Notes on the Duality between Production and Cost Functions: A Differentiable Approach

John S. Chipman
University of Minnesota
Fall 2003

PRIMAL PROBLEM

Minimize $\sum_{j=1}^{m} w_{j} v_{j}$ subject to

$$
f(v) \geq y
$$

where $y, w=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ are parameters, $y>0, w>0$, to obtain the functions

$$
v_{j}=\tilde{v}_{j}(w, y) \quad(j=1,2, \ldots, m)
$$

for which

$$
\begin{aligned}
& \sum_{j=1}^{m} w_{j} \tilde{v}_{j}(w, y) \\
& =\min _{v}\{w \cdot v: f(v) \geq y\} \\
& \equiv G(w, y)
\end{aligned}
$$

Form the Lagrangean function

$$
\begin{aligned}
& L\left(v, p^{*} ; w, y\right)= \\
& \quad \sum_{j=1}^{m} w_{j} v_{j}-p^{*}[f(v)-y]
\end{aligned}
$$

where p^{*} is a Lagrange multiplier. Differentiate L partially with respect to the v_{i} and p^{*} and set equal to zero:
(I) $\quad w_{i}=p^{*} \frac{\partial f}{\partial v_{i}} ; \quad f(v)=y$.

The $m+1$ equations (I) define a mapping

$$
\mathcal{F}\left(v, p^{*}\right)=(w, y)
$$

from the positive orthant of $(m+$ 1)-dimensional Euclidean space into itself. The differentiability and strict quasi-concavity properties of f imply that \mathcal{F} has an inverse

DUAL PROBLEM

Minimize $\sum_{j=1}^{m} v_{j} w_{j}$ subject to

$$
g(w) \geq p
$$

where $p, v=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ are parameters, $p>0, v>0$, to obtain the functions

$$
w_{j}=\tilde{w}_{j}(v, p) \quad(j=1,2, \ldots, m)
$$

for which

$$
\begin{aligned}
& \sum_{j=1}^{m} v_{j} \tilde{w}_{j}(v, p) \\
& \quad=\min _{w}\{v \cdot w: g(w) \geq p\} \\
& \equiv F(v, p) .
\end{aligned}
$$

Form the Lagrangean function

$$
\begin{aligned}
& L^{*}\left(w, y^{*} ; v, p\right)= \\
& \quad \sum_{j=1}^{m} v_{j} w_{j}-y^{*}[g(w)-p]
\end{aligned}
$$

where y^{*} is a Lagrange multiplier. Differentiate L^{*} partially with respect to the w_{i} and y^{*} and set equal to zero:
$\left(\mathrm{I}^{*}\right) \quad v_{i}=y^{*} \frac{\partial g}{\partial w_{i}} ; \quad g(w)=p$.
The $m+1$ equations (I^{*}) define a mapping

$$
\mathcal{G}\left(w, y^{*}\right)=(v, p)
$$

from the positive orthant of $(m+$ 1)-dimensional Euclidean space into itself. The differentiability and strict quasi-concavity properties of g imply that \mathcal{G} has an inverse
which is defined by the functions

$$
\mathcal{F}^{-1}(w, y)=\left(v, p^{*}\right)
$$

which is defined by the functions

$$
v_{j}=\tilde{v}_{j}(w, y) \quad(j=1,2, \ldots, m)
$$

obtained by solving the m equations
(I^{\prime})
$\frac{w_{j}}{w_{k}}=\frac{\partial f / \partial v_{j}}{\partial f / \partial v_{k}}(j \neq k) ; \quad f(v)=y$,
and by the function

$$
\begin{aligned}
p^{*} & =\frac{w_{k}}{f_{k}\left(\tilde{v}_{1}(w, y), \ldots, \tilde{v}_{m}(w, y)\right)} \\
& \equiv \tilde{p}^{*}(w, y)
\end{aligned}
$$

where $f_{k}=\partial f / \partial v_{k}$.
Define the indirect production function by

$$
\begin{aligned}
& \tilde{f}(w, y)= \\
& \quad f\left(\tilde{v}_{1}(w, y), \ldots, \tilde{v}_{m}(w, y)\right)
\end{aligned}
$$

This function satisfies the identity
$\left(\mathrm{I}^{\prime \prime}\right) \quad \tilde{f}(w, y)=y \quad$ for all w, y.
This will be used to establish the following basic relations:

$$
\begin{equation*}
\frac{\partial G(w, y)}{\partial w_{j}}=\tilde{v}_{j}(w, y) \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial G(w, y)}{\partial y}=\tilde{p}^{*}(w, y) \tag{III}
\end{equation*}
$$

