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1 Introduction

In its elegant and striking conclusion that a tariff on imports would raise real wages and
lower the rental on capital if the import-competing industry is more labor-intensive than the
export industry, the theorem established by Stolper and Samuelson (1941) demonstrated the
power of the neoclassical general-equilibrium approach to international trade. It provided
a reason why it was in labor’s interest to press for tariff protection and thus the elements
needed for an explanation of the existence of tariffs. While this had been basically (but
vaguely) understood by the mercantilists and their successors, it was not until Stolper and
Samuelson’s contribution that the proposition had been put on a sound footing and was thus
able to be incorporated into mainstream economic thought.

However, as it has come to be recognized! that the proposition does not generalize to
models with many products and factors—i.e., that one cannot say that if the domestic price of
commodity j rises, the rental of some factor ¢ will necessarily rise more than proportionately—
unless severe and rather unrealistic assumptions are made, the relevance of the proposition
to the real world has come to be questioned. Are we then back where we started?

Some authors? have shown that it is possible to salvage at least one aspect of the Stolper-

Samuelson theorem in a higher-dimensional setting: from elementary properties of matrix
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multiplication it follows that, when the number of commodities is equal to the number of
factors, for every factor one can specify (at least) one commodity such that if its price rises,
the rental of the factor will fall. This is described by Jones & Scheinkman (1977, p. 919) in
the words “every factor has at least one natural enemy.” On the other hand, as they point
out, it is not true that every factor has one natural friend; that is, one cannot say that for
every factor there is a commodity a rise in whose price would cause a more than proportionate
rise in the factor’s rental. And in explaining why protectionist measures are introduced, it is
clearly the latter kind of proposition that one would like to find.

In the present paper my approach is to look at this question as an aggregation problem.
While it is true that different groups of workers push for tariffs and quotas on particular
products, it is not clear that any one of these pressure groups would have enough political
clout to influence the government if they acted separately rather than in combination. It
makes sense, therefore, to ask whether there are conditions under which the separate labor
factors might gain in the aggregate (or even separately) if uniform (or even non-uniform)
tariffs are imposed simultaneously on all import goods.

In his seminal treatment of the theory of linear aggregation, Theil (1965) distinguished two
types of conditions that would permit perfect aggregation of a model to a smaller number
of dimensions. These may be illustrated by the simple Keynesian consumption function.
Suppose that the ¢th household has a consumption function ¢; = a; + byy;, where ¢; is its
consumption and y; its income. Let aggregate consumption and income be denoted C' =
Yoy and Y =377 y; respectively. Then clearly there are two alternative conditions that
will make it possible to express the aggregate consumption function as C' = a + bY, where
a=7%r_,a; (1)b;=0bfori=1,2,...,n; this may be called the case of structural similarity.
(2) y; = AY where A; > 0 and >-%; A; = 1 (so that b = >, A;b;); this is the case of
multicollinearity. Either one of these assumptions (or a combination of the two) will lead to
the desired result.

In an elegant article, Neary (1985) has shown how the multicollinearity approach can be
used to aggregate a high-dimensional trade model to a 2 X 2 model, by assuming that import
and export prices always move in proportion. In fact, such an approach had already been
introduced by Kemp & Wan (1976). Neary obtained close analogues of the Stolper-Samuelson

and Rybczynski theorems for the aggregative model.
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In the present paper I will follow the structural approach, in which no constraints are
placed on the variables under consideration (prices in the Stolper-Samuelson case, endow-
ments in the Rybczynski case). It is evident that this is simply a generalization of the
nonlinear aggregation problem as formulated by Solow (1956). Solow posed the question:
when can a production function whose arguments include several types of capital be consol-
idated into a production function in which the capital inputs enter as an index of capital?
In the present problem, the generalization is two-fold: first, all factors are simultaneously
aggregated into groups; secondly, there are several outputs, and these are simultaneously ag-
gregated into groups as well. The analysis is carried out in terms of the minimum-unit-cost
functions dual to the production functions.

The main results are these: If commodity prices and factor rentals are aggregated by
Laspeyres price indices, then the conditions for perfect aggregation of the Stolper-Samuelson
mapping are that each aggregated industry (e.g., the export industry, or the import-competing
industry), must absorb the endowments of each of the different types of labor (resp. capital)
in the same proportions. The fact that these conditions are stated in terms of allocative
shares of factor endowments, which are the elasticities of factor demand with respect to out-
puts, shows that they depend on properties of the dual Rybczynski mapping. Likewise, if
commodity outputs and factor endowments are aggregated by Laspeyres quantity indices, the
conditions for perfect aggregation of the Rybczynski mapping are that each aggregated factor
(e.g., total labor, or total capital) should contribute the same fraction of unit costs in each
of the component industries of the aggregated industry. The fact that these conditions are
stated in terms of shares of factors in unit costs, which are the elasticities of unit costs with
respect to factor rentals, shows that they depend on properties of the dual Stolper-Samuelson
mapping. Since the Rybczynski mapping is linear (when the country diversifies and prices
are given), the above conditions for its perfect aggregation are global; however, except for
the case of fixed technical coefficients, the above conditions for perfect aggregation of the
Stolper-Samuelson mapping are only local. As shown in Section 3, under a Cobb-Douglas
technology global conditions may be obtained for the latter by using geometric rather than
arithmetic means for the price and rental indices; but these would have to be combined with
arithmetic quantity indices.

