Notes on Shares with CES and Frechet

October 10, 2017

1 Description of the Model

There are i types of land use, $i \in\{1, \ldots, I\}$. Take as exogenous for now the count M_{i} of agents of each type. For simplicity, for now we refer to an agent as a firm.

There are J locations indexed by J. Let S^{j} be the measure of floor space at location j. (For the purposes here, take this as exogenous)

Let k be used to indicate a particular firm. Each firm k of type i gets a productivity draw for each location j, denoted by $z_{i k}^{j}$.

$$
F_{i}^{j}\left(z_{i j k}\right)=e^{-T_{i j}^{j}\left(z_{i k}^{j}\right)^{-\theta}}
$$

Let M_{i}^{j} be the measure of agents of type i locating at j.
All firms employ utilize floor space s and labor n in production.
There are two components to productivity that vary across locations. Let A^{j} be a Hicks neutral productivity at location j. We take this as exogenous. Let B^{j} be a labor-specific productivity term that varies across location.

The output of firm k in industry i locating at j is

$$
y=z_{i j k} A^{j}\left[\alpha_{i} s^{\rho_{i}}+\left(1-\alpha_{i}\right)\left(B^{j} n\right)^{\rho_{i}}\right]^{\frac{1}{\rho_{i}} \gamma_{i}}
$$

where the elasticity of substitution between s and n for industry i is given by

$$
\sigma_{i}=\frac{1}{1-\rho_{i}}
$$

Let p_{n}^{j} be the price of labor in efficiency unit at location j. So if the nominal wage is w^{j}, then

$$
p_{n}^{j}=\frac{w^{j}}{B^{j}} .
$$

2 Input Choice Problem

Take as given a particular agent k of type i locating in j, with idiosyncratic productivity $z_{i k}^{j}$ and where the productivity is A^{j}. For simplicity, we drop all subscripts. Since z and A enter multiplicatively the same way, set $z=1$ for now, and solve the problem for productivity level A. Then later we can substitute in $z_{i k}^{j} A^{j}$ for A.

Let p_{n}, p_{ℓ}, and p_{s} be the prices of labor, land, and floor space.
Next the firm solves

$$
\max _{(s, n)} A\left[\alpha s^{\rho}+(1-\alpha) n^{\rho}\right]^{\frac{1}{\rho} \gamma}-p_{s} s-p_{n} n
$$

note that are are defining n in terms of efficiency units here, so we leave out B. Define m by

$$
p_{m}=\min p_{s} s+p_{n} n
$$

subject to

$$
\left[\alpha s^{\rho}+(1-\alpha) n^{\rho}\right]^{\frac{1}{\rho}}=1
$$

Then we can rewrite the problem as

$$
\max _{m} A m^{\gamma}-p_{m} m
$$

2.1 Calculations for CES

$$
\begin{aligned}
\frac{p_{s}}{p_{n}} & =\frac{\frac{1}{\rho}\left[\alpha s^{\rho}+(1-\alpha) n^{\rho}\right]^{\frac{1}{\rho}-1} \alpha \rho s^{\rho-1}}{\frac{1}{\rho}\left[\alpha s^{\rho}+(1-\alpha) n^{\rho}\right]^{\frac{1}{\rho}-1}(1-\alpha) \rho n^{\rho-1}} \\
& =\frac{\alpha s^{\rho-1}}{(1-\alpha) n^{\rho-1}} \\
\left(\frac{p_{s}}{p_{n}}\right)^{-\frac{1}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{1-\rho}} & =\frac{s}{n}
\end{aligned}
$$

Also

$$
\begin{aligned}
{\left[\alpha s^{\rho}+(1-\alpha) n^{\rho}\right]^{\frac{1}{\rho}} } & =1 \\
{\left[\alpha\left(\frac{p_{s}}{p_{n}}\right)^{-\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{\rho}{1-\rho}} n^{\rho}+(1-\alpha) n^{\rho}\right]^{\frac{\rho}{\rho}} } & =1
\end{aligned}
$$

