Notes on trade-demand functions with two produced tradables, one nontradable, and two factors

J. S. Chipman

Fall Semester 2002, Second Session

With three products and two factors, the production-possibility frontier is a ruled surface, hence the domestic-product function is not differentiable. For the same reasons, the price of the nontradable is determined uniquely from the prices of the tradables via the cost equations:

$$
\begin{align*}
& g_{1}\left(w_{1}, w_{2}\right)=p_{1} \\
& g_{2}\left(w_{1}, w_{2}\right)=p_{2} . \tag{1}
\end{align*}
$$

Given the factor endowments, these equations have a unique solution

$$
\begin{align*}
& w_{1}=\hat{w}_{1}\left(p_{1}, p_{2}\right) \tag{2}\\
& w_{2}=\hat{w}_{2}\left(p_{1}, p_{2}\right) .
\end{align*}
$$

The price of the nontradable is then determined from

$$
\begin{equation*}
p_{3}=\hat{p}_{3}\left(p_{1}, p_{2}\right) \equiv g_{3}\left(\hat{w}_{1}\left(p_{1}, p_{2}\right), \hat{w}_{2}\left(p_{1}, p_{2}\right)\right) . \tag{3}
\end{equation*}
$$

The Jacobian matrix of (2) is the inverse of the Jacobian matrix of (1):

$$
\left[\begin{array}{ll}
\partial \hat{w}_{1} / \partial p_{1} & \partial \hat{w}_{1} / \partial p_{2} \tag{4}\\
\partial \hat{w}_{2} / \partial p_{1} & \partial \hat{w}_{2} / \partial p_{2}
\end{array}\right]=\left[\begin{array}{ll}
b^{11} & b^{21} \\
b^{12} & b^{22}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} & b_{21} \\
b_{12} & b_{22}
\end{array}\right]^{-1}=\left(B^{1 \prime}\right)^{-1}
$$

Thus, from (3) we have

$$
\begin{align*}
&\left(\frac{\partial \hat{p}_{3}}{\partial p_{1}}, \frac{\partial \hat{p}_{3}}{\partial p_{2}}\right)=\left(\frac{\partial g_{3}}{\partial w_{1}} \frac{\partial \hat{w}_{1}}{\partial p_{1}}+\frac{\partial g_{3}}{\partial w_{2}} \frac{\partial \hat{w}_{2}}{\partial p_{1}}, \frac{\partial g_{3}}{\partial w_{1}} \frac{\partial \hat{w}_{1}}{\partial p_{2}}+\frac{\partial g_{3}}{\partial w_{2}} \frac{\partial \hat{w}_{2}}{\partial p_{2}}\right) \\
&=\left(b_{13} b^{11}+b_{23} b^{12},\right. \\
&\left.b_{13} b^{21}+b_{23} b^{22}\right) \tag{5}\\
&=\left[\begin{array}{ll}
b_{13} & b_{23}
\end{array}\right]\left[\begin{array}{ll}
b^{11} & b^{21} \\
b^{12} & b^{22}
\end{array}\right]=B^{3 \prime}\left(B^{1 \prime}\right)^{-1} .
\end{align*}
$$

Let us define the domestic-cost function by

$$
\begin{equation*}
\Phi\left(w_{1}, w_{2} ; y_{1}, y_{2}, y_{3}\right)=\sum_{k=1}^{3} g_{k}\left(w_{1}, w_{2}\right) y_{k} \tag{6}
\end{equation*}
$$

It expresses the domestic product as a function of factor rentals and commodity outputs. Its partial derivative with respect to the i th factor rental is the i th factor-demand function:

$$
\begin{equation*}
\phi_{i}\left(w_{1}, w_{2} ; y_{1}, y_{2}, y_{3}\right) \equiv \frac{\partial \Phi\left(w_{1}, w_{2} ; y_{1}, y_{2}, y_{3}\right)}{\partial w_{i}}=\sum_{k=1}^{3} b_{i k}\left(w_{1}, w_{2}\right) y_{k} \tag{7}
\end{equation*}
$$

