎦(−1)  ()−  = 

or

 = − ()
1−

()
¡



¢−1
The bottom line equation above is equilibrium demand for a tradeable variety from city .

There is an inelastic supply of the non-tradeable amenity . It must be the case that

the price of the amenity at  must equal


 =

(1− )



.

Total expenditure is the sum of labor and amenity expenditure,

 =  + (1− ) =




Note this implies that  = . Let’s plug this in above for the price of amenities,


 =

(1− )



=
(1− )
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4.2 Equilibrium Conditions on the Supply Side

As usual the free-on-board price (buyer pays transportation costs) is

 =


 − 1

Get usual fixed plant size in free entry zero profit equilibrium

̄ = ̄ =
X


 =  ( − 1)

The lets plug in the demands  that we calculated above.

̄ =
X


 =
X


− ()
1−

()
¡



¢−1
=

X


− ()
1−

()
¡



¢−1
which we can rewrite as

 =
1

̄

X


()
1−

()
¡



¢−1
or µ



 − 1

¶

=
1

̄

X


()
1−

()
¡



¢−1
The authors refer to the equation above at the “tradeables wage equation.” Defining 

(firm market access) as follows,

 ≡
X


()
1−

()
¡



¢−1
we can solve for the wage

 =  []
1
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for a constant .

4.3 Factor Market Equilibrium

Individuals will move across cities to that they are indifferent as to where they locate. The

real wage is equalized,

 =


(
 )


(

 )
1− = 

Labor market clearing implies

 = ̄ = 

(recall all firms in the economy have same volume from zero profit condition, so labor at

each location is proportional to variety.

Let’s substitute in all this interesting stuff we have been deriving.

 =


(
 )


(

 )
1−

=


(
 )


³
(1−)





´1− = 


1−


(
 )


³
(1−)


´1−

1−


Or

 = 


1−


¡



¢− 
1− × constant

=  []


(1−) []


(1−)(−1) × constant

4.4 General Equilibrium

• List of 7 variables for each city,     

  

  

• Assume  (1− )  1, they claim this is Helpman condition for unique equilibrium.
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• Given any set of model parameters, can find  to perfectly fit the data. Fix parame-

ters, there is a mapping between {1 2 } and {1 2 }. Fit 1939 prewar
population.

• After the division, set  =∞ for all cases that involve crossing the border. Solve for

a new equilibrium distribution of population.

4.5 Parameterization

•  = 4

•  = 2
3
(so  (1− )  1)

•  = 

,  =

1
3

• Distance elasticity of trade (1− ) = −1.

• only thing left is amenities...back them out.
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