
Lecture 3: More on Entry Games

An Aside: Analogy Between Entry Game Literature and Auction

Literature

• Consider Symmetric First-Price Auction Models

• Assume independing private values.

—  bidders,  private valuation of  drawn i.i.d. from c.d.f.

 with support [,̄]

— Let  be maximum of (− 1) draws, let  be c.d.f.

 () = ()
(−1)

 () = (− 1)()(−2)()



— Suppose have symmetric equilibrium with bid function ()

and inverse .

— Suppose a reserve price  

• Then bidder 1’s profits from bidding  given value  are

( ) = (− ) (())

Differentiating w.r.t. 

[− ]
 (())




−  (()) = 0

and imposing symmetry and  = () and 
 = 1

0() yields

[− ()] ()− 0() () = 0

The equilibrium bid solves this differential equation, subject



to the boundary condition () = 

() = −
R 
 ()

−1
()−1

the mark down −() is decreasing in the number of bidders
 and increasing in the dispersion of the value distribution.



Estimation

• Early work (e.g. Paarsch). Full solution (or gain nexted

fixed point approarch. Parameterize the distribution function.

Take given parameters, solve for the equilibrium, construct

a likelihood function. (Then after estimation can calculate

optimal reserve price, for example)

• Let’s instead go over a nonparametric approach (Elyakime,
Laffont, Loisel, Vuong (1994)+Gueere, Perrigne, and Vuong

(2000))

• Data on bids
n
{}

=1   
o
=1



• Define  = ( ) as the maximum bid of bidder 1’s rivals

and let the distribution be denoted (·) and density given
by (·). Montonicity of  implies that for any ∈ ( (̄)),

() =  (())

The associated density function is given by

() =  (())
0()

Recall the FOC

[− ]
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−  (()) = 0

Substituting the above into the FOC yields

(()− )()−()

or

() = +
()

()
= +

()−1

(− 1)()(−2)()
= +

()

(− 1) ()



• Estimation proceeds in two steps

— Step 1: Estimate  or  and  or  either parametri-

cally or nonparametrically Then obtain

̂ =  +
̂

()

̂
()

— Step 2: Estimate (̂) and (̂). Then can run

counterfactuals (i.e. change in reserve price, change in

number of bidders, of course we have kept number of bid-

ders as exogenous here. If bidders endogeneous, need to

do more):



Embellish Entry Game with Permanent Unobserved Heterogeneity

• Incumbent firms simultaneously decide whether or not to pro-
duce in a period. Production not related to whether produce

today or not. Finally, sometimes only one gets to make the

decision. So the state is  = {1 2} where  is the count of
firms that have the choice of whether to be in or out.

• Assume  is public information.

• Also a fixed cost  ∈ {1 2} with  probability of drawing

 (finite mixture model)

— Take  as known, parameter to estimate is 



• Let Pr() =  (assume known, otherwise, trivial to estimate)

• Payoffs ( is number of producers)

stay out : 0

produce :  −  + 1

Where  extreme value

• Suppose have a cross section of locations playing this game.
Any luck identifying this model?

— What do we see? Pr( = 1|)....



• Suppose have a panel, say two observations on each market.

• Let markets be indexed by , time  = 1 2.

• Let  be publicly observed state at  at time 

• Let  be actions (e.g. if  = 1 whether the one firm enters,

• Let { = ( ) = 1  = 1 2} be the data



• Full solution MLE approach to estimating ( ), where  =
(1 2)

— For a given , solve for Pr(| =   )

— Use Bayes Rule to calculate Pr( = |(1 2)  )

— Likelihood of outcome in market  can be written

Pr(1 2| )
= Pr( = 1|(1 2)  ) Pr (1 2|  = 1) +

Pr( = 2|(1 2)  ) Pr (1 2|  = 2)



• Not going to turn this into a two step approach because we
are using states from multiple periods

• Trick in the literature is to get everything Markov, and get
information about the unobservable state contained in the ob-

servable state.

• Let’s tweak the model. Add another parameter where there is
another fixed cost that depends on whether the firm produced

in the previous period.

— The state  = {0 1 2}

∗ 0 (can’t produce)

∗ 1, didn’t produce last period



∗ 2 produced last period

• Returns

stay out : 0

produce :  −  −  + 1

where 2  1.

• To estimate:  and  = (1 2 1 2 ) (assume discount

factor  known)



• Consider estimation strategies that do not exploit the panel
aspect of the data.

• Full solution

— Given , and  solve for equilibrium

— Then take a draw from the stationary distribution, Let

 = (1 2). Calculate Pr ( = | ) then
calculate likelihood as above



Partial Solution Approach

• Let’s say we have estimates of CCP, conditional on the latent
variable . Call it ̂ ◦ (the “◦” is there because we are going
to update it later)

— Can start with this by just assuming constant across ,

then plug in the CCP off of the data

• Run the CCP and get the steady state distribution of  for

each ., also Pr ( = |)

• Obtain a pseudo-maximum likelihood of  (figure the likeli-

hood of the data given , Pr ( = |), and ̂ ◦ )

— e.g., likelihood firm 1 at 1 = 2 enters, given 2 = 1.



— Use the ̂ ◦ to plug in firm 2’s likelihood of entry.

— if  = 0 done.

— if   0 well you have the parameters, and how firm 1 is

behaving in the future, so done to.

• Update the CCP using the best response. Note we are not

solving a fixed point here, not running through and solving

the equilibrium of the model.

• Rinse and repeat...

• EM algorithm, can look it up.



• Good reference is part 2 of Aguirregabiria and Nevo handbook
chapter on syllabus.