We note for future use that the Hessian matrix of $\Phi(w ; y)$ with respect to $w,{ }^{1}$

$$
\begin{align*}
H(w ; y) & =\left[\begin{array}{cc}
\frac{\partial \phi_{1}}{\partial w_{1}} & \frac{\partial \phi_{1}}{\partial w_{2}} \\
\frac{\partial \phi_{2}}{\partial w_{1}} & \frac{\partial \phi_{2}}{\partial w_{2}}
\end{array}\right] \\
& =\left[\frac{\partial^{2} \Phi(w ; y)}{\partial w_{i} \partial w_{j}}\right]_{i, j=1,2}=\sum_{k=1}^{3}\left[\frac{\partial^{2} g_{k}(w)}{\partial w_{i} \partial w_{j}}\right]_{i, j=1,2} y_{k} \tag{8}
\end{align*}
$$

is symmetric and negative semi-definite, being a nonnegative linear combination of the Hessians of the minimum-unit-cost functions g_{k}, which are symmetric and negative semi-definite since the cost functions g_{k} are differentiable and concave. Further, since the g_{k} are homogeneous of degree 1, the ϕ_{i} are homogeneous of degree 0 and thus (from Euler's theorem),
$H(w ; y) w=\left[\begin{array}{cc}\frac{\partial^{2} \Phi}{\partial w_{1}^{2}} & \frac{\partial^{2} \Phi}{\partial w_{1} \partial w_{2}} \\ \frac{\partial^{2} \Phi}{\partial w_{2} \partial w_{1}} & \frac{\partial^{2} \Phi}{\partial w_{2}^{2}}\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{cc}\frac{\partial \phi_{1}}{\partial w_{1}} & \frac{\partial \phi_{1}}{\partial w_{2}} \\ \frac{\partial \phi_{2}}{\partial w_{1}} & \frac{\partial \phi_{2}}{\partial w_{2}}\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
The three outputs are then obtained from the following three equations:

$$
\begin{align*}
\phi_{1}\left(\hat{w}_{1}\left(p_{1}, p_{2}\right), \hat{w}_{2}\left(p_{2}, p_{2}\right), y_{1}, y_{2}, y_{3}\right) & =l_{1} ; \\
\phi_{2}\left(\hat{w}_{1}\left(p_{1}, p_{2}\right), \hat{w}_{2}\left(p_{2}, p_{2}\right), y_{1}, y_{2}, y_{3}\right) & =l_{2} \tag{10}\\
h_{3}\left(p_{1}, p_{2}, \hat{p}_{3}\left(p_{1}, p_{2}\right), p_{1} y_{1}+p_{2} y_{2}+\hat{p}_{3}\left(p_{1}, p_{2}\right) y_{3}+D\right) & =y_{3} .
\end{align*}
$$

[^0]We now take differentials of (10):

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
-c_{3} p_{1} & -c_{3} p_{2} & 1-c_{3} p_{3}
\end{array}\right]\left[\begin{array}{l}
d y_{1} \\
d y_{2} \\
d y_{3}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
-\frac{\partial \phi_{1}}{\partial w_{1}} \frac{\partial \hat{w}_{1}}{\partial p_{1}}-\frac{\partial \phi_{1}}{\partial w_{2}} \frac{\partial \hat{w}_{2}}{\partial p_{1}} & -\frac{\partial \phi_{1}}{\partial w_{1}} \frac{\partial \hat{w}_{1}}{\partial p_{2}}-\frac{\partial \phi_{1}}{\partial w_{2}} \frac{\partial \hat{w}_{2}}{\partial p_{2}} \\
-\frac{\partial \phi_{2}}{\partial w_{1}} \frac{\partial \hat{w}_{1}}{\partial p_{1}}-\frac{\partial \phi_{2}}{\partial w_{2}} \frac{\partial \hat{w}_{2}}{\partial p_{1}} & -\frac{\partial \phi_{2}}{\partial w_{1}} \frac{\partial \hat{w}_{1}}{\partial p_{2}}-\frac{\partial \phi_{2}}{\partial w_{2}} \frac{\partial \hat{w}_{2}}{\partial p_{2}} \\
s_{31}-c_{3} z_{1}+s_{33} \frac{\partial \hat{p}_{3}}{\partial p_{1}} & s_{32}-c_{3} z_{2}+s_{33} \frac{\partial \hat{p}_{3}}{\partial p_{2}}
\end{array}\right]\left[\begin{array}{l}
d p_{1} \\
d p_{2}
\end{array}\right] \\
& +\left[\begin{array}{c}
0 \\
0 \\
c_{3}
\end{array}\right] d D+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
d l_{1} \\
d l_{2}
\end{array}\right] .
\end{aligned}
$$