Before treating the aggregation problem as such, it is necessary to tackle the question
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of whether in the general model to be aggregated, one can allow for unequal numbers of
commodities and factors, or whether these should be equal. I shall argue that if world prices
are truly exogenous, a country will produce no more commodities than it has factors. It
could of course produce fewer; but factor rentals would then depend on endowments as well
as prices. I will go through this analysis in the next section; the final section will deal with

the aggregation problem.

2 Equal or Unequal Numbers of Commodities and Factors

Defining our country’s production-possibility set by

y; = fi(vi,ve5,..00) (J=1,2,...,n)
y(l):{y:(y17y277yn) L }
2 vi
j=1

< (i=1,2,...,m)

where y; is the output of the jth commodity, /; is the endowment of the ith factor, v;; is
the input of the ith factor into the production of the jth commodity, and f; is the produc-
tion function for the jth commodity, assumed concave and homogeneous of degree 1,° the

domestic-product function is defined, for any price vector p, as

I(p,1) = max{p-yly € Y(I)}.

If 11 is differentiable with respect to p, we know that (cf., e.g., Chipman 1987)

Lﬂgi D )

gives the single-valued Rybczynski function. A necessary condition for this differentiability is
m 2 n; if m < n the country’s production-possibility frontier is a ruled surface as illustrated
in Figure 1 for the case n = 3 and m = 2. Any hyperplane tangential to this surface at an
interior point necessarily touches it along a one-dimensional line segment (in the illustration),
and in general, along a manifold of dimension m — n.

If 1T is differentiable with respect to [, we know that

ané]l),n _ o(p])

®This assumption is readily relaxed if economies of scale are external to individual firms, as shown by Inoue

(1981).
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Figure 1: Ruled Production-Possibility Surface

gives the Stolper-Samuelson mapping. Unlike the case of the Rybczynski function, this
is generally single-valued so long as the production functions are differentiable. However,
II, and thus @, is in general not differentiable with respect to p if n > m (this will be
illustrated below). The Stolper-Samuelson function @ has the important property (at the
basis of Samuelson’s (1953) factor-price equalization theorem) that, for n 2 m, it is locally
independent of [ for certain values of p and [.

The standard 2 x 2 case is illustrated in Figure 2 showing cross-sections of the domestic-
product function (the second panel also shows the Rybczynski lines). In the cones of diver-
sification the contours of this function have flat segments; as endowments vary, the marginal
value productivities of the factors remain constant.

If m =2 and n = 1, & always depends on [ so long as the single production function does
not itself have any flat segments. If m = 3 and n = 2, the boundary (in the three-dimensional
space of factor endowments) of the convex hull of the union of the sets {{|f;(l1,l3,03) 2
1/p;} (7 = 1,2), will be a ruled surface. Hence, the vector of endowments may vary along
a one-dimensional manifold on this surface without affecting factor rentals. However, such
variation would constitute a “freak case” as one used to say, or would be “nongeneric” as
one would say today. Essentially (generically), then, for the Stolper-Samuelson function to

be locally independent of [ we require n 2 m.
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Figure 2: Cross-Sections of the Domestic-Product Function

Now let us consider the case n > m. Going back to Figure 1 we see that if there was
an initial interior solution, world prices would have to change in a nongeneric way for a
new equilibrium to remain an interior solution close to the initial one. An arbitrary small
change in one price would drive equilibrium discontinuously to a corner. The situation can
be seen more precisely in Figure 3 for m = 2 and n = 3. Isoquant [; indicates the input
combinations that will produce a dollar’s worth of commodity j at the initial price p;, i.e.,
the locus of points {(l1,l2)|f;(l1,12) = 1/p;}. The arrow indicates the country’s assumed
endowment vector, enclosed in the large diversification cone shown by the solid rays from the
origin. Suppose py falls to pl, so that the isoquant I shifts upward to I,. Then the country
will move discontinuously from producing all three goods to producing only commodities 1
and 3, yet factor rentals will remain unchanged. On the other hand if p, rises to pj, there
will be two new cones of diversification in two commodities, one indicated by the dashed rays
from the origin enclosing the country’s endowment vector, in which commodities 1 and 2 are
produced and the country ceases producing commodity 3, and ws rises relatively to wq; if
the endowment vector were in the other cone (not shown) wy would fall relatively to wq. In
either case, the left and right derivatives of each w; with respect to py are different.