So

$$
\begin{aligned}
{\left[\alpha\left(\frac{p_{s}}{p_{n}}\right)^{-\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{\rho}{1-\rho}}+(1-\alpha)\right]^{\frac{1}{\rho}} n } & =1 \\
n & =\left[\alpha\left(\frac{p_{s}}{p_{n}}\right)^{-\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{\rho}{1-\rho}}+(1-\alpha)\right]^{-\frac{1}{\rho}}
\end{aligned}
$$

By symmetry

$$
s=\left[(1-\alpha)\left(\frac{p_{s}}{p_{n}}\right)^{\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{-\frac{\rho}{1-\rho}}+\alpha\right]^{-\frac{1}{\rho}}
$$

Is is straightforward to substitute these in to obtain the price index,

In summary

$$
p_{m}=\left[\alpha^{\frac{1}{1-\rho}} p_{s}^{\frac{-\rho}{1-\rho}}+(1-\alpha)^{\frac{1}{1-\rho}} p_{n}^{\frac{-\rho}{1-\rho}}\right]^{-\frac{1-\rho}{\rho}}
$$

2.2 Choice of m

Consider

$$
\max _{m} A m^{\gamma}-p_{m} m
$$

The FONC is

$$
A \gamma m^{-(1-\gamma)}-p_{m}=0
$$

Solve for m,

$$
\begin{aligned}
m^{-(1-\gamma)} & =\frac{p_{m}}{A \gamma} \\
m & =\left(\frac{p_{m}}{A \gamma}\right)^{-\frac{1}{1-\gamma}} \\
& =p_{m}^{-\frac{1}{1-\gamma}}(A \gamma)^{\frac{1}{1-\gamma}}
\end{aligned}
$$

Plug it in to get the value

$$
\begin{aligned}
v= & A\left[p_{m}^{-\frac{1}{11-\gamma}}(A \gamma)^{\frac{1}{1-\gamma}}\right]^{\gamma}-p_{m} p_{m}^{-\frac{1}{1-\gamma}}(A \gamma)^{\frac{1}{1-\gamma}} \\
= & A p_{m}^{-\frac{\gamma}{1-\gamma}}(A \gamma)^{\frac{\gamma}{1-\gamma}}-p_{m}^{\frac{-\gamma}{1-\gamma}}(A \gamma)^{\frac{1}{1-\gamma}} \\
& A^{\frac{1}{1-\gamma}} \gamma^{\frac{\gamma}{1-\gamma}} p_{m}^{-\frac{\gamma}{1-\gamma}}-A^{\frac{1}{1-\gamma}} \gamma^{\frac{1}{1-\gamma}} p_{m}^{-\frac{\gamma}{1-\gamma}} \\
v= & {\left[\gamma^{\frac{\gamma}{1-\gamma}}-\gamma^{\frac{1}{1-\gamma}}\right] A^{\frac{1}{1-\gamma}} p_{m}^{-\frac{\gamma}{1-\gamma}} }
\end{aligned}
$$

Can we write m as a function of v ?

$$
m=p_{m}^{-\frac{1}{1-\gamma}} A^{\frac{1}{1-\gamma}} \gamma^{\frac{1}{1-\gamma}}
$$

and

$$
\begin{aligned}
v & =\left[\gamma^{\frac{\gamma}{1-\gamma}}-\gamma^{\frac{1}{1-\gamma}}\right] A^{\frac{1}{1-\gamma}} p_{m}^{-\frac{\gamma}{1-\gamma}} \\
& =p_{m}^{-\frac{1}{1-\gamma}} A^{\frac{1}{1-\gamma}} \gamma^{\frac{1}{1-\gamma}} \times p_{m}^{\frac{1}{1-\gamma}} A^{-\frac{1}{1-\gamma}} \gamma^{-\frac{1}{1-\gamma}} \times\left[\gamma^{\frac{\gamma}{1-\gamma}}-\gamma^{\frac{1}{1-\gamma}}\right] A^{\frac{1}{1-\gamma}} p_{m}^{-\frac{\gamma}{1-\gamma}} \\
& =m\left[\frac{1-\gamma}{\gamma}\right] p_{m}
\end{aligned}
$$