To obtain (II), differentiate G with respect to w_{j} :

$$
\mathcal{G}^{-1}(v, p)=\left(w, y^{*}\right)
$$

$$
w_{j}=\tilde{w}_{j}(v, p) \quad(j=1,2, \ldots, m)
$$

obtained by solving the m equations
$\frac{v_{j}}{v_{k}}=\frac{\partial g / \partial w_{j}}{\partial g / \partial w_{k}}(j \neq k) ; \quad g(w)=p$, and by the function

$$
\begin{aligned}
y^{*} & =\frac{v_{k}}{g_{k}\left(\tilde{w}_{1}(v, p), \ldots, \tilde{w}_{m}(v, p)\right)} \\
& \equiv \tilde{y}^{*}(v, p)
\end{aligned}
$$

where $g_{k}=\partial g / \partial w_{k}$.
Define the indirect minimum-unit-cost function by

$$
\begin{aligned}
& \tilde{g}(v, p)= \\
& \quad g\left(\tilde{w}_{1}(v, p), \ldots, \tilde{w}_{m}(v, p)\right) .
\end{aligned}
$$

This function satisfies the identity $\left(\mathrm{I}^{* \prime \prime}\right) \quad \tilde{g}(v, p)=p \quad$ for all v, p.

This will be used to establish the following basic relations:
$\left(\mathrm{II}^{*}\right) \quad \frac{\partial F(v, p)}{\partial v_{j}}=\tilde{w}_{j}(v, p)$,
$\left(\mathrm{III}^{*}\right) \quad \frac{\partial F(v, p)}{\partial p}=\tilde{y}^{*}(v, p)$.
To obtain (II*), differentiate F with respect to v_{j} :

$$
\begin{aligned}
& \frac{\partial G(w, y)}{\partial w_{j}} \\
& =\frac{\partial}{\partial w_{j}} \sum_{k=1}^{m} w_{k} \tilde{v}_{k}(w, y) \\
& \quad=\tilde{v}_{j}(w, y)+\sum_{k=1}^{m} w_{k} \frac{\partial v_{k}(w, y)}{\partial w_{j}}
\end{aligned}
$$

This is equal to (II) if and only if This is equal to (II^{*}) if and only if the second term on the right van- the second term on the right vanishes, and this follows from ($\left.\mathrm{I}^{\prime \prime}\right)$: ishes, and this follows from ($\left.\mathrm{I}^{* \prime \prime}\right)$:

$$
\begin{aligned}
0 & =\frac{\partial \tilde{f}(w, y)}{\partial w_{j}} & 0 & =\frac{\partial \tilde{g}(v, p)}{\partial v_{j}} \\
& =\left.\sum_{k=1}^{m} \frac{\partial f}{\partial v_{k}}\right|_{v=\tilde{v}(w, y)} \cdot \frac{\partial \tilde{v}_{k}(w, y)}{\partial w_{j}} & & =\left.\sum_{k=1}^{m} \frac{\partial g}{\partial w_{k}}\right|_{w=\tilde{w}(v, p)} \cdot \frac{\partial \tilde{w}_{k}(v, p)}{\partial v_{j}} \\
& =\frac{1}{\tilde{p}^{*}(w, y)} \sum_{k=1}^{m} w_{k} \frac{\partial \tilde{v}_{k}(w, y)}{\partial w_{j}}, & & =\frac{1}{\tilde{y}^{*}(v, p)} \sum_{k=1}^{m} v_{k} \frac{\partial \tilde{w}_{k}(v, p)}{\partial v_{j}},
\end{aligned}
$$

where use has been made of (I) where use has been made of (I*) and the definition of \tilde{p}^{*}.
To obtain (III), differentiate G with respect to y :

$$
\frac{\partial G(w, y)}{\partial y}=\sum_{k=1}^{m} w_{k} \frac{\partial \tilde{v}_{k}(w, y)}{\partial y}
$$

Now we have from ($\mathrm{I}^{\prime \prime}$)

$$
\begin{aligned}
1 & =\frac{\partial \tilde{f}(w, y)}{\partial y} \\
& =\left.\sum_{k=1}^{m} \frac{\partial f}{\partial v_{k}}\right|_{v=\tilde{v}(w, y)} \cdot \frac{\partial \tilde{v}_{k}(w, y)}{\partial y} \\
& =\frac{1}{\tilde{p}^{*}(w, y)} \sum_{k=1}^{m} w_{k} \frac{\partial \tilde{v}_{k}(w, y)}{\partial y}
\end{aligned}
$$

so (III) follows.
Let f be homogeneous of degree 1 ; then by Euler's theorem,
so (III*) follows.
Let g be homogeneous of degree 1 ; then by Euler's theorem,