The nondifferentiability of the Stolper-Samuelson function with respect to the other two

prices could also easily be deduced from Figure 3. Thus, at the assumed position of the
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Figure 3: Effects of Price Changes with Three Commodities and Two Factors

endowment vector, if ps falls the country moves discontinuously from producing all three
goods to producing only commodities 1 and 2; but if ps rises, the country will cease production
of commodity 2 and produce only commodities 1 and 3. In the first case factor rentals remain
unchanged, whereas in the second case w, rises relatively to wq. Finally, if py falls, production
of commodity 3 will cease, whereas if p; rises production of commodity 2 will cease, and
while in both cases wy moves in the same direction as py, the left and right derivatives will be
different, since in the first case the model is equivalent to a two-commodity model in which
only commodities 1 and 2 are produced, whereas in the second case it is equivalent to one in
which only commodities 1 and 3 are produced.

The situation depicted in Figure 1 is clearly one in which our country strongly influences
world prices. It is therefore illegitimate in this case to assume that world prices can be treated
as exogenous. Denoting by g;(w) = g;(wi, wa, ..., wy ) the minimum-unit-cost function dual
to the production function f;, the range of the mapping g(w) = (gl(w),gg(w), .. ,gm(w))
has dimension at most m; if n 2 m it is an m-dimensional manifold (in fact, a cone) in
n-dimensional space. If all n commodities are produced, the Stolper-Samuelson mapping
w = Ww(p,l) must satisfy p = ¢g(w), i.e., p must be in the range of g. Any variation in
an external price must be accompanied by suitable modifications in the remaining prices in

order to maintain this restriction. It is not enough simply to “normalize” the prices to a
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unit simplex 377 4 p; = 1,p; >0 (cf. Kemp & Wan 1976); in the case n = 3 and m = 2, for
example, the price vector p would still have to be confined to a one-dimensional manifold in
this simplex, namely the intersection of the simplex with the range of ¢.*

We may conclude that for external prices to be truly exogenous we must assume that
m 2 n, where n is the number of produced commodities in the country. Thus if our country
is capable of producing three commodities, and started out specializing in commodities 1
and 2 and was not on the verge of producing commodity 3, we could use the standard two-
commodity—two-factor apparatus.

How should we decide the question whether m > n or m = n? At first glance it might seem
absurd that if there are exactly 1,758,243 commodities, there must also be exactly 1,758,243
factors. However, I suggest that mere counting is not the right way to look at the problem.
The fact is that our notions of “commodities” and “factors” are purely conventional. We
consider tables and chairs to be two distinct commodities, because our language groups flat
ob jects with four legs and calls them “tables,” and similar ob jects (of appropriate dimensions)
with backs and calls them “chairs.” But we know that no two tables and no two chairs are
exactly alike. Similarly with factors. The proper way to pose the question is: which model
best represents reality? For example, if m > n (where n is the number of produced tradable
goods) we know that a unilateral transfer to a country with nontradable goods will affect
the relative prices of tradables and nontradables, whereas this will not be the case if m = n.
The null hypothesis m = n can be tested by investigating whether capital inflows or outflows
cause significant changes in relative prices.® In the simpler model with no nontradable goods,
one can still—with any available grouped data on factor rentals, commodity prices, and
factor endowments—test the null hypothesis that the Stolper-Samuelson function w(p,!) is

independent of factor endowments, [.

*As a simple example, suppose the three minimum-unit-cost functions are given by
_ _ .82 _ _ 2.8 _ _ .55
po=gi(wi,wa) = wi wy, p2=gelwr,we) =wiwy, pa=ga(wy,ws)=wiws.

Solving the first two equations for the rentals and substituting them in the third we obtain ps = pi° p5°, which
defines the range of g. Intersecting it with the unit simplex gives p1 + po + pips = 1.
®Such a test was carried out in Chipman (1985) and the null hypothesis was accepted.
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3 The Aggregation Problem

We start with a minimum-unit-cost mapping g : W — P where W and P are n-dimensional
spaces of vectors of factor rentals w and prices p; thus, g(w) = p. We postulate the existence
of grouping mappings ¢ : W — W and ¢ : P — P, where W and P are n-dimensional spaces
of aggregate factor rentals and aggregate commodity prices, e.g., rental and price indices.
These are defined as follows, where w and p are considered to be row vectors: the n factors
are partitioned into n groups, and may be so numbered that w* is the row vector of rentals
of the factors in the pth group; likewise for a partition of the n commodities into n groups.
Thus w = (w!,w?,...,w") and p = (p',p%,...,p"). The mappings ¢ and ¢ then have the

form

b o= pw) = (e, ea(w?),. . n(w)) = (@1, D7)
po= ) = (B0 v (0") = (1o Pr).