Or

$$
m=\frac{v}{p_{m}} \frac{\gamma}{1-\gamma}
$$

Next look at demand for space. Recall space per unit demand is

$$
s_{1}=\left[(1-\alpha)\left(\frac{p_{s}}{p_{n}}\right)^{\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{-\frac{\rho}{1-\rho}}+\alpha\right]^{-\frac{1}{\rho}}
$$

Therefore

$$
s=\left[(1-\alpha)\left(\frac{p_{s}}{p_{n}}\right)^{\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{-\frac{\rho}{1-\rho}}+\alpha\right]^{-\frac{1}{\rho}} \frac{1}{p_{m}} \frac{\gamma}{1-\gamma} v
$$

Analogously

$$
n=\left[\alpha\left(\frac{p_{s}}{p_{n}}\right)^{-\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{\rho}{1-\rho}}+(1-\alpha)\right]^{-\frac{1}{\rho}} \frac{1}{p_{m}} \frac{\gamma}{1-\gamma} v
$$

3 Frechet Calculations

Suppose a variable z is distributed Frechet

$$
F(z)=e^{-T z^{-\theta}}
$$

For arbitrary parameters $\tilde{\zeta}>0$ and $\eta>0$ define a transformation

$$
x=\tilde{\zeta} z^{\eta}
$$

We can solve out for z.

$$
\begin{aligned}
z^{\eta} & =\frac{x}{\tilde{\zeta}} \\
z & =\tilde{\zeta}^{-\frac{1}{\eta}} x^{\frac{1}{\eta}}
\end{aligned}
$$

The c.d.f of the random variable x is then

$$
\tilde{F}(x)=F(z(x))=e^{-T \tilde{\zeta}^{\frac{\theta}{\eta}} x^{-\frac{\theta}{\eta}}}
$$

Thus the variable just transformed is also Frechet with parameters

$$
\begin{aligned}
\tilde{T} & =T \tilde{\zeta}^{\frac{\theta}{\eta}} \\
\tilde{\theta} & =\frac{\theta}{\eta}
\end{aligned}
$$

Now return to variable z which again is Frechet with T and θ.

$$
F(z)=e^{-T z^{-\theta}}
$$

Let

$$
\begin{equation*}
z^{*}=\max \left\{z^{1}, z^{2}, \ldots . z^{J}\right\} \tag{1}
\end{equation*}
$$

Let $F^{*}(z)$ be the c.d.f of z^{*}. This equals

$$
F^{*}(z)=\prod_{j=1}^{J} e^{-T^{j} z^{-\theta}}=e^{-\bar{T} z^{-\theta}}
$$

for

$$
\bar{T}=T^{1}+T^{2}+\ldots T^{J}
$$

What is the density?

$$
f^{*}(z)=e^{-\bar{T} z^{-\theta}} \bar{T} \theta z^{-\theta-1}
$$

The expected value is

$$
E\left[z^{*}\right]=\bar{T} \Gamma\left(1-\frac{1}{\theta}\right)
$$

where Γ is the gamma function.
Next note that

$$
E\left[z^{j} \mid z^{j}=z^{*}\right]=E\left[z^{*}\right]
$$

Finally, we use the above to calculate $E\left[z_{i k}^{j}\right]$ and expectation of powers of $z_{i k}^{j}$ Firm k 's of type i location choice problem is

$$
v^{*}=\max _{j} \tilde{\zeta}_{i}^{j}\left(z_{i k}^{j}\right)^{\eta}
$$

$$
\begin{aligned}
\eta & \equiv \frac{1}{1-\gamma} \\
\tilde{\zeta}_{i}^{j} & \equiv\left[\gamma^{\frac{\gamma}{1-\gamma}}-\gamma^{\frac{1}{1-\gamma}}\right]\left(A^{j}\right)^{\frac{1}{1-\gamma}}\left(p_{i, m}^{j}\right)^{-\frac{\gamma}{1-\gamma}}
\end{aligned}
$$

