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1 Preliminary Concepts and Discussion

The so-called “fundamental theorems of welfare economics” state that, under certain
conditions, every competitive equilibrium is a Pareto optimum, and conversely, every
Pareto optimum is a competitive equilibrium. The proposition was first set forth
by Pareto in 1894 [12], and further refined in a series of subsequent writings (cf.
[13], [14]—see also Barone [2]); his method of proof used differentiability in an
essential way, while the modern approach—pioneered by Arrow [1] in 1951—invoked
Minkowski’s separation theorem for convex sets, which was being developed at the
same time that Pareto wrote (cf. [11]). The proposition was essentially accepted
and developed in the 1930s and 40s by Lange [8], [9] and Lerner [10]; however, it
did not receive a rigorous proof until 1951, when one was provided in a pioneering
article by Arrow [1]. This was followed by a further refinement by Debreu [4]. The
two classic sources now relied upon are those of Koopmans [7] and Debreu [5].

The problem will be formulated in a somewhat simplified manner, falling short
of the generality provided by Debreu [5], but going beyond the pure-exchange frame-
work employed by Arrow [1]. The general framework and notation are those intro-
duced in Chipman and Moore [3].

Let there be n (final) commodities, consumed by m individuals. We shall assume
that production possibilities are completely described by a production-possibility set
Y C E7% (where E? denotes the nonnegative orthant of n-dimensional Euclidean
space E™), assumed to be compact and convez (see Figure 6 below).

Each individual, 7, is assumed to have a preference relation R; (defined on the
set E™ of commodity bundles), assumed to be reflezive (z;R;x;), transitive (z; R;z;
and z;R;z! imply z;R;x}) and total (for all z;, z, either z;R;x} or x,R;x;), as well
as continuous; the latter condition means that the sets

are closed. Here, x; is an 1 X n vector in K", with components z;;, i.e., z; =
(i1, Tigy « -« Tin). 1t is further assumed that each commodity is capable of be-
ing transferred (whether by exchange or otherwise) from one individual to another

without cost (i.e., without using up any scarce resources). This is an important
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assumption, since it implies that leisure is not one of the n commodities, since it is
manifestly impossible to transfer leisure directly from one person to another.!
We denote by

x1 11 T12 ... Tin

T2 To1 T2 ... Ton
X pr— p—

Tm Tml Tm2 - -- Tmn

the m x n allocation matriz, or allocation. It is an element of E7™. The column
sums of X will be denoted

o(X) :Zm:xi: (1,1,...,1)X.

If y = 0(X), we say that X is an allocation of y, and if o(X) € Y we say that X is
an allocation of Y . We define the set of allocations of Y by

AY)={X e ET |o(X)eY}.

In the special case of pure exchange, in which Y consists of a single aggregate
bundle w = (wy,ws,...,wy,), A(Y) corresponds (in the case n = 2) to the well-
known “Edgeworth box”.

We define the relation P; of strict preference by x; Pz} if and only if z; R;z, and
not z;R;x;. Given an m-tuple

R=(Ry,Ry,...,Rp)

of preference relations, we say that the allocation X is (weakly) Pareto superior to
the allocation X if each row x; of X is preferred or indifferent to the corresponding
row z; of X'; in symbols,

XRX'" ifandonly if z;Riz; fori=1,2,... m.

Note that this definition involves an implicit assumption of individualism, i.e., each
individual is concerned only with the bundle of commodities he or she consumes.

We say that X is strictly Pareto superior to X', written X PX’, if X is Pareto
superior to X’ but X’ is not Pareto superior to X, or equivalently,

XPX' ifand only if z;R;x; foralli=1,2,... ,m,
and x P for at least one k.

1Someone who desires more leisure may cut his or her hours of work, and this person’s spouse
may cut down on leisure by working more hours; if both are paid at the same rate (but not
otherwise), these activities will result in an indirect transfer of a certain number of hours of leisure
from one to the other. Another illustration would be that of two men, Smith and Jones, who
previously mowed their own lawns, until Smith decided to hire Jones to mow his lawn; then leisure
is indirectly transferred from Jones to Smith, but the amount of leisure lost by Jones is not equal
to the amount gained by Smith unless they both earn the same wage in their regular jobs and in
lawn-mowing.