The minimum-unit-cost mapping g will be said to satisfy the conditions for perfect aggregation

(with unrestricted domain) if there exists a minimum-unit-cost mapping g : W — P such

that
(3.1) P(g(w)) = gle(w)) for all w.

This is illustrated in Figure 4; perfect aggregation means that the diagram commutes, i.e.,
og = gow. Under these conditions, the Stolper-Samuelson mapping may also be consolidated

into a mapping between spaces of smaller dimension, i.e., o(¢71(p)) = g7 (¥(p)) for all p.

W g P
=== - - oo
g
@ ¥
g
e b
W g ! P

Figure 4: Commutative Diagram for the Stolper-Samuelson Mapping

In what follows, for simplicity of exposition and ease of notation I shall present the
analysis in terms of an example of six commodities and factors which are to be aggregated
to two of each; however, it will be evident that the same reasoning can handle the general

case of aggregation from n to n < n groups. Let us assume in our illustration that there



are three import-competing industries and three export industries (so that n = 6), and that
commodities are so labelled that the first three are import-competing and the last three are
exported; let them be aggregated into the corresponding export and import-competing groups
(so that » = 2). Likewise, let us assume that there are two labor factors (say, skilled and
unskilled) and four capital factors, and that these are labelled so that the first two factors are
kinds of labor and the last four are kinds of capital. The corresponding grouping mappings

may then be written

(3.2) Y(p1, P2, P3,P4,P5,P6) = (¢1(P17P27P3)7¢2(P47P57P6)) = (p1,P2)

(W, wy, w3, Wy, Ws, W) = (991(1017wz)a@z(w37w47w57w6)) = (w1, wy).

From the above definitions,

lg(w)) = (¢1(g1(w), g2(w), gs(w)), 2 (g4(w), g5(w), gelw)) )

(3.3)
glp(w)) = (!71 (@1(w17w2)7 p2(ws3, wy, ws, w6)) » 92 (991(101, wy), p2(w3, wa, ws, w6)))-

This implies that the composed function ¢ o g is separable in (w1, wy) and (w3, wy, w5, wg).!
Generalizing Solow’s (1956) procedure, we may differentiate the two sets of two equations

(3.3) with respect to the w; and equate them, to obtain

(3.4)
991 992 94gs 044 9gs 996 O 0 O¢1 0
dwy 1 1 1 1 1 op1 w1
991 992 94gs 044 9gs 996 O 0 O¢1 0
dwao dwao dws dws dwao dwao dp2 dws
991 992 94gs 044 9gs 996 O 0 0 02 991 972
dws dws dws dws dws dws dps — dws Ow1 XiRt
991 992 993 994 9gs 996 0 Y 0 Oy og 992
dwy dwy dwy dwy dwy dwy Opa dwy Do dWs
991 992 94s 044 9gs 996 0 02 0 Oz
Jwg Jwg dws dws Jwg Jwg dps dws
991 992 94gs 044 9gs 996 0 02 0 02
|l Ows dwe dwe dwe dwe dwe | L Ipe | L dwe |

!"When the aggregator functions ¢ and 4 are linear as in (3.6) below, a sufficient condition for this is that

the individual cost functions be themselves separable, i.e.,

g5(w) = c;(x;1 (w1, w2), Xy2(ws, wa, ws, we ).

From the formula 1

0 Jg,;/0w 0 0fi/0v;
d¢; d%g, = 9% 2% f;
Jw' Jw'dw dv; v dv;
for the bordered Hessians of the cost function g;(w) and its dual production function f;(v;) = fj(v1j,...,vny),

and by application of Jacobi’s theorem and use of Leontief’s (1947) conditions, we see that the corresponding

separability properties hold for the production functions.

10



Since by Shephard’s duality theorem, dg;/0w; = b;; where b;; is the amount of factor ¢
needed per unit of output of commodity j, and similarly dg, /0w, = BW, this equation may
be written compactly as

(3.5) BY = ®B,

where ¥ and @ are grouping matrices, i.e., matrices with exactly one nonzero (in fact positive)
element in each row. It is clear that condition (3.5) holds quite generally for the case of
aggregating from n to n commodities and factors. From the assumption of constant returns
to scale, the cost mapping g(w) and its inverse Stolper-Samuelson mapping g~!(p) may be

written as the matrix transformations between the row vectors w and p:
wB(w)=p and pB(g~'(p))~" = w.

The commutativity condition (3.5) is illustrated in Figure 5.

