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PRIMAL PROBLEM

Minimize
∑m

j=1 wjvj subject to

f(v) ≥ y

where y, w = (w1, w2, . . . , wm) are
parameters, y > 0, w > 0, to ob-

tain the functions

vj = ṽj(w, y) (j = 1, 2, . . . , m)

for which
m∑

j=1
wj ṽj(w, y)

= min
v

{w · v : f(v) ≥ y}
≡ G(w, y).

Form the Lagrangean function

L(v, p∗; w, y) =
m∑

j=1
wjvj − p∗[f(v)− y]

where p∗ is a Lagrange multiplier.
Differentiate L partially with re-
spect to the vi and p∗ and set equal

to zero:

(I) wi = p∗
∂f

∂vi
; f(v) = y.

The m + 1 equations (I) define a

mapping

F(v, p∗) = (w, y)

from the positive orthant of (m +
1)-dimensional Euclidean space

into itself. The differentiability
and strict quasi-concavity proper-

ties of f imply that F has an in-
verse

DUAL PROBLEM

Minimize
∑m

j=1 vjwj subject to

g(w) ≥ p

where p, v = (v1, v2, . . . , vm) are

parameters, p > 0, v > 0, to ob-
tain the functions

wj = w̃j(v, p) (j = 1, 2, . . . , m)

for which
m∑

j=1
vjw̃j(v, p)

= min
w

{v · w : g(w) ≥ p}
≡ F (v, p).

Form the Lagrangean function

L∗(w, y∗; v, p) =
m∑

j=1
vjwj − y∗[g(w) − p]

where y∗ is a Lagrange multiplier.

Differentiate L∗ partially with re-
spect to the wi and y∗ and set

equal to zero:

(I∗) vi = y∗
∂g

∂wi
; g(w) = p.

The m + 1 equations (I∗) define a
mapping

G(w, y∗) = (v, p)

from the positive orthant of (m +
1)-dimensional Euclidean space

into itself. The differentiability
and strict quasi-concavity proper-

ties of g imply that G has an in-
verse
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F−1(w, y) = (v, p∗)

which is defined by the functions

vj = ṽj(w, y) (j = 1, 2, . . . , m)

obtained by solving the m equa-

tions
(I′)
wj

wk
=

∂f/∂vj

∂f/∂vk
(j �= k); f(v) = y,

and by the function

p∗ =
wk

fk(ṽ1(w, y), . . . , ṽm(w, y))

≡ p̃∗(w, y)

where fk = ∂f/∂vk.
Define the indirect production

function by

f̃(w, y) =

f(ṽ1(w, y), . . . , ṽm(w, y)).

This function satisfies the identity

(I′′) f̃(w, y) = y for all w, y.

This will be used to establish the
following basic relations:

(II)
∂G(w, y)

∂wj
= ṽj(w, y),

(III)
∂G(w, y)

∂y
= p̃∗(w, y).

To obtain (II), differentiate G

with respect to wj:

G−1(v, p) = (w, y∗)

which is defined by the functions

wj = w̃j(v, p) (j = 1, 2, . . . , m)

obtained by solving the m equa-

tions
(I∗′)
vj

vk
=

∂g/∂wj

∂g/∂wk
(j �= k); g(w) = p,

and by the function

y∗ =
vk

gk(w̃1(v, p), . . . , w̃m(v, p))

≡ ỹ∗(v, p)

where gk = ∂g/∂wk.

Define the indirect minimum-
unit-cost function by

g̃(v, p) =

g(w̃1(v, p), . . . , w̃m(v, p)).

This function satisfies the identity

(I∗′′) g̃(v, p) = p for all v, p.

This will be used to establish the

following basic relations:

(II∗)
∂F (v, p)

∂vj
= w̃j(v, p),

(III∗)
∂F (v, p)

∂p
= ỹ∗(v, p).

To obtain (II∗), differentiate F
with respect to vj:

∂G(w, y)

∂wj

=
∂

∂wj

m∑

k=1
wkṽk(w, y)

= ṽj(w, y) +
m∑

k=1
wk

∂vk(w, y)

∂wj
.
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This is equal to (II) if and only if

the second term on the right van-
ishes, and this follows from (I′′):

0 =
∂f̃(w, y)

∂wj

=
m∑

k=1

∂f

∂vk

∣∣∣∣∣
v=ṽ(w,y)

· ∂ṽk(w, y)

∂wj

=
1

p̃∗(w, y)

m∑

k=1
wk

∂ṽk(w, y)

∂wj
,

where use has been made of (I)
and the definition of p̃∗.