From (8) we may write the first two rows of the 3×2 coefficient matrix in (11) of the differentials of the world prices as

$$
-\left[\begin{array}{cc}
\frac{\partial \phi_{1}}{\partial w_{1}} & \frac{\partial \phi_{1}}{\partial w_{2}} \tag{12}\\
\frac{\partial \phi_{2}}{\partial w_{1}} & \frac{\partial \phi_{2}}{\partial w_{2}}
\end{array}\right]\left[\begin{array}{ll}
\frac{\partial \hat{w}_{1}}{\partial p_{1}} & \frac{\partial \hat{w}_{1}}{\partial p_{2}} \\
\frac{\partial \hat{w}_{2}}{\partial p_{1}} & \frac{\partial \hat{w}_{2}}{\partial p_{2}}
\end{array}\right]=-H(w ; y)\left(B^{1 \prime}(w)\right)^{-1}
$$

where $\left(B^{1 \prime}\right)^{-1}$ is defined by (4). From (5), the third row of this matrix may be written

$$
\begin{equation*}
\left(s_{31}, s_{32}\right)-c_{3}\left(z_{1}, z_{2}\right)+s_{33} B^{3 \prime}\left(B^{1 \prime}\right)^{-1} . \tag{13}
\end{equation*}
$$

The coefficient matrix in (11) of the differentials of the three outputs has as its inverse, as may be verified,

$$
\begin{align*}
& {\left[\begin{array}{cc}
B^{1} & B^{3} \\
-c_{3}\left(p_{1}, p_{2}\right) & 1-c_{3} p_{3}
\end{array}\right]^{-1}=} \tag{14}\\
& {\left[\begin{array}{rrc}
\left(B^{1}\right)^{-1}-\left(B^{1}\right)^{-1} B^{3} c_{3}\left(p_{1}, p_{2}\right)\left(B^{1}\right)^{-1} & -\left(B^{1}\right)^{-1} B^{3} \\
& c_{3}\left(p_{1}, p_{2}\right)\left(B^{1}\right)^{-1} & 1
\end{array}\right]}
\end{align*}
$$

Now we note that, in view of (4), the system of equations (1) may be written $\left(w_{1}, w_{2}\right) B^{1}=\left(p_{1}, p_{2}\right)$, and likewise the inverse system (2) may be written $\left(p_{1}, p_{2}\right)\left(B^{1}\right)^{-1}=\left(w_{1}, w_{2}\right)$. Further, from (3) we have $\left(w_{1}, w_{2}\right) B^{3}=p_{3}$ where B^{3} is defined by (5). We then verify from (14) that

$$
\left(p_{1}, p_{2}, p_{3}\right)\left[\begin{array}{cc}
B^{1} & B^{3} \\
-c_{3}\left(p_{1}, p_{2}\right) & 1-c_{3} p_{3}
\end{array}\right]^{-1}=\left(w_{1}, w_{2}, 0\right)
$$

hence, using (9), the following envelope condition holds:

$$
\begin{align*}
& \left(p_{1}, p_{2}, p_{3}\right)\left[\begin{array}{ll}
\frac{\partial \tilde{y}_{1}}{\partial p_{1}} & \frac{\partial \tilde{y}_{1}}{\partial p_{2}} \\
\frac{\partial \tilde{y}_{2}}{\partial p_{1}} & \frac{\partial \tilde{y}_{2}}{\partial p_{2}} \\
\frac{\partial \tilde{y}_{3}}{\partial p_{1}} & \frac{\partial \tilde{y}_{3}}{\partial p_{2}}
\end{array}\right] \\
& =\left(w_{1}, w_{2}, 0\right)\left[\begin{array}{c}
-H(w ; y)\left(B^{1 \prime}(w)\right)^{-1} \\
\left(s_{31}, s_{32}\right)-c_{3}\left(z_{1}, z_{2}\right)+s_{33} B^{3 \prime}\left(B^{1 \prime}\right)^{-1}
\end{array}\right] \\
& =(0,0) . \tag{15}
\end{align*}
$$