W B P
S ; E—
A B!

oo ¥
| _
| B
I S

W B P

Figure 5: Commutative Diagram for the Stolper-Samuelson Transformation

In order to interpret conditions (3.4) let us consider the usual case in which the aggregator

functions are linear-homogeneous, i.e., numerators of Laspeyres price indices:

(hhwy + lows, l3ws 4+ lyws + lsws + lswe)

b
=
I

(3.6)

=
=
I

(y1p1 + y2p2 + y3ps, yaps + ysps + YePs)

where the [; and y; are respectively factor endowments and commodity outputs in some base
period, which will be identified with the initial period. Then the above system of equations

(3.4) may be written as

11



(3.7)

b11y1 bi2yo bi3ys . biay1 bisyo bieYs r 7 r 7
h 5 h ’ 5 h 5 1 0 1 0
ba1y1 b22yo b23ys : 024y basyo ba6Ys
l2 l2 l2 : l2 l2 l2 1 0 1 0
1 0 _ -
bll b12
b31y1 b32y2 bazys . b3ay1 b3sy2 b3eYs o = 0 1 B B ,
15 [ I B I3 I3 bo1 boo
ba1y1 ba2yo bazys . baayr basyo baeys 0 1 0 1
Iy ly Iy : s ly Uy
bs1y1 bs2yo bs3Ys : bsaya bssyo bs6Ys 0 1 0 1
ls s ls . s ls s 0 1 0 1
be1y1 be2yo besys . beay1 besy2 besys L d L d
L le le le . lg lg le -
or, defining the diagonal matrices Y = diag {y;} and L = diag {/;},
(3.8) RH =GB where R=L7'BY and G = L7'®, H =Y '0.

The elements of the matrix R are simply the proportions of the factors allocated to
the various industries, i.e., the elasticities of factor demands with respect to commodity
outputs; the inverse matrix R™' is the matrix of elasticities of the inverse (Rybczynski)
transformation from endowments to outputs. The condition (3.8) is known in the literature
on aggregation in input-output models as the “Hatanaka condition” (cf. Hatanaka 1952).
What it states is that in each block of the matrix R, the row sums are equal to one another:?
That is, the proportion of the total endowment of skilled labor allocated among the three
import-competing industries must be the same as the proportion of the total endowment of
unskilled labor allocated among these same industries (northwest block of R); and the same
for the export industries (northeast block of R), which—in this case of only two aggregated
industries—follows from the fact that R has unit row sums. Similarly (southwest block of
R), the three import-competing industries must together employ the country’s endowments
in each of the four types of capital in the same proportion, and similarly for the export
industries (southeast block of R).

Another way to interpret these conditions is as follows. Let Z,, denote the set of integers
¢ such that factor 7 is aggregated into the pth group of factors, and let 7, denote the set of

integers j such that commodity j is aggregated into the vth group of commodities. In our

2This characterization was noted by Ara (1959); for a detailed exposition see Charnes & Cooper (1961, I,
Appendix E). See also Chipman (1976, pp. 651-3, 745-8).

12



illustration, 7y = {1,2}, Z, = {3,4,5,6}, and J, = {1,2,3}, J> = {4,5,6}. Then for any
aggregated industry 7, and any aggregated combination of factors 7,

Zien Vil L e g

2jeg, byl
That is to say, the ratio of skilled to unskilled labor employed in each aggregated industry
(export and import-competing) is the same as the endowment ratio, and similarly for the
ratio of any two types of capital. Thus we see that the conditions for perfect aggregation
involve a very strong form of degeneracy in the technology, which should not surprise us.

It should be noted that since the units of measurement in the aggregate rental and price
indices are a dollar’s worth, the matrix B is also the matrix of elasticities of factor demands
with respect to outputs, hence B has unit row sums. This may be seen from the explicit
solution of (3.8),

B =G RH

where G~ is a left inverse of G (see Figure 5). In our illustration this may be written out as

bll b12
(3.9) | =
b21 b22
b1191 bi2¥2 bi3us 141 b1s¥2 bieys i 1 0 T
151 151 151 151 151 151
b21u1 baouz  baaya - boam bosuz  b2ey3 1 0
lo lo lo ' lo lo lo
L 1 0
= 5 0 0 0 O
2 2 b31y1 bagyz  baays ¢ baam basyz  b3eys
0 0 1 1 1 1 I3 I3 I3 : I3 I3 I3
4 4 4 4 by baoyo  bazuz 1 bagwn  basys  bagu3 0 1
Iy Iy Iy : Iy Iy Iy
bsiyl  bsaya  bsaya . bsayy brsyz  brgua 0 1
Iy Iy Iy : Iy Iy Iy
be1y1  beaya  beava . bgayl  besyz  begua 0 1
L g lg lg lg lg e 4t -
2 3 2 6
DIDIELIED B P
2 L 2 i
o =1 7=1 ¢ i=17=4 ¢
- 6 3 6 6
1 bijy; 1 bijy;
4 R 4
> 2 l; 2 l;

K3

33

Il
—
~
Il
w
<
Il
i

This states that each b, is equal to the average of the (equal) row sums (and therefore the
common value of these row sums) of the elements in block pv of R. More formally, denoting

by ¢y, the column vector of n ones, since R, H, and G have unit row sums, and any left inverse

13



G~ of (G has unit row sums> (since Gi = v, implies G~v,, = GGz = 1z), it follows from
(3.8) that
Btz =G GBiu; =G RHi; = G Ru, = G, = 15,

From these developments we see that the conditions for perfect aggregation of the Stolper-
Samuelson mapping depend on properties of the Rybczynski mapping. It is evident that a
complete analysis requires us to investigate the conditions for perfect aggregation of the dual
Rybczynski mapping.

