Arcidiacono, Bayer, Blevins, Ellickson

- Discussion of Arcidiacono and Miller (2011) of a way to do Rust bus problem
- Use $d_{1 t}=1$ replace at or $d_{2 t}=1$ if don't replace bus engine
- State x_{t} is age, s other characteristics
- Choice specific value function (net of $\varepsilon_{j t}$)

$$
\begin{aligned}
v_{j}(x, s) & =\beta V(0, s), \text { if } j=1 \\
& =\theta_{1} x+\theta_{2} s+\beta V(x+1, s), \text { if } j=2
\end{aligned}
$$

- Probability of replacement

$$
p_{1}(x, s)=\frac{1}{1+\exp \left[v_{2}(x, s)-v_{1}(x, s)\right]}
$$

We know the choice-specific value function can be rewritten as
$v_{2}(x, s)=\theta_{1} x+\theta_{2} s+\beta \ln \left[\exp \left(v_{1}(x+1, s)+\exp \left(v_{2}(x+1, s)\right]+\beta \gamma\right.\right.$
which we can rewrite as

$$
\begin{aligned}
v_{2}(x, s) & =\theta_{1} x+\theta_{2} s+\beta \ln \left[\exp \left(v_{1}(x+1, s)\left[1+\frac{\exp \left(v_{2}(x+1, s)\right)}{\exp \left(v_{1}(x+1, s)\right)}\right]\right]+\beta \gamma\right. \\
& =\theta_{1} x+\theta_{2} s+\beta \ln \left[\operatorname { e x p } \left(v _ { 1 } (x + 1 , s) \left[1+\exp \left(v_{2}(x+1, s)-v_{1}(x+1, s\right.\right.\right.\right. \\
& =\theta_{1} x+\theta_{2} s+\beta \ln \left[\frac{\exp \left(v_{1}(x+1, s)\right.}{p_{1}(x+1, s)}\right]+\beta \gamma \\
& =\theta_{1} x+\theta_{2} s+\beta v_{1}(x+1, s)-\ln p_{1}(x+1, s)+\beta \gamma
\end{aligned}
$$

Analogously

$$
v_{1}(x, s)=\beta v(0, s)-\ln p_{1}(0, s)+\beta \gamma
$$

Also

$$
v_{1}(x+1, s)=v_{1}(0, s)=\beta V(0, s)
$$

So difference expressionf for $v_{2}(x, s)$ and $v_{1}(x, s)$ to get

$$
v_{2}(x, s)-v_{1}(x, s)=\theta_{1} x+\theta_{2} s+\ln p_{1}(0, s)-\ln p_{1}(x+1, s)
$$

Now the likelihood of the data

$$
\frac{d_{1 t}+d_{2 t} \exp \left(\theta_{1} x+\theta_{2} s+\ln p_{1}(0, s)-\ln p_{1}(x+1, s)\right)}{1+\exp \left(\theta_{1} x+\theta_{2} s+\ln p_{1}(0, s)-\ln p_{1}(x+1, s)\right)}
$$

- Notice a key step. Can get to same place, from any state (x big, can choose to get $x=0$ tomorrow)
- Can generalize if do something that gets you some place where the next time you can get there.

Model with continuous time

- Time $t \in[0, \infty)$
- State is an element $k \in X=\{1,2, \ldots K\}$
- finite state Markov jump process on X with $K * K$ intensity matrix Q_{0} governs moves by nature
- X_{t} current, transition to X_{t+1} at a random time τ, exponentially distributed

$$
Q=\left(\begin{array}{lll}
q_{11} & q_{12} & \\
& & \\
& & q_{K K}
\end{array}\right)
$$

$$
q_{k l}=\lim _{h \rightarrow 0} \frac{\operatorname{Pr}\left(X_{t+h}=l \mid X_{t}=k\right)}{h}
$$

hazard of k to l and

$$
q_{k k}=-\sum_{l \neq k} q_{k l}
$$

- Poisson arrival process λ governs when agent can move
- agent chooses among J alternatives from $A=\{0, \ldots, J-1\}$
- transitions out of state k follow exponential distribution with rate parameter $-q_{k k}$, and conditional on leaving k transitions to $l \neq k$ with probability $p_{k l} / \sum_{l^{\prime} \neq k} q_{k l^{\prime}}$.
- Agent's problem
- discounts future payoffs at rate ρ
- While in state k, gets u_{k}
- At rate λ agent makes a decision, choosing action $j \in A$, receiving instantaneous payoff $\psi_{j k}+\varepsilon_{j}$,
- $\sigma_{j k}$ probability agent chooses j in state k.
- Can lead to deterministic state change, $l(j, k)$ denote state that results upon choice j in state k