$$
\begin{aligned}
& \frac{\partial F(v, p)}{\partial v_{j}} \\
& \quad=\frac{\partial}{\partial v_{j}} \sum_{k=1}^{m} v_{k} \tilde{w}_{k}(v, p) \\
& =\tilde{w}_{j}(v, p)+\sum_{k=1}^{m} v_{k} \frac{\partial w_{k}(v, p)}{\partial v_{j}}
\end{aligned}
$$

$$
\begin{aligned}
G & (w, y) & F & (w, y) \\
= & \sum_{k=1}^{m} w_{k} \tilde{v}_{k}(w, y) & & \sum_{k=1}^{m} v_{k} \tilde{w}_{k}(v, p) \\
& =\left.p^{*} \sum_{k=1}^{m} \frac{\partial f}{\partial v_{k}}\right|_{v=\tilde{v}_{k}(w, y)} \cdot \tilde{v}_{k}(w, y) & & =\left.y^{*} \sum_{k=1}^{m} \frac{\partial g}{\partial w_{k}}\right|_{w=\tilde{w}_{k}(v, p)} \cdot \tilde{w}_{k}(v, p) \\
& =\tilde{p}^{*}(w, y) y & & =\tilde{y}^{*}(v, p) p
\end{aligned}
$$

whence

$$
\tilde{p}^{*}(w, y)=\frac{G(w, y)}{y}
$$

whence

$$
\tilde{y}^{*}(v, p)=\frac{F(v, p)}{p}
$$

We verify that $\partial \tilde{p}^{*} / \partial y=0$ from We verify that $\partial \tilde{y}^{*} / \partial p=0$ from (III), hence we may write (III*), hence we may write
$(\mathrm{IV}) \quad p^{*}=\tilde{p}^{*}(w, y)=g^{*}(w)$
$\left(\mathrm{IV}^{*}\right) \quad y^{*}=\tilde{y}^{*}(v, p)=f^{*}(v)$
for some function g^{*}. Denote

$$
b_{j}(w)=\frac{\partial g^{*}(w)}{\partial w_{j}}
$$

Then from (II) we have

$$
\begin{aligned}
\tilde{v}_{j}(w, y) & =\frac{\partial G(w, y)}{\partial w_{j}} \\
& =y \frac{\partial g^{*}(w)}{\partial w_{j}} \\
& =y b_{j}(w)
\end{aligned}
$$

so that the factor-product ratios are determined by
(V) $\frac{v_{j}}{y}=b_{j}(w)=\frac{\partial g^{*}(w)}{\partial w_{j}}$.
for some function f^{*}. Denote

$$
r_{j}(v)=\frac{\partial f^{*}(v)}{\partial v_{j}}
$$

Then from (II*) we have

$$
\begin{aligned}
\tilde{w}_{j}(v, p) & =\frac{\partial F(v, p)}{\partial v_{j}} \\
& =p \frac{\partial f^{*}(v)}{\partial v_{j}} \\
& =p r_{j}(v)
\end{aligned}
$$

so that the real factor rentals are determined by
$\left(\mathrm{V}^{*}\right) \quad \frac{w_{j}}{p}=r_{j}(v)=\frac{\partial f^{*}(v)}{\partial v_{j}}$.

From the above development we may conclude that

$$
\mathcal{F}^{-1}=\mathcal{G}, \quad \mathcal{G}^{-1}=\mathcal{F}, \quad f^{*}=f, \quad \text { and } g^{*}=g
$$

For, from (IV^{*}) and $\left(\mathrm{V}^{*}\right)$ we have

$$
\begin{equation*}
w_{i}=p \frac{\partial f^{*}(v)}{\partial v_{i}}, \quad F^{*}(v)=y^{*} \tag{VI}
\end{equation*}
$$

which is precisely the same as (I). It therefore determines a mapping

$$
\mathcal{F}^{*}(v, p)=\left(w, y^{*}\right) ;
$$

but (v, p) was obtained by (I) from the mapping

$$
\mathcal{G}\left(w, y^{*}\right)=(p, v)
$$

Therefore,

$$
(v, p)=\mathcal{G}\left(w, y^{*}\right)=\mathcal{G}\left(\mathcal{F}^{*}(v, p)\right.
$$

so $\mathcal{G} \circ \mathcal{F}^{*}$ is the identity mapping, i.e., $\mathcal{F}^{*}=\mathcal{G}^{-1}$. But since (VI) and (I) are defined by the same conditions, the mappings \mathcal{F} and \mathcal{F}^{*} coincide.

Similarly, (IV) and (V) coincide with (I*), hence define the same mapping. Thus the mappings defined by (I) and (I^{*}) are inverse to one another.

Starting from a concave homogeneous-of-degree-one production function f, one obtains a unique concave homogeneous-of-degree-one minimum-unit-cost function g; and starting from the function g one recovers the unique production function f which gave rise to it.