We have denoted by B(w) the transpose of the Jacobian dg(w)/0w of the system g(w) of
minimum-unit cost functions. B(w) itself is the Jacobian of the system of resource-allocation

equations

(3.10) Bw)y' =1, or I=r(y)=yB(w)

where 3’ and [’ are the column vectors of outputs and factor endowments respectively, and
7(y) denotes the resource requirements for outputs y at any fixed w (the argument w being
suppressed). For each fixed w this defines a mapping from the n-dimensional space Y of out-
put vectors y to the n-dimensional space £ of endowment vectors [ (y and ! being considered
as row vectors) whose inverse for each fixed p is the Rybczynski mapping y' = B(g~(p))~ 0,
where ¢g7!(p) = w. We may investigate the conditions under which this system may be

aggregated to an n X n system

(3.11) Bw)y =1, or l=r(y)=yB(w)

defining for each w (already determined from the previous aggregation) a mapping from an
n-dimensional space ) to an n-dimensional space L, where § = ©*(y) and | = ¢*(I) are
grouping mappings from Y to Y and £ to Y conformable to the mappings p = ¥(p) and

w = p(w), i.e.,

(3.12) VY1, Y2, Y3, Y4, U5, Yo) = (W(@/h@/%@/z&), 1#5(3/4,3/5,%)) = (91, 92)
(¢

@*(11712713714715716) = ( T(ll,lz), @;(13714715716)) = (Zl,ig).

Note that for consistency, the aggregate structural matrix B(w) should correspond to the

one obtained by aggregating the transformation from factor rentals to commodity prices.

#Note that this is simply a generalization of the result that the inverse of a matrix with unit row (resp. col-

umn) sums itself has unit row (resp. column) sums; cf. Chipman (1969), p. 402, formula (1.10).
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Proceeding as before we arrive at the condition

bll b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

dof  dp]

3111 3121 0 0 0 0 b3 b3z b3z bzs b3s b3g
dpy  Jpi Dy Ipl

0 0 alf alf Tl; 3162 bar baz baz bas bas bus

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66

_ _ ¥ ¥ onp*
b b || By B e 0 00

— — * * * ?
byr s 0o 0 0 v 2 0%

or, in compact notation,

(3.13) ®*B = BY*.

This commutativity condition is illustrated in Figure 6, where, interpreting [ and p as row

vectors, the Jacobian of the transformation is the transpose matrix B(w)’.

Yy B’ L
=y
\IJ*/ @*/
B/
g — — - = - = = = —7= ’
Yy Bt L

Figure 6: Commutative Diagram for the Rybczynski Transformation

As before, we may take the case in which the functions ¢* and * are linear-homogeneous,

e.g., numerators of Laspeyres quantity indices:

©™(1)
¥*(y)

(3.14) (wily + wala, wsls + wals + wsls + wels)

(p1y1 + p2y2 + P3Y3, Pays + PsYs + DeYs)

where the [; and y; are now variable and the w; and p; are fixed weights, say corresponding

to the rentals and prices in the initial base period. Then we may write the above system in
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the form

wiby  wybjp wybyg wibyy  wibiy wWibig
P1 P2 p3 Pg Ps Pg
wobyy  wobpy  wpbpy wobpy  wobyy  wabyg
P1 P2 p3 Pg Ps Pg
(3,15) wabyy  wabzy  wabzz 1 wabag  wabzy  wabzg
00;1111 P1 P2 P3 |2 Py P6
wabyg w4bgo webga 1 wabgy wabys wybse
P1 P2 P3 P4 Ps P6
wybsg ws by wrbsy . wsbsy w5 bss w5 bse
P1 P2 p3 Pg Ps Pg
we be 1 webeo wgbga . wgbgs we bes we bee
- P1 P2 P3 P4 Psy Pe 4

bii bio 1 115000
bar  bao 000 : 111

or, defining the diagonal matrices P = diag {p;} and W = diag {w;},
(3.16) G*S = BH* where §=WBP 'and G* =& W™ H*=0*pL

(Note that G* and H* are the transposes of the respective matrices G' and H of (3.8).) The
elements of the matrix S are simply the shares (in the initial period) of the various factors in
the costs of production in the several industries, i.e., the elasticities of minimum-unit costs
with respect to factor rentals; thus the columns of S sum to unity. The inverse matrix S~ is
the matrix of elasticities of the inverse (Stolper-Samuelson) transformation from commodity
prices to factor rentals. What the dual Hatanaka condition (3.16) states is that is that in
each block of the matrix 5, the column sums are equal to one another: that is, the share
of labor (skilled and unskilled) in unit costs (northwest block of ), and thus the share in
unit costs of the aggregate of the four kinds of capital (southwest block of ), must be the
same in each of the three import-competing industries; likewise in the three export industries
(northeast and southeast blocks of §). An argument similar to the preceding shows that B
has unit column sums.

