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With three products and two factors, the production-possibility frontier is
a ruled surface, hence the domestic-product function is not differentiable. For
the same reasons, the price of the nontradable is determined uniquely from
the prices of the tradables via the cost equations:
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Given the factor endowments, these equations have a unique solution
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The price of the nontradable is then determined from
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The Jacobian matrix of (2) is the inverse of the Jacobian matrix of (1):
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Thus, from (3) we have
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Let us define the domestic-cost function by
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It expresses the domestic product as a function of factor rentals and commodity
outputs. Its partial derivative with respect to the ith factor rental is the ith
factor-demand function:
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We note for future use that the Hessian matrix of ®(w;y) with respect to w,!
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is symmetric and negative semi-definite, being a nonnegative linear combina-
tion of the Hessians of the minimum-unit-cost functions gz, which are sym-
metric and negative semi-definite since the cost functions gy are differentiable
and concave. Further, since the g, are homogeneous of degree 1, the ¢; are
homogeneous of degree 0 and thus (from Euler’s theorem),

9?d 0*® dp1 Oy
ow?  Owow w ow, Ows, w 0
H(w: _ 1 10wz 1| _ 1 2 1| _ '
(w; y)w 2P 92 l Wo % % Wo 0
Owy,0w;  Ow? Oow; Ows

(9)

The three outputs are then obtained from the following three equations:
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IThis notation departs from that of Chipman (1981) where ® stood for the Hessian of
the domestic-cost function and no further use was made of this domestic-cost function.




We now take differentials of (10):
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From (8) we may write the first two rows of the 3 x 2 coefficient matrix in (11)
of the differentials of the world prices as
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where (BY)™! is defined by (4). From (5), the third row of this matrix may

be written
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The coefficient matrix in (11) of the differentials of the three outputs has
as its inverse, as may be verified,

-1

B! B3
(14) l —c3(pr,p2) 1—csps |
(B! — (BY)"' B33 (p1, p2)(BY)" —(B')"'B?
l c3(p1, p2)(BY) 7! 1 ] ‘
Now we note that, in view of (4), the system of equations (1) may be
written (wl,wg)Bl = (p1,p2), and likewise the inverse system (2) may be
written (p1, p2)(B')™! (wl,wg) Further, from (3) we have (wy,wy)B? = p3

where B? is defined by (5). We then verify from (14) that
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hence, using (9), the following envelope condition holds:
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(15) = (0,0).
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Thus we have, denoting the solutions of (10) as @;(p1,p2, D, 1) for i = 1,23,
and using (14), (12), (13), and (9),
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In order to compute the trade-Slutsky matrix it remains to compute the
partial derivatives of the functions
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Making use of (15) we have
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The trade-demand function is defined by
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hence, subtracting (18) from (22) we obtain the trade-Slutsky matrix:
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Since S and H are symmetric and negative semi-definite, so is S.
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