Instantaneous Bellman equation

- For time increment h, probability of event with rate λ is λh
- Given ρ, discount factor is $1 /(1+\rho h)$

$$
V_{k}=\frac{1}{1+\rho h}\left[\begin{array}{c}
u_{k} h+\sum_{l \neq k} q_{k l} h V_{l}+\lambda h E \max _{j}\left\{\psi_{j k}+\varepsilon_{j}+V_{l(j, k)}\right\} \\
+\left(1-\lambda h-\sum_{l \neq k} q_{k l}\right) V_{k}+o(h)
\end{array}\right]
$$

- Rearranging and setting $h \rightarrow 0$, we get

$$
V_{k}=\frac{u_{k}+\sum_{l \neq k} q_{k l} V_{l}+\lambda E \max _{j}\left\{\psi_{j k}+\varepsilon_{j}+V_{l(j, k)\}}\right.}{\rho+\lambda+\sum_{l \neq k} q_{k l}}
$$

Or

$$
\rho V_{k}=u_{k}+\sum_{l \neq k} q_{k l}\left(V_{l}-V_{k}\right)+\lambda E \max _{j}\left\{\psi_{j k}+\varepsilon_{j}+V_{l(j, k)}-V_{k}\right\}
$$

- Policy rule assigns to each state k and $\varepsilon=\left(\varepsilon_{0}, \varepsilon_{1}, . . \varepsilon_{J-1}\right)$ the action which maximizes payoff
- CCP

$$
\sigma_{j k}=\operatorname{Pr}(\delta(k, \varepsilon)=j \mid k)
$$

- λ and $\sigma_{j k}$ imply a jump process on X with intensity matrix Q_{1}
- Summing $Q=Q_{0}+Q_{1}$

Single Agent Renewal

- Single state: miles on bus. $q_{k 1}$ and $q_{k 2}$ be rates at which one unit and two-unit increments occur
- with arrival of move, binary choice $j=1$ or $j=0$
- If set to $k=1$, pay replacement cost

$$
V_{k}=\frac{u_{k}+q_{k 1} V_{k+1}+q_{k 2} V_{k+2}+\lambda E \max \left\{V_{k}+\varepsilon_{0}, V_{0}+c+\varepsilon_{1}\right\}}{\rho+q_{k 1}+q_{k 2}+\lambda}
$$

where in earlier notation

$$
\begin{aligned}
\psi_{j k} & =0, j=0 \\
& =c, \text { if } j=1
\end{aligned}
$$

CCP Representation

- Primary difference: rather than state changes and choices made simultaneously at predetermined intervals, only one event occurs at any given instant almost surely.
- Show insights of Hotz and Hiller, etc on expressing value functions as CCP apply
- Assumptions
- 1. $\rho>0$
- 2. choice specific shocks ε are iid over time
- Prop 1: The value function can be written

$$
V(\sigma)=\frac{1}{\left[(\rho+\lambda) I-\lambda \Sigma(\sigma)-Q_{0}\right]}[u+\lambda E(\sigma)]
$$

where $E(\sigma)$ is is the $K \times 1$ vector containing

$$
\sum_{j} \sigma_{j k}\left[\psi_{j k}+e_{j k}(\sigma)\right]
$$

where $e_{j k}(\sigma)$ is the expected value of the ε given choice j is optimal.

- Proof: write the value function in matrix form (\tilde{Q} replace diagonal with zeros).
$\left[(\rho+\lambda) I-\left(Q_{0}-\tilde{Q}_{0}\right)\right] V(\sigma)=u+\tilde{Q}_{0} V(\sigma)+\lambda[\Sigma(\sigma) V(\sigma)+E(\sigma)]$
solve this linear equation
- Prop 2: There exists a function $\Gamma^{1}\left(j, j^{\prime}, \sigma_{k}\right)$ such that

$$
V_{l(j, k)}=V_{l\left(j^{\prime}, k\right)}+\psi_{j^{\prime} k}-\psi_{j k}+\Gamma^{1}\left(j, j^{\prime}, \sigma_{k}\right)
$$

- For ε standard type 1 extreme value we have seen this already works, as Γ^{1} is

$$
\Gamma^{1}\left(j, j^{\prime}, \sigma_{k}\right)=\ln \left(\sigma_{j k}\right)-\ln \left(\sigma_{j^{\prime} k}\right)
$$

- Prop 3

$$
E \max _{j}\left\{\psi_{j k}+\varepsilon_{j}+V_{l(j, k)}\right\}=V_{l\left(j^{\prime}, k\right)}+\psi_{l\left(j^{\prime}, k\right)}+\Gamma^{2}\left(j^{\prime}, \sigma_{k}\right)
$$