Now let us consider the Stolper-Samuelson transformation, given by the inverse of the

system of minimum-unit-cost functions. From (3.5) we have (see also Figure fig:5ST)
(3.17) ® = BUB™' hence B'é=¥p"h
Written out in the case of our example, with the linear-homogeneous aggregator functions,
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this is, denoting B~ = [b¥/] and B~ = [b*],

bll b12 b13 b14 b15 b16 ll 0 i 0
b21 b22 b23 b24 b25 b26 12 0 2 0
b31 b32 b33 b34 b35 b36 0 13 Y3 0 Bll 612
b41 b42 b43 b44 b45 b46 0 14 0 Y3 621 622
b51 b52 b53 b54 b55 b56 0 15 0 Ya
b61 b62 b63 b64 b65 b66 0 16 0 s

Since the b7* are the Stolper-Samuelson derivatives Jw;/dp;, the above may be summarized

by the equations

0 & . 0 & .
— Lw, = y;b'' and —— L, = y;bt? for j =1,2,3
p; ; ’ O, 2 !
2 6
i Z Liw;, = yjli)21 and i Zlﬂf]i = yjl;22 for j = 4,5,6.
ap] i=1 ap] =3

If we now assume (referring to (3.9)) that in each block of B, each row has at least one
positive b;;, and that all outputs and factor endowments are positive, then the elements of
B are all positive. It follows that the matrix B~' has either positive diagonal and negative
off-diagonal elements or negative diagonal and positive off-diagonal elements. Supposing the
former, so that the import-competing industries are labor intensive in the aggregate and the
export industries capital intensive in the aggregate, the above equations state that a rise in
any one of the import prices will lead to a rise in a Laspeyres index of wages (with the labor
endowments as weights) and a fall in a Laspeyres index of rentals of capital (with the capital
endowments as weights); likewise, a rise in any one of the export prices will have the opposite
effect. Moreover, these changes will be proportionate to the outputs of the respective import-
competing or export goods. It follows that a rise in a price index of importables (with any
positive weights—e.g., amounts of imports rather than outputs in the base period) will lead
to a rise in the wage index and a fall in the rental index, and similarly for a price index of
exportables. If the weights in the price indices are outputs, however, and if the conditions
(3.5) for perfect aggregation hold then—since B~! defines precisely the matrix of elasticities
of rental indices with respect to price indices—these elasticities are respectively greater than

unity and less than zero.
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Development of the Rybczynski transformation is entirely similar. From (3.13) we have

(3.18)

U* = B~1®*B hence

v*B~! = B71o".

In the case of our example with aggregator functions (3.14), this gives

bll b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

pL P2 Ps 0 0 0 b31 b32 b33 b34 b35 b36
0 0 0 Ps Ps P b41 b42 b43 b44 b45 b46
b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66

ot 612_ w wg 0 0 0 0

o g2 0 0 ws wy ws we

Since the b’ are the Rybczynski derivatives 079;/0l;, this reduces to

0 o _ o 5. ) .
ﬁzpjyj = wib''  and ﬁijyj = w;b* fore=1,2
2]:1 2]:4

3 6
2]21 2]24

From the solution B = G*SH*~ (where H*~ is a right inverse of H*) it is clear that as long
as in each block of B, each column has at least one positive element, and all prices and rentals
are positive, the elements of B are all positive. Supposing as before that B~! has negative off-
diagonal elements, the above equations imply that a rise in the endowment of either skilled or
unskilled labor will lead to a rise in a Laspeyres index of output of importables (with prices
of importables as weights) and a fall in a Laspeyres index of output of exportables (with
prices of exportables as weights), and a rise in any of the capital endowments will have the
opposite effect. The remaining conditions analogous to the Stolper-Samuelson case also hold.