We define an economy as an ordered pair (Y, R) where Y is the set of aggre-
gate production- (and therefore consumption-) possibilities and R is the m-tuple of
individual preference orderings R;, each defined on the commodity space EY.

An allocation X of Y will be called a Pareto-optimal allocation of Y relative
to R, or a Pareto-optimal allocation for the economy (Y, R), if there is no other
allocation X’ of Y which is strictly Pareto superior to X. The set of Pareto-optimal
allocations for (Y, R) is denoted

O(Y,R)={X € A(Y) | X'PX forno X' € A(Y)}.

The statement “X is a Pareto-optimal allocation for the economy (Y, R)” is therefore
written: “X € O(Y, R).”

We now define what we mean by competitive equilibrium. Let p be an n-tuple of
n prices, not all zero. Let the budget set for an individual ¢ be defined by

Bp, ;) ={z; € E |p-x; < I}

where I; represents the income of the individual 7, and p-x; denotes the inner product
p-x= 2?21 p;xi;j. From this definition, it is clear that B(p, I;) is convez. The pair
(X, p) will be called a competitive equilibrium for the economy (Y, R) if the following
two conditions are satisfied:

(i) z;R;x; for all z; € B(p,p-x;), i=1,2,... ,m.
(i) pry=p-y foral ¢y €Y, wherey=>" x; =o(X).

It is convenient to provide a notation for the set of possible competitive equilibria
(X, p) for an economy (Y, R). Accordingly, we define

C(Y,R) = {(X,p) | (X,p) is a competitive equilibrium for (Y, R)} .

Two comments may be made concerning the above definition. (1) Condition
(i) assumes that the individual is free to choose among all bundles in B(p,p - z;),
and that any such choice is feasible. Actually, not all such bundles are compatible
with survival. It has become customary, following Koopmans and Debreu, to define
preferences for individual ¢ only over a “consumption set” or “survival set” S; C ET.
However, while it is of course reasonable to require that an equilibrium bundle belong
to such a set, there is no reason why a consumer, insufficiently informed (or even
adequately informed) about nutrition, should not choose a bundle outside of his or
her survival set, even if a bundle is available in the intersection B(p, ;) N S; # &.
Examples of such behavior can be documented; an illustration is given in Figure 1.2
Thus, we can require condition (i) to be replaced by

(i*) x; € S;, and x;R;x; for all x; € B(p,p-x;)NS;, i =1,2,...,m,

2The Aztecs hit upon a diet of corn and beans, providing for their minimum protein require-
ments. It is recounted, however, that some neighboring communities consumed corn but not beans,
and others beans but not corn, and perished from malnutrition. In very recent times it has been
reported that many Central Americans have died of starvation after refusing to eat unfamiliar but
nutritious kinds of corn and sorghum.



and likewise we can alter the definition of the attainable set of allocations to
A(Y)={X e E" |o(X)eY,z; € S;fori=1,2,... ,m}

or, equivalently,

AM(Y) = {X c E™

o(X) e YﬂZSl}.
i=1
Likewise, we can alter the definition of the set of Pareto optima to
O*(Y,R) = {X € A*(Y) ’ X'PX forno X' € A*(Y)} :

In what follows it can be verified that all the results go through if A(Y) and O(Y, R)
are replaced by A*(Y) and O*(Y, R) and at the same time C(Y, R) is replaced by

C(Y,R) = {(X,p)

x; and y = Z x; satisfy (i*) and (ii)} :

=1

To maintain simplicity, however, we shall deal instead with the case in which we
formally take S; = ET.

(2) The second comment that may be made concerning the above definition of
competitive equilibrium is that condition (ii):

(a) involves a hidden assumption concerning individuals’ preferences, and

(b) leaves undescribed and only implicit an important aspect of competitive
equilibrium.

One way to think of condition (ii) is to assume that each commodity, j, is pro-
duced by means of a production function with primary factors of production as
arguments, and that each such factor is in fixed total supply and perfectly mobile
among industries. This would mean that there is a fixed demand for leisure, and
that labor is indifferent as between alternative occupations; this is the hidden as-
sumption (a). To be sure, it is a limiting assumption, which should be relaxed in a
more realistic analysis. However, inclusion of this consideration at this stage would
complicate the analysis and possibly, therefore, detract from a clear understanding
of the logic of the fundamental theorems.

