Due Tues. Sept. 19
Question 1
Consider the following duopoly model. There are two firms, 1 and 2 , and time is discrete, $t \in\{0,1,2, \ldots\}$. Let $q_{1, t}$ and $q_{2, t}$ be the output of each firm in period t and let $Q_{t}=q_{1, t}+q_{2, t}$ be total output. Suppose the inverse demand is constant over time and linear, $P=A-Q$.

The average production cost in period t is constant in current production but depends upon industry production in the previous period. Let $X_{t}=Q_{t-1}$ denote total industry output from the previous period. Specifically, the marginal cost (and average cost) in period t of each firm is $c\left(X_{t}\right)$, where $c(0) \equiv \bar{c}<A, c^{\prime}<0, c^{\prime \prime}>0$, and $\lim _{X \rightarrow \infty} c(X) \equiv \underline{c}>0$. So given last period industry output X, if firm i produces q_{i} units in the current period, its total cost in the period is $q_{i} c(X)$. Note the learning by doing here occurs at the industry level. There is a knowledge spillover here since firm 2's production cost next period are smaller when firm 1 produces more in the current period.

Suppose the discount factor is $\beta<1$.
Assume in each period t the two firms simultaneously choose output levels $q_{1, t}$ and $q_{t, t}$ in a Cournot fashion.
(a) Define a Markov-perfect equilibrium in this model. Define a stationary equilibrium.
(b) Suppose $\beta=0$. Determine the transition equation mapping last period's industry output X to this period's industry output Q. Under what condition does there exist a unique stationary equilibrium?
(c) Consider a two-period version of the model, $t \in\{1,2\}$ and let $X_{1}=0$ be the initial state. If is possible that an equilibrium path for $\beta>0$ would be the same as the equilibrium path when $\beta=0$?

Question 2

Take the dynamic industry model discussed in class. Assume the parameterization

$$
\begin{aligned}
c(q) & =\frac{q^{2}}{2} \\
D(p) & =p^{-\varepsilon_{D}}=p^{-2} \\
P(Q) & =Q^{-\frac{1}{2}}
\end{aligned}
$$

where ε_{D} is the elasticity of demand. Assume $\beta=.5$ and $\sigma=1-\delta=.5$. Following the class notes:

$$
\begin{aligned}
q^{*} & =\frac{1}{\sigma}=2 \\
p_{C}^{*} & =(1-\beta) c^{\prime}\left(q^{*}\right)+\beta \sigma c\left(q^{*}\right) \\
& =.5 q^{*}+.25 \frac{q^{* 2}}{2}=1.5 \\
p_{M}^{*} & =\frac{\varepsilon_{D}}{\varepsilon_{D}-1} p_{C}^{*}=3 \\
Q_{C}^{*} & =p_{C}^{*-2} \\
Q_{M}^{*} & =p_{M}^{*-2} \\
K_{C}^{*} & =\sigma Q_{C}^{*} \\
K_{M}^{*} & =\sigma Q_{M}^{*}
\end{aligned}
$$

(a) Use value function iteration and Chebyshev approximation (page 223 in Judd) to calculate the equilibrium value function for the monopoly problem.

Use $n=5$ (the order of the polynomials) and $m=10$ (the number of grid points). Let $a=.5 K_{M}^{*}$ and $b=1.5 K_{M}^{*}$; these are the endpoints of the grid using Judd's notation.

Iterate on the vector $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ which is the vector determining the approximation of $w(K)$ (Sorry for the awkward notation where a denotes two things; this is Judd's fault). Start with $a_{i}=0$ for all i and stop when

$$
\max _{i \in\{0, n\}}\left|a_{i}^{t+1}-a_{i}^{t}\right|<.000001
$$

where t denotes a particular iteration.
After the value function converges approximate the policy function $q(K)$. Let the initial capital level be $K_{0}=a=.5 K_{M}^{*}$ and calculate for periods 1-25 the following variables: K_{t},
q_{t}, P_{t} and $w_{t}\left(K_{t}\right)$. Make a table with this information. Compare with $K_{M}^{*}, q^{*}, P_{M}^{*}$ and w_{M}^{*}, the stationary monopoly levels.
(b) Let $\left(a_{0}, \ldots a_{n}\right)$ be the coefficient vector for the value function $v_{1}\left(K_{1}, K_{2}\right)$ approximation and $\left(b_{0}, \ldots, b_{n}\right)$ the coefficient vector for the policy function $q_{1}\left(K_{1}, K_{2}\right)$ approximation. Use Judd's techniques for approximation in R^{2} (page 238) to approximate the Markov perfect equilibrium. Note you need to iterate on q_{1} as well as v_{1} since firm 1 takes firm 2 's action as given in the problem (and $\left.q_{2}(x, y)=q_{1}(y, x)\right)$.

Let $a=.25 K_{M}^{*}$ and $b=K_{C}^{*}$ be the end points of the grid.
Solve for the equilibrium path for the first 25 periods starting at $K_{1,0}=b$ and $K_{2,0}=a$. Print out $q_{1, t}, q_{2, t}, K_{1, t}, K_{2, t}$, and P_{t}. Again, put this information in a table. What happens to market share over time?