Putting all this together we see that in order for both the Stolper-Samuelson and Ryb-
czynski mappings to be perfectly aggregable, the two sets of conditions (3.5) and (3.13) must
both hold, hence the matrix B of factor-output coefficients must be subject to the double
bilinear restriction

(3.19) "BV = B = 0*BU*
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where @~ and WU*~ are left and right inverses of ® and U* respectively. This is quite a
stringent requirement. However, it is not an unreasonable one provided the matrices are
empirically stable. Recall that in (3.7) the [; and y; are fixed weights corresponding to the
initial endowments and outputs, and the b;;(w) are evaluated at the factor rentals prevailing
in the initial equilibrium. (3.7) then expresses a local condition for perfect aggregation of
the Stolper-Samuelson mapping. Of course, if the technical coefficients b;; are fixed as in
Leontief’s (1951) model, then it is a global condition. Turning to (3.15), we recall that the w;
and p; appearing in the formula are now fixed weights corresponding to the initial rentals and
prices, and the b;;(w) are evaluated at these fixed rentals; the share matrix 5 is therefore fixed,
and (3.15) expresses a global condition for perfect aggregation of the Rybczynski mapping.

It would of course be preferable if we could find some global conditions, expressed in
terms of the underlying parameters of the model, for simultaneous perfect aggregation of
both the Stolper-Samuelson and Rybczynski mappings. This would require us of course to
make some parametric specifications concerning the production functions and thus their dual
minimum-unit-cost functions.

If production functions are of the Cobb-Douglas type then we know that the dual mini-

mum-unit-cost functions are also of the Cobb-Douglas type:
gi(wy, wy, ..., we) = l/jwlﬁ“wgz” .. .wg(” (j=1,2,...,6).

In this case it is clearly appropriate to replace the arithmetic means specified by the forms

(3.6) and (3.14) chosen for the price and quantity indices (3.2) and (3.12) by geometric means:

01,62 . 6a, 04 05 0 o
(3.20) e(w) = (wi'wy’, w'wytws’wg’) = (wy,wz)  (6; > 0)
P(p) = (p{'py?ps, pitps pe’) = (p1,P2) (v; > 0).

We then have

Jj=1 =1 j=4 i—1
2 B 6 B - 6

et = (o TLuf™ TLufo o T u% [T ufe™)
=1 =3 1=1 =3



For these to be equal for all w, the following equation must be satisfied:

i Pz Pz Pra Pra Pua v 0 6 0

B Paz Doz Paa Baa Paa vy 0 o2 0

Ba1 Ps2 Psz Psa Pza Dsa vg 0| | 0 6 B Pz
Ba Paz Paz Paa Paa Paa 0 v | |0 8 B o |
Bs1 P52 P53 Bsa P54 Osa 0 ws 0 6

Per Po2 Pes Pea Pes Dea 0 ws 0 6

or, since the share matrix S is now the fixed matrix [5;;],
(3.21) 5T = ©B.

This expresses the conditions for perfect aggregation of the Stolper-Samuelson mapping in
terms of weighted averages of the exponents of the Cobb-Douglas production functions.
We could try replacing the arithmetic endowment and output indices (3.14) by the geo-

metric ones

() = (2 BENEE) = (1, 1) (6% > 0)

(3.22) P .
V) = Gt s ) = () (0 > 0)

in order to aggregate the factor-demand mapping (3.10) to (3.11), to obtain the composed

functions

©*(r(y))
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TN
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-|-522H3/] )

However, upon differentiating these two composite functions with respect to the y; and
equating, one finds that the restrictions are in the form of extremely complicated nonlinear
equations; hence these conditions could not be expected to be empirically stable. We are
therefore compelled to fall back on the linear quantity indices (3.14) for the aggregation of
the Rybczynski relations.

With Cobb-Douglas technology, geometric price and rental indices, and arithmetic output
and endowment indices, we now have the following double bilinear restriction on the constant
share matrix 9,

(3.23) G*SH* =B =057,
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where all the matrices entering the condition are constant. While this restriction has the ad-
vantage of being a global one (provided the technology is Cobb-Douglas), it has the distinct
disadvantage of asymmetry in the choice of geometric means for price indices and arith-
metic means for quantity indices, and it may involve considerable specification error if the
technology departs at all significantly from the Cobb-Douglas type.

The condition (3.19) combined with the assumption of Laspeyres price and quantity
indices thus seems to be a sounder criterion in general for simultaneous perfect aggregation
of the Stolper-Samuelson and Rybczynski mappings. Of course, nobody believes such a
condition to be literally true; its virtue is that it is capable of exact interpretation, and forms
a benchmark by which one may assess the goodness of approximation of estimated production
coefficients to the conditions for simultaneous perfect aggregation of the Stolper-Samuelson
and Rybczynski mappings. Aggregation may be justified provided the distance between the
matrices @~ BV and ®*BY*~ (a concept which can be made perfectly precise—see Chipman
1976) is sufficiently small. And recent advances in the development of heuristic algorithms
for integer programming make it possible to find close-to-optimal modes of aggregation of
commodities and factors into groups so as to achieve a suitably low level of aggregation error
(cf. Chipman and Winker 1992). In the last analysis, the robustness of the Stolper-Samuelson
theorem must be tested by empirical application, and the framework developed here is offered

as a means to that end.
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