As for (b) we may remark that if the maximization of the value of output p -y
subject to y € Y is carried out, Lagrangean multipliers will appear which correspond
to the rentals of factors of production; given the pattern of ownership of resources,
this will determine individual’s incomes which will be set equal to their expenditures.
Conversely, if each firm minimizes costs in the face of given market prices of products
and factor services, the value of output will be maximized at those prices. Thus, a
more complete description could be given than is indicated by condition (ii); but it
would be supplementary to the theorems that follow and not affect their validity, so
long as we are prepared to assume that labor and other factor services do not enter
individual’s preferences.



2 Proof of the fundamental theorems

A preference relation R; will be called locally non-satiating if, for all z; € E7 and
any neighborhood N (z;) of z; (with respect to the relative topology of E7),* there
exists a bundle z, € N(z;) such that zPz;.

A bundle z; is said to maximize the preference relation R; on a set C C EY if
z; Rz, for all 2, € C.

Lemma 1. If R; is locally non-satiating and z{ maximizes R; on B(p®, I?), then
plea) =17

Proof. The set

int B(p°,I}) = {x cEY

po-:c<Ii0}

is open in the relative topology of E7. Therefore, by local non-satiation, for each
z; € int B(p®, I?) there is a neighborhood N(z;) C int B(p°, I?) such that z’Px;
for some z; € N(z;). Consequently R; has no maximum in int B(p°, I?). It follows
that p°- 20 =17. &

The following two lemmas provide conditions under which, respectively, prefer-
ence maximization implies cost minimization and cost minimization implies prefer-
ence maximization. Cf. Debreu [5, pp. 68-71].

Lemma 2.1. Let R; be locally non-satiating. If z{ maximizes R; on B(p, I?)
then z¥ minimizes p° - z; on R;z?, i.e., p° -2 < p¥ - z; for all z; € R;ad.

Proof. If the conclusion does not hold then there exists an z} € R;z? which is
cheaper than z¥, i.e., such that p° -z} < p°- z? (see Figure 2 where, in violation of
local non-satiation, there is a “thick” indifference curve shown by the shaded area
including its lower boundary). By local non-satiation, there exists an x; sufficiently
close to x} such that p° - z; < p° - z? and x; Pz} R;z?, hence z;Piz? by transitivity.
This contradicts the assumption that z? maximizes R; on B(p®,I?). &

Lemma 2.2. Let I? satisfy

(1) I° > inf p°-uay,

b zEeEY

and assume that B(p°, I?) # @. [If all components of p° are nonnegative, (1)
becomes equivalent to the condition I? > 0.] Then if 2 minimizes p° - z; on R;x?,
z? maximizes R; on B(p®, I?).

Proof. From (1) and the non-emptiness of B(p°,I?) there exists an z} €
int B(p®, I?). Now for any z; € int B(p®, I?) we have z?P;z;; for if not, then since
2 R;z? and p° - z; < I?, 29 would not minimize p° - x; on R;z). Consider now any
z? € B(p®, I?) satisfying p° - 22 = I? (see Figure 3). Since B(p’ I?) is convex, for
any ¢ in the interval 0 < ¢ < 1 we have ; = (1 — t)z} + tz? € B(p°, I?); and clearly,
p? - Z; < I?, hence by the above argument z? P,Z;. Since ¢t can be made arbitrarily

)

3Some technical points: A “topology” is a collection of “open sets”; in the Euclidean topology,
the open sets in E™ are unions of “balls” of radius r, B(z,r) = {z’ | 3.1, (¢} —=;)* < r}. The open
sets in the relative topology of E7 are the intersections of these sets in E™ with the nonnegative
orthant E. Thus they include points on the boundary of E7.



close to 1, this shows that z? belongs to the closure of the set

0

But since R; is continuous (in particular, the set 29 R; is closed) we have % C 29R;
hence z7 is a member of the set z)R;, or in other words z{R;z7. Since z? was
arbitrary, it follows that 29 R;z; for all z; € B(p®, I?) such that p°-z; = I?, and thus
that z?R;z; for all B(p°, I?). W

Figure 4 illustrates the indispensability of assumption (1) of Lemma 2.2. In
particular, it shows that if assumption (1) does not hold, then it is no longer the
case in the proof of Lemma 2.2 that ) R;z?. In fact, while z{ minimizes p" - ; on
R;x¥ at prices p° = (0,p9), it does not maximize R; on B(p°,0), since clearly no
such maximum exists.