Then define

$$
\begin{aligned}
\tilde{T}_{i}^{j} & =T_{i}^{j}\left(\tilde{\zeta}_{i}^{j}\right)^{\frac{\theta}{\eta}} \\
\tilde{\theta} & =\frac{\theta}{\eta}
\end{aligned}
$$

and

$$
\tilde{T}_{i}=\sum_{j=1}^{J} \tilde{T}_{i}^{j}
$$

So then

$$
\tilde{z}_{j}=\tilde{\zeta}_{i}^{j}\left(z^{j}\right)^{\eta}
$$

Then

$$
\begin{aligned}
E\left[\tilde{z}_{i k}^{j} \mid \tilde{z}_{i k}^{j}=\tilde{z}_{i k}^{*}\right] & =E\left[\tilde{z}_{i k}^{*}\right] \\
& =\bar{T} \Gamma\left(1-\frac{1}{\tilde{\theta}}\right)
\end{aligned}
$$

4 Floor Space Share

What is the expected quantity of floor space, per firm of type i locating at j ?
Note, on account of the Frechet, fixing i,

$$
E[v \mid \text { choose } j]=\bar{v}
$$

Note also that

$$
m=\frac{v}{p_{m}} \frac{\gamma}{1-\gamma}
$$

So

$$
E m^{j}=\frac{1}{p_{m}^{j}} \frac{\gamma}{1-\gamma} E[v \mid \text { choose } j]=\frac{1}{p_{m}^{j}} \frac{\gamma}{1-\gamma} \bar{v}
$$

Now \bar{v} is a constant across j, so let's leave the expression in these terms

Let's leave i and j implicit to start.

$$
E m=\frac{1}{p_{m}} \frac{\gamma}{1-\gamma} \bar{v}
$$

This is amount of intermediate, and

$$
\begin{aligned}
E s & =\left[(1-\alpha)\left(\frac{p_{s}}{p_{n}}\right)^{\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{-\frac{\rho}{1-\rho}}+\alpha\right]^{-\frac{1}{\rho}} E m \\
& =\left[(1-\alpha)\left(\frac{p_{s}}{p_{n}}\right)^{\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{-\frac{\rho}{1-\rho}}+\alpha\right]^{-\frac{1}{\rho}} \frac{1}{p_{m}^{j}} \frac{\gamma}{1-\gamma} \bar{v}
\end{aligned}
$$

So the quantity of land equals

Recall that

$$
p_{m}=\left[\alpha^{\frac{1}{1-\rho}} p_{s}^{\frac{-\rho}{1-\rho}}+(1-\alpha)^{\frac{1}{1-\rho}} p_{n}^{\frac{-\rho}{1-\rho}}\right]^{-\frac{1-\rho}{\rho}}
$$

We can use this to derive

$$
\left[(1-\alpha)\left(\frac{p_{s}}{p_{n}}\right)^{\frac{\rho}{1-\rho}}\left(\frac{\alpha}{1-\alpha}\right)^{-\frac{\rho}{1-\rho}}+\alpha\right]^{-\frac{1}{\rho}}=\alpha^{\frac{1}{1-\rho}} p_{s}^{\frac{-1}{1-\rho}} p_{m}^{\frac{1}{1-\rho}}
$$

Therefore quantity of floor space per firm at the location is

$$
\begin{aligned}
& p_{s}^{-\frac{1-\lambda}{\lambda}}(1-\lambda)^{-\frac{1-\lambda}{\lambda}} \alpha^{\frac{1}{1-\rho}} p_{s}^{\frac{-1}{1-\rho}} p_{m}^{\frac{1}{1-\rho}} \frac{1}{p_{m}} \frac{\gamma}{1-\gamma} \bar{v} \\
= & (1-\lambda)^{-\frac{1-\lambda}{\lambda}} \alpha^{\frac{1}{1-\rho}} \frac{\gamma}{1-\gamma} p_{s}^{-\frac{1-\lambda}{\lambda}-\frac{1}{1-\rho}} p_{m}^{\frac{\rho}{1-\rho}}
\end{aligned}
$$

5 Exercise

Let S_{i}^{j} denote the total volume of floor space occupied at location j by firms in industry i. Derive an expression for

$$
\operatorname{share}_{i}^{j}=\frac{S_{i}^{j}}{\sum_{j^{\prime}=1}^{J} S_{i}^{j^{\prime}}}
$$

