
Notes on Shares with CES and Frechet

October 10, 2017

1 Description of the Model

There are  types of land use,  ∈ {1  }. Take as exogenous for now the count  of

agents of each type. For simplicity, for now we refer to an agent as a firm.

There are  locations indexed by  . Let  be the measure of floor space at location .

(For the purposes here, take this as exogenous)

Let  be used to indicate a particular firm. Each firm  of type  gets a productivity

draw for each location , denoted by 

.
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Let 

 be the measure of agents of type  locating at .

All firms employ utilize floor space  and labor  in production.

There are two components to productivity that vary across locations. Let  be a Hicks

neutral productivity at location . We take this as exogenous. Let  be a labor-specific

productivity term that varies across location.

The output of firm  in industry  locating at  is

 = 

£


 + (1− )
¡


¢¤ 1 
where the elasticity of substitution between  and  for industry  is given by
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1

1− 
.



Let  be the price of labor in efficiency unit at location . So if the nominal wage is

, then

 =



.

2 Input Choice Problem

Take as given a particular agent  of type  locating in , with idiosyncratic productivity 



and where the productivity is . For simplicity, we drop all subscripts. Since  and  enter

multiplicatively the same way, set  = 1 for now, and solve the problem for productivity

level . Then later we can substitute in 



 for .

Let , , and  be the prices of labor, land, and floor space.

Next the firm solves
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note that are are defining  in terms of efficiency units here, so we leave out . Define 

by

 = min + 

subject to
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Then we can rewrite the problem as
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2.1 Calculations for CES
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By symmetry
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Is is straightforward to substitute these in to obtain the price index,

In summary
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2.2 Choice of 

Consider
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The FONC is
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Solve for ,
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Plug it in to get the value
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Can we write  as a function of ?
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Next look at demand for space. Recall space per unit demand is
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Analogously
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3 Frechet Calculations

Suppose a variable  is distributed Frechet

 () = −
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For arbitrary parameters ̃  0 and   0 define a transformation
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We can solve out for .
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The c.d.f of the random variable  is then
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Thus the variable just transformed is also Frechet with parameters

̃ =  ̃
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Now return to variable  which again is Frechet with  and .
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Let  ∗() be the c.d.f of ∗. This equals
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What is the density?
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The expected value is

[∗] = ̄Γ(1− 1
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where Γ is the gamma function.

Next note that
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Finally, we use the above to calculate [
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of type  location choice problem is
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4 Floor Space Share

What is the expected quantity of floor space, per firm of type  locating at ?

Note, on account of the Frechet, fixing ,
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Now ̄ is a constant across , so let’s leave the expression in these terms

6



Let’s leave  and  implicit to start.
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This is amount of intermediate, and
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So the quantity of land equals

Recall that

 =

∙


1
1−

−
1−
 + (1− )

1
1− 

−
1−


¸− 1−


We can use this to derive
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Therefore quantity of floor space per firm at the location is
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5 Exercise

Let 

 denote the total volume of floor space occupied at location  by firms in industry .

Derive an expression for



 =
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