Lemmas 2.1 and 2.2 provide one of the two pairs of keys needed to prove the
Fundamental Theorems. The other pair consists of the following two simple but
important lemmas. First, if S, 5,,...,.5,, is any collection of sets S; C E™, their
sum is defined as

)P, = {x € E}

iS—{xEEn (Jz; € S)) -T—sz}-

Likewise, the (algebraic) difference S — T" between two sets S and 7' is defined as

S—T:{zGEn

(EIxGS,yET)z:x—y}.

The following lemmas will be found in Koopmans 7, pp. 12-13].
Lemma 3 1. Let 29 maximize p - 2? on S; for each i = 1,2,... ,m, and define
=3 ) Then Y maxumzes p-xonS = ZZ 1 Si.

Proof. Let zt € S; then 2! = > z; for x} € S;. It follows that

DNE YR
=1 =1

Lemma 3.2. Let 2° = 7", 2? maximize p-z on S = > ", S;, where 2¥ € S,.
Then for each ¢ = 1,2,... ,m, 29 maximizes p - z; on S;.

Proof. Suppose the conclusion is false. Then for some ¢ = k there exists zj, € S},
such that p -z} > p- z). Defining

1_ .1 0
x —ack—i—g z;,

itk

||/\

then we have certainly z* € S, and furthermore

px—p xk+2px>2px—px

i#£k



contradicting the hypothesis that 2° maximizes p-z on S. W
We shall have occasion to consider a particular sum of sets, which we shall call
the Scitovsky set of X, defined as

(2) Sci(X) = Z Rz;.

This consists of all aggregate bundles 2’ = " 2’ such that z;R;z; for each
i =1,2,...,m; ie., of all aggregate bundles z’ such that, for some allocation X'
of this aggregate, every person is at least as well off as with the allocation X of x.
The boundary of Sci(X) is known (in the case n = 2) as the Scitovsky indifference
curve corresponding to the allocation X, first introduced by Scitovsky [15] in his
analysis of the theory of tariffs. A geometric method of construction of Sci(X) for
the case m = n = 2 and X = X° may be illustrated by Figure 5: by rigidly “sliding”
the northeast O, axis of the Edgeworth box, together with individual 2’s indiffer-
ence curve (measured from O,), along individual 1’s indifference curve (measured
from O;), so as to maintain tangency between the two curves, the displaced origin
O, traces out the locus of points along which both individuals’ utility remain at
the same level as at the original allocation X; this is the Scitovsky indifference
curve. The diagram also illustrates the parallogram law showing that a point on the
Scitovsky indifference curve is the sum of the component points on the two individ-
uals’ indifference curves (now both measured from O;) when the slopes of the two
indifference curves are the same.

We are now ready to prove the first (and easier) of the two Fundamental Theo-
rems (cf. Koopmans [7, pp. 48-9)).

Theorem 1. Let (X° p°) be a competitive equilibrium for (Y, R), where each
R; is locally non-satiating. Then X is a Pareto-optimal allocation for (Y, R).

Proof. Since (X°,p%) € C(Y, R) we have, by definition,

(i) 2?R;z; for all z; € B(p®, p°-20), i =1,2,... ,m;

(i) p° -y = p° -y for all y € Y, where 3° = o(X?).
From (i) and local non-satiation we have, by Lemma 2.1,

(i) p*-2? <p’-z; forall z; € Rizd, i =1,2... ,m.

Now suppose that X° ¢ O(Y, R),i.e. X'PX? for some X' € A(Y). Then z} R;z!

for all ¢ and z; Pyz)) for some k. It follows that p®-z} > p°- ), since if p° -z}, < p°- 2

(ie., 22 € B(p®,p° - 2?)), we would have z0 Ryz} from (i'). Consequently, defining
y' =i+ ) al
ik

we have

Pyt =p" > p0eal > pleal =p° -y
itk i=1

contradicting (ii). W



The converse of Theorem 1 is not true without a qualification; and unfortunately,
this qualification is quite awkward to state.