- ε type I extreme value (intuition go to board for static case)
- Prop 2 allows links of value functions across states
- let action 0 be a continuation action that does not change the state $l(0, k)=k$ and $\psi_{0 k}=0$.
- If in state k can move to k^{\prime} by taking action j^{\prime}, and to k^{\prime} to $k^{\prime \prime}$ by taking $j^{\prime \prime}$ then

$$
\begin{aligned}
V_{k} & =V_{k^{\prime}}+\psi_{j^{\prime}, k}+\Gamma^{1}\left(0, j^{\prime}, \sigma_{k}\right) \\
& =V_{k^{\prime \prime}}+\psi_{j^{\prime \prime}, k^{\prime}}+\psi_{j^{\prime}, k}+\Gamma^{1}\left(0, j^{\prime \prime}, \sigma_{k^{\prime}}\right)+\Gamma^{1}\left(0, j^{\prime}, \sigma_{k}\right)
\end{aligned}
$$

- keep doing this, collecting all terms involving V_{k} yields an expression for V_{k} in terms of the flow payoff of state k and the conditional choice probabilities.
- Def: a state k^{*} is attainable from state k if there exists a sequence of actions from k that result in k^{*}
- Prop 4: Suppose further for a given $k, j=0$ is a continuation action with $l(0, k)=k$, and all states $l \neq k$ with $q_{k l}>0$ there exists a state k^{*} that is attainable from both k and l. Then there exists a function $\Gamma_{k}\left(\psi, Q_{0}, \lambda, \sigma\right)$ such that

$$
\rho V_{k}=u_{k}+\Gamma_{k}\left(\psi, Q_{0}, \lambda, \sigma\right)
$$

Example Single Agent Renewal

- Recall

$$
V_{k}=\frac{u_{k}+q_{k 1} V_{k+1}+q_{k 2} V_{k+2}+\lambda E \max \left\{V_{k}+\varepsilon_{0}, V_{0}+c+\varepsilon_{1}\right\}}{\rho+q_{k 1}+q_{k 2}+\lambda}
$$

Apply Prop 3

$$
\begin{gathered}
E \max _{j}\left\{\psi_{j k}+\varepsilon_{j}+V_{l(j, k)}\right\}=V_{l\left(j^{\prime}, k\right)}+\psi_{l\left(j^{\prime}, k\right)}+\Gamma^{2}\left(j^{\prime}, \sigma_{k}\right) \\
V_{k}=\frac{u_{k}+q_{k 1} V_{k+1}+q_{k 2} V_{k+2}+\lambda V_{k}+\lambda \Gamma^{2}\left(0, \sigma_{k}\right)}{\rho+q_{k 1}+q_{k 2}+\lambda} \\
=\frac{u_{k}+q_{k 1} V_{k+1}+q_{k 2} V_{k+2}+\lambda \Gamma^{2}\left(0, \sigma_{k}\right)}{\rho+q_{k 1}+q_{k 2}}
\end{gathered}
$$

- No direct link between value function at k and $k+1$. But
can link through the replacement decision

$$
\begin{aligned}
V_{k} & =V_{0}+c+\Gamma^{1}\left(0,1, \sigma_{k}\right) \\
V_{k+1} & =V_{0}+c+\Gamma^{1}\left(0,1, \sigma_{k+1}\right)
\end{aligned}
$$

SO

$$
V_{k+1}=V_{k}+\Gamma^{1}\left(0,1, \sigma_{k+1}\right)-\Gamma^{1}\left(0,1, \sigma_{k}\right)
$$

Game

- Key step: "Estimating the other value functions, however, is problematic as each play may only be able to move the process to some subset of the state space via a unilateral action, sine they only have direct control over their own state."
- Important: in models with a terminal choice, such as a firm permanently existing a market, that state the value of the terminal choice does not include other values functions.

Literature, progression of literature

- Static, deterministic, Bresnahan and Reiss (1991), Berry (1992), (solve for equilibrium N entrants)
- Static, but ε shocks. (Brock and Durlauf (2001) general social interactions), Seim (Rand 2006)
- Dynamic and Stochastic, Aguirregabira and Mira, Bajari, Benkard, and Levin, Pakes, Ovstrovsky, and Berry, Pesondorfer and Schmitd-Dengler

Wal-Mart

- Jia (2008), static and deterministic. But allow complementarities in cost. State space blowing up, in terms of calculation solution to firm's problem. But had a nice result about supermodularity
- Holmes (2011) adds complementaries in costs.
- ABBE
- no complementarities in cost
- dynamic and stochastic
- asymmetric
* Wal-Mart
* Chains (can have up to 7 different ones)
* Independent Grocers (just have one)

Overview

- Estimate CCP
- Turn it into structural parameters?
- assumption that have terminal state assumed for chains and independents, so use CCP approach to estimate structural parameters
- don't get structural parameters of Wal-Mart
- Counterfactual: No Wal-Mart! So don't need structural parameters