To obtain (III), differentiate G
with respect to y:

∂G(w, y)

∂y
=

m∑

k=1
wk

∂ṽk(w, y)

∂y
.

Now we have from (I′′)

1 =
∂f̃(w, y)

∂y

=
m∑

k=1

∂f

∂vk

∣∣∣∣∣
v=ṽ(w,y)

· ∂ṽk(w, y)

∂y

=
1

p̃∗(w, y)

m∑

k=1
wk

∂ṽk(w, y)

∂y
,

so (III) follows.

Let f be homogeneous of degree

1; then by Euler’s theorem,

∂F (v, p)

∂vj

=
∂

∂vj

m∑

k=1
vkw̃k(v, p)

= w̃j(v, p) +
m∑

k=1
vk

∂wk(v, p)

∂vj
.

This is equal to (II∗) if and only if

the second term on the right van-
ishes, and this follows from (I∗′′):

0 =
∂g̃(v, p)

∂vj

=
m∑

k=1

∂g

∂wk

∣∣∣∣∣
w=w̃(v,p)

· ∂w̃k(v, p)

∂vj

=
1

ỹ∗(v, p)

m∑

k=1
vk

∂w̃k(v, p)

∂vj
,

where use has been made of (I∗)
and the definition of ỹ∗.

To obtain (III∗), differentiate F

with respect to p:

∂F (v, p)

∂p
=

m∑

k=1
vk

∂w̃k(v, p)

∂p
.

Now we have from (I∗′′)

1 =
∂g̃(v, p)

∂p

=
m∑

k=1

∂g

∂wk

∣∣∣∣∣
w=w̃(v,p)

· ∂w̃k(v, p)

∂p

=
1

ỹ∗(v, p)

m∑

k=1
vk

∂w̃k(v, p)

∂p
,

so (III∗) follows.

Let g be homogeneous of degree
1; then by Euler’s theorem,
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G(w, y)

=
m∑

k=1
wkṽk(w, y)

= p∗
m∑

k=1

∂f

∂vk

∣∣∣∣∣
v=ṽk(w,y)

· ṽk(w, y)

= p̃∗(w, y)y

whence

p̃∗(w, y) =
G(w, y)

y
.

We verify that ∂p̃∗/∂y = 0 from

(III), hence we may write

(IV) p∗ = p̃∗(w, y) = g∗(w)

for some function g∗. Denote

bj(w) =
∂g∗(w)

∂wj
.

Then from (II) we have

ṽj(w, y) =
∂G(w, y)

∂wj

= y
∂g∗(w)

∂wj

= ybj(w)

so that the factor-product ratios
are determined by

(V)
vj

y
= bj(w) =

∂g∗(w)

∂wj
.

F (w, y)

=
m∑

k=1
vkw̃k(v, p)

= y∗
m∑

k=1

∂g

∂wk

∣∣∣∣∣
w=w̃k(v,p)

· w̃k(v, p)

= ỹ∗(v, p)p

whence

ỹ∗(v, p) =
F (v, p)

p
.

We verify that ∂ỹ∗/∂p = 0 from

(III∗), hence we may write

(IV∗) y∗ = ỹ∗(v, p) = f ∗(v)

for some function f ∗. Denote

rj(v) =
∂f ∗(v)

∂vj
.

Then from (II∗) we have

w̃j(v, p) =
∂F (v, p)

∂vj

= p
∂f ∗(v)

∂vj

= prj(v)

so that the real factor rentals are
determined by

(V∗)
wj

p
= rj(v) =

∂f ∗(v)

∂vj
.
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From the above development we may conclude that

F−1 = G, G−1 = F , f ∗ = f, and g∗ = g.

For, from (IV∗) and (V∗) we have

(VI) wi = p
∂f ∗(v)

∂vi
, F ∗(v) = y∗,

which is precisely the same as (I). It therefore determines a mapping

F∗(v, p) = (w, y∗);

but (v, p) was obtained by (I) from the mapping

G(w, y∗) = (p, v).

Therefore,
(v, p) = G(w, y∗) = G(F∗(v, p)

so G ◦ F∗ is the identity mapping, i.e., F∗ = G−1. But since (VI)

and (I) are defined by the same conditions, the mappings F and F∗

coincide.

Similarly, (IV) and (V) coincide with (I∗), hence define the same
mapping. Thus the mappings defined by (I) and (I∗) are inverse to

one another.
Starting from a concave homogeneous-of-degree-one production func-

tion f , one obtains a unique concave homogeneous-of-degree-one minimum-
unit-cost function g; and starting from the function g one recovers the
unique production function f which gave rise to it.
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