Theorem 2. Let X° be a Pareto-optimal allocation for (Y, R), where each R; is

convex, i.e., for any ¢ and any x;, the set R;x; is convex. Then there exists a price
vector p° # 0 such that

({)p-2?<p-z forall z; € Rad, i=1,2... ,m.
(i) p°-y? Zp° -y forall y €Y, where y° = o(X?).

(Such a situation is called a “valuation equilibrium” by Debreu [4].) Furthermore,
if p° is such that

(3) p’-2? > inf p°-x foreachi=1,2,... ,m,
zEET

then (i) implies
(i) 2?R;z; for all z; € B(p°, p°-2?), i =1,2,... ,m;
i.e., (X% pY) is a competitive equilibrium for (Y, R).
Proof. For any k € {1,2,...,m} we have, by the continuity of each R;,
int Sci(X°) = Pzl + Z R;).
itk
Let X! be any allocation such that xj P,z and =} R;z? for i # k, i.e., such that

o(X') € int Sci(X?).

Then X'PX% hence X! ¢ A(Y)—since X° € O(Y,R)—and thus o(X') ¢ Y.
Therefore,

int Sci(X°)NY = 2.

Now the sets int Sci(X°) and Y are both convex, hence by Minkowski’s separating

hyperplane theorem (cf. Debreu [5, p. 25]), there exists an n-tuple of prices p° # 0,
and a constant c, such that

(i) p° -z > c for all z € int Sci(XY);
(ii”) p-y<cforallyeY
(see Figure 6). From the continuity of preferences, (i"”) implies
(i) p° -z = ¢ for all z € Sci(X?).
Now, y° = ¢(X?) € Sci(X?), hence by (i"") we have
(a) p° -y’ 2 c
Likewise, since X° € (Y, R) it follows that y° = o(X°) € Y, hence by (ii”’) we have

(b) P* -y’ =



It follows from (a) and (b) that p° - 4% = ¢, hence inequalities (i”’) and (ii”) may be
written

(i") p*-x = p°-y° for all z € Sci(X?);
(i) p*-y<p’-ylforalyeV.
By definition (2) and Lemma 3.2, (ii”) implies
(i) p*-x; =p®-2? forall z; € Rial, i =1,2,... ,m.
Now, using assumption (3) it follows by Lemma 2.2 that (i') implies

(i) x;R;iz? for all z; € B(p®,p° - 2?), i =1,2,... ,m.

(2

(i) and (ii) constitute the definition of competitive equilibrium. B

It may be noted that there is nothing in Theorem 2 to require that prices be
positive. Figure 6 illustrates the possibility of non-free-disposability—of commodity
1 in this case. If commodity 1 is considered noxious to consumers, as is the case,
say, with garbage, then they will be willing to pay to have it disposed of. However,
this is not quite the same as being induced to purchase it by a negative price. In
general, negative prices cannot be implemented in a competitive economy, if only
because it is in no one’s interest to produce something at a nonnegative cost and
pay people to purchase it. Negative prices can be ruled out either by introducing
an assumption of free disposability, or by postulating, in place of the assumption
of local non-satiation, the much stronger assumption of monotonicity, namely that
each individual will prefer a larger quantity of any commodity to a smaller one.

Figure 7 illustrates the indispensability of condition (3) of Theorem 2, in the
form p° - 2% > 0 (for the case p° = 0). It is an example of a case in which the Edge-
worth box shrinks to a line segment, all available allocations are Pareto optimal,
but no competitive equilibrium exists. In effect in this example there is only one
commodity, and the concept of price is meaningless unless there is more than one
commodity. Thus, no competitive equilibrium is possible in a one-commodity econ-
omy; the situation is reduced to Hobbes’s state of nature [6], which is necessarily a
state of war.

Figure 8 illustrates the indispensability of the convexity of preferences. Here, the
point P is a Pareto optimum, since individual 1 (with the serpentine indifference
curves) cannot become better off without individual 2 becoming worse off. But
the point P cannot be a competitive equilibrium, since at the price line through
P this individual will prefer the point () to P. It cannot be objected that @ is
unattainable; for by the definition of competitive equilibrium the only information
available to the consumer (and in this case the information happens to be incorrect)
is that anything is available that is in the individual’s budget set. Thus, the point
P cannot be sustained as a competitive equilibrium. But this would still be the case
even if the Edgeworth box were to be enlarged so as to include the point Q).
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