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With three products and two factors, the production-possibility frontier is
a ruled surface, hence the domestic-product function is not differentiable. For
the same reasons, the price of the nontradable is determined uniquely from
the prices of the tradables via the cost equations:

g1(w1, w2) = p1;
g2(w1, w2) = p2.

(1)

Given the factor endowments, these equations have a unique solution

w1 = ŵ1(p1, p2);
w2 = ŵ2(p1, p2).

(2)

The price of the nontradable is then determined from

p3 = p̂3(p1, p2) ≡ g3(ŵ1(p1, p2), ŵ2(p1, p2)).(3)

The Jacobian matrix of (2) is the inverse of the Jacobian matrix of (1):

[
∂ŵ1/∂p1 ∂ŵ1/∂p2

∂ŵ2/∂p1 ∂ŵ2/∂p2

]
=

[
b11 b21

b12 b22

]
=

[
b11 b21

b12 b22

]−1

= (B1′)−1.(4)

Thus, from (3) we have(
∂p̂3

∂p1
,

∂p̂3

∂p2

)
=

(
∂g3

∂w1

∂ŵ1

∂p1
+

∂g3

∂w2

∂ŵ2

∂p1
,

∂g3

∂w1

∂ŵ1

∂p2
+

∂g3

∂w2

∂ŵ2

∂p2

)

=
(

b13b
11 + b23b

12, b13b
21 + b23b

22
)

=
[

b13 b23

] [ b11 b21

b12 b22

]
= B3′(B1′)−1.(5)
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Let us define the domestic-cost function by

Φ(w1, w2; y1, y2, y3) =
3∑

k=1

gk(w1, w2)yk.(6)

It expresses the domestic product as a function of factor rentals and commodity
outputs. Its partial derivative with respect to the ith factor rental is the ith
factor-demand function:

φi(w1, w2; y1, y2, y3) ≡ ∂Φ(w1, w2; y1, y2, y3)

∂wi
=

3∑
k=1

bik(w1, w2)yk.(7)

We note for future use that the Hessian matrix of Φ(w; y) with respect to w,1

H(w; y) =




∂φ1

∂w1

∂φ1

∂w2

∂φ2

∂w1

∂φ2

∂w2




=

[
∂2Φ(w; y)

∂wi∂wj

]
i,j=1,2

=
3∑

k=1

[
∂2gk(w)

∂wi∂wj

]
i,j=1,2

yk,(8)

is symmetric and negative semi-definite, being a nonnegative linear combina-
tion of the Hessians of the minimum-unit-cost functions gk, which are sym-
metric and negative semi-definite since the cost functions gk are differentiable
and concave. Further, since the gk are homogeneous of degree 1, the φi are
homogeneous of degree 0 and thus (from Euler’s theorem),

H(w; y)w =




∂2Φ

∂w2
1

∂2Φ

∂w1∂w2

∂2Φ

∂w2∂w1

∂2Φ

∂w2
2



[

w1

w2

]
=




∂φ1

∂w1

∂φ1

∂w2

∂φ2

∂w1

∂φ2

∂w2



[

w1

w2

]
=

[
0
0

]
.

(9)
The three outputs are then obtained from the following three equations:

φ1

(
ŵ1(p1, p2), ŵ2(p2, p2), y1, y2, y3

)
= l1;

φ2

(
ŵ1(p1, p2), ŵ2(p2, p2), y1, y2, y3

)
= l2;

h3

(
p1, p2, p̂3(p1, p2), p1y1 + p2y2 + p̂3(p1, p2)y3 + D

)
= y3.

(10)

1This notation departs from that of Chipman (1981) where Φ stood for the Hessian of
the domestic-cost function and no further use was made of this domestic-cost function.

2



We now take differentials of (10):


 b11 b12 b13

b21 b22 b23

−c3p1 −c3p2 1 − c3p3




 dy1

dy2

dy3




=




− ∂φ1

∂w1

∂ŵ1

∂p1

− ∂φ1

∂w2

∂ŵ2

∂p1

− ∂φ1

∂w1

∂ŵ1

∂p2

− ∂φ1

∂w2

∂ŵ2

∂p2

− ∂φ2

∂w1

∂ŵ1

∂p1
− ∂φ2

∂w2

∂ŵ2

∂p1
− ∂φ2

∂w1

∂ŵ1

∂p2
− ∂φ2

∂w2

∂ŵ2

∂p2

s31 − c3z1 + s33
∂p̂3

∂p1

s32 − c3z2 + s33
∂p̂3

∂p2




[
dp1

dp2

]
(11)

+




0
0
c3


 dD +




1 0
0 1
0 0



[

dl1
dl2

]
.

From (8) we may write the first two rows of the 3×2 coefficient matrix in (11)
of the differentials of the world prices as

−




∂φ1

∂w1

∂φ1

∂w2

∂φ2

∂w1

∂φ2

∂w2






∂ŵ1

∂p1

∂ŵ1

∂p2

∂ŵ2

∂p1

∂ŵ2

∂p2


 = −H(w; y)(B1′(w))−1(12)

where (B1′)−1 is defined by (4). From (5), the third row of this matrix may
be written

(s31, s32) − c3(z1, z2) + s33B
3′(B1′)−1.(13)

The coefficient matrix in (11) of the differentials of the three outputs has
as its inverse, as may be verified,

[
B1 B3

−c3(p1, p2) 1 − c3p3

]−1

=(14)

[
(B1)−1 − (B1)−1B3c3(p1, p2)(B

1)−1 −(B1)−1B3

c3(p1, p2)(B
1)−1 1

]
.

