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PRIMAL PROBLEM
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where p* is a Lagrange multiplier.
Differentiate L partially with re-
spect to the v; and p* and set equal
to zero:
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The m + 1 equations (I) define a
mapping

F(v,p") = (w,y)

from the positive orthant of (m +
1)-dimensional FEuclidean space
into itself. The differentiability
and strict quasi-concavity proper-
ties of f imply that F has an in-
verse
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Wy

DUAL PROBLEM
Minimize ¥/, vjw; subject to

g(w) > p

where p,v = (v1,v9,...,v,,) are
parameters, p > 0,v > 0, to ob-
tain the functions
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where y* is a Lagrange multiplier.
Differentiate L* partially with re-
spect to the w; and y* and set
equal to zero:
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The m + 1 equations (I*) define a
mapping

G(w,y") = (v,p)

from the positive orthant of (m +
1)-dimensional Euclidean space
into itself. The differentiability
and strict quasi-concavity proper-
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ties of ¢ imply that G has an in-
verse



f_l(w,y) - (va*)
which is defined by the functions
1,2,...
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obtained by solving the m equa-
tions
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and by the function
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where fr = 0f/0vy.
Define the indirect production
function by

flw,y) =
f(O1(w,y), ..., On(w,y)).
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This function satisfies the identity
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This will be used to establish the
following basic relations:

flw,y) =y for all w,y.
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To obtain (II), differentiate G
with respect to w;:

G (v,p) = (w,y")

which is defined by the functions

wj =w;(v,p) (j=1,2,...,m)

obtained by solving the m equa-
tions

Uj g/ow; ..
or g 0w (J #k); g(w) =p,
and by the function
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= y'(v,p)
where g = 0g/0wy.
Define the indirect minimum-
unit-cost function by
g(v,p) =
g(wi(v,p), ..., wm(v,p)).
This function satisfies the identity

(") g(v,p) =p forall v,p.

This will be used to establish the
following basic relations:
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To obtain (II*), differentiate F
with respect to v;:
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This is equal to (II) if and only if This is equal to (II*) if and only if

the second term on the right van-
ishes, and this follows from (I”):
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where use has been made of (I)
and the definition of p*.

To obtain (III), differentiate G
with respect to y:

oy > wp—————.
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Now we have from (1)
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o (III) follows.

Let f be homogeneous of degree

1; then by Euler’s theorem,
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the second term on the right van-

ishes, and this follows from (I*"):
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where use has been made of (I*)
and the definition of y*.
To obtain (IIT*), differentiate F

with respect to p:
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Now we have from (I*")
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o (IIT*) follows.
Let g be homogeneous of degree
1; then by Euler’s theorem,
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We verify that 0p*/dy = 0 from We verify that 07*/dp = 0 from
(II), hence we may write (IIT*), hence we may write

(IV)  p*"=p"(w,y) = g"(w) V") vy =7"(v,p) = f(v)

for some function g*. Denote for some function f*. Denote
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From the above development we may conclude that
Fl=6G, G'=F [f=f adg =y
For, from (IV*) and (V*) we have

0/ (v)

(VI) w; =P 81)2' )

F(v) =y,

which is precisely the same as (I). It therefore determines a mapping
F(v,p) = (w,y");

but (v, p) was obtained by (I) from the mapping
G(w,y") = (p,v).

Therefore,
(v,p) = G(w,y") = G(F (v, p)

so G o F* is the identity mapping, i.e., F* = G~ But since (VI)
and (I) are defined by the same conditions, the mappings F and F*
coincide.

Similarly, (IV) and (V) coincide with (I*), hence define the same
mapping. Thus the mappings defined by (I) and (I*) are inverse to

one another.

Starting from a concave homogeneous-of-degree-one production func-
tion f, one obtains a unique concave homogeneous-of-degree-one minimum-
unit-cost function g; and starting from the function g one recovers the
unique production function f which gave rise to it.