Now we note that, in view of (4), the system of equations (1) may be
written (w1, w2)B

1 = (p1, p2), and likewise the inverse system (2) may be
written (p1, p2)(B

1)−1 = (w1, w2). Further, from (3) we have (w1, w2)B
3 = p3

where B3 is defined by (5). We then verify from (14) that

(p1, p2, p3)

[
B1 B3

−c3(p1, p2) 1 − c3p3

]−1

= (w1, w2, 0),
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hence, using (9), the following envelope condition holds:

(p1, p2, p3)




∂ỹ1

∂p1

∂ỹ1

∂p2

∂ỹ2

∂p1

∂ỹ2

∂p2

∂ỹ3

∂p1

∂ỹ3

∂p2




= (w1, w2, 0)

[ −H(w; y)(B1′(w))−1

(s31, s32) − c3(z1, z2) + s33B
3′(B1′)−1

]

= (0, 0).(15)

Thus we have, denoting the solutions of (10) as ỹi(p1, p2, D, l) for i = 1, 2, 3,
and using (14), (12), (13), and (9),



∂ỹ1

∂p1

∂ỹ1

∂p2

∂ỹ2

∂p1

∂ỹ2

∂p2

∂ỹ3

∂p1

∂ỹ3

∂p2




=

[
(B1)−1 − (B1)−1B3c3(w1, w2) −(B1)−1B3

c3(w1, w2) 1

]

×
[ −H(B1′)−1

(s31, s32) − c3(z1, z2) + s33B
3′(B1′)−1

]

=

[ −(B1)−1H(B1′)−1 − (B1)−1B3∂ỹ3/∂(p1, p2)
∂ỹ3/∂(p1, p2)

]
(16)

where
∂ỹ3

∂(p1, p2)
= (s31, s32) − c3(z1, z2) + s33B

3′(B1′)−1.

From (11) and (14) it follows that


∂ỹ1

∂D
∂ỹ2

∂D


 = −(B1)−1B3c3,(17)

hence from (16):




∂ỹ1

∂p1
+

∂ỹ1

∂D
z1

∂ỹ1

∂p2
+

∂ỹ1

∂D
z2

∂ỹ2

∂p1

+
∂ỹ2

∂D
z1

∂ỹ2

∂p2

+
∂ỹ2

∂D
z2


 =

−(B1)−1H(B1′)−1 − (B1)−1B3[(s31, s32) + s33B
3′(B1′)−1].(18)
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In order to compute the trade-Slutsky matrix it remains to compute the
partial derivatives of the functions

x̃i(p1, p2, D, l) ≡
hi

(
p1, p2, p̂3(p1, p2), p1ỹ1(·) + p2ỹ2(·) + p̂3(p1, p2)ỹ3(·) + D

)
(i = 1, 2).(19)

Making use of (15) we have




∂x̃1

∂p1

∂x̃1

∂p2

∂x̃2

∂p1

∂x̃2

∂p2


 =

[
s11 s12

s21 s22

]
−
[

c1

c2

] [
z1 z2

]
+

[
s13

s23

]
B3′(B1′)−1.(20)

Since
∂x̃i

∂D
=

∂hi

∂Y
= ci (i = 1, 2),(21)

it follows that


∂x̃1

∂p1

+
∂x̃1

∂D
z1

∂x̃1

∂p2

+
∂x̃1

∂D
z2

∂x̃2

∂p1
+

∂x̃2

∂D
z1

∂x̃2

∂p2
+

∂x̃2

∂D
z2


 =

[
s11 s12

s21 s22

]
+

[
s13

s23

]
B3′(B1′)−1.

(22)

The trade-demand function is defined by

ĥi(p1, p2, D, l) = x̃i(p1, p2, D, l) − ỹi(p1, p2, D, l) (i = 1, 2),

hence, subtracting (18) from (22) we obtain the trade-Slutsky matrix:

Ŝ =

[
ŝ11 ŝ12

ŝ21 ŝ22

]

=




∂ĥ1

∂p1
+

∂ĥ1

∂D
ĥ1

∂ĥ1

∂p2
+

∂ĥ1

∂D
ĥ2

∂ĥ2

∂p1
+

∂ĥ2

∂D
ĥ1

∂ĥ2

∂p2
+

∂ĥ2

∂D
ĥ2




=

[
s11 s12

s21 s22

]
+

[
s13

s23

]
B3′(B1′)−1 + (B1)−1B3

[
s31 s32

]

+ (B1)−1B3s33B
3′(B1′)−1 + (B1)−1H(B1′)−1(23)

=
[

I2 (B1)−1B3
] [ S11 S13

S31 s33

] [
I2

B3′(B1′)−1

]
+ (B1)−1H(B1′)−1,

= (B1)−1{BSB′ + H}(B1′)−1,
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where

S11 =

[
s11 s12

s21 s22

]
, S31 =

[
s31 s32

]
, S13 =

[
s13

s12

]
,

and thus

S =

[
S11 S13

S31 s33

]
=




s11 s12 s13

s21 s22 s23

s31 s32 s33


 , and where B =

[
b11 b12 b13

b21 b22 b23

]
.

Since S and H are symmetric and negative semi-definite, so is Ŝ.
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