Thus we have, denoting the solutions of (10) as $\tilde{y}_{i}\left(p_{1}, p_{2}, D, l\right)$ for $i=1,2,3$, and using (14), (12), (13), and (9),

$$
\begin{aligned}
{\left[\begin{array}{ll}
\frac{\partial \tilde{y}_{1}}{\partial p_{1}} & \frac{\partial \tilde{y}_{1}}{\partial p_{2}} \\
\frac{\partial \tilde{y}_{2}}{\partial p_{1}} & \frac{\partial \tilde{y}_{2}}{\partial p_{2}} \\
\frac{\partial \tilde{y}_{3}}{\partial p_{1}} & \frac{\partial \tilde{y}_{3}}{\partial p_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
\left(B^{1}\right)^{-1}-\left(B^{1}\right)^{-1} B^{3} c_{3}\left(w_{1}, w_{2}\right) & -\left(B^{1}\right)^{-1} B^{3} \\
c_{3}\left(w_{1}, w_{2}\right) & 1
\end{array}\right] \\
& \times\left[\begin{array}{c}
-H\left(B^{1 \prime}\right)^{-1} \\
\left(s_{31}, s_{32}\right)-c_{3}\left(z_{1}, z_{2}\right)+s_{33} B^{3 \prime}\left(B^{1 \prime}\right)^{-1}
\end{array}\right] \\
& =\left[\begin{array}{r}
-\left(B^{1}\right)^{-1} H\left(B^{1 \prime}\right)^{-1}-\left(B^{1}\right)^{-1} B^{3} \partial \tilde{y}_{3} / \partial\left(p_{1}, p_{2}\right) \\
\partial \tilde{y}_{3} / \partial\left(p_{1}, p_{2}\right)
\end{array}\right]
\end{aligned}
$$

where

$$
\frac{\partial \tilde{y}_{3}}{\partial\left(p_{1}, p_{2}\right)}=\left(s_{31}, s_{32}\right)-c_{3}\left(z_{1}, z_{2}\right)+s_{33} B^{3 \prime}\left(B^{1 \prime}\right)^{-1} .
$$

From (11) and (14) it follows that

$$
\left[\begin{array}{c}
\frac{\partial \tilde{y}_{1}}{\partial D} \tag{17}\\
\frac{\partial \tilde{y}_{2}}{\partial D}
\end{array}\right]=-\left(B^{1}\right)^{-1} B^{3} c_{3},
$$

hence from (16):

$$
\begin{align*}
& {\left[\begin{array}{ll}
\frac{\partial \tilde{y}_{1}}{\partial p_{1}}+\frac{\partial \tilde{y}_{1}}{\partial D} z_{1} & \frac{\partial \tilde{y}_{1}}{\partial p_{2}}+\frac{\partial \tilde{y}_{1}}{\partial D} z_{2} \\
\frac{\partial \tilde{y}_{2}}{\partial p_{1}}+\frac{\partial \tilde{y}_{2}}{\partial D} z_{1} & \frac{\partial \tilde{y}_{2}}{\partial p_{2}}+\frac{\partial \tilde{y}_{2}}{\partial D} z_{2}
\end{array}\right]=} \\
& \quad-\left(B^{1}\right)^{-1} H\left(B^{1 \prime}\right)^{-1}-\left(B^{1}\right)^{-1} B^{3}\left[\left(s_{31}, s_{32}\right)+s_{33} B^{3 \prime}\left(B^{1 \prime}\right)^{-1}\right] . \tag{18}
\end{align*}
$$

In order to compute the trade-Slutsky matrix it remains to compute the partial derivatives of the functions

$$
\begin{align*}
& \tilde{x}_{i}\left(p_{1}, p_{2}, D, l\right) \equiv \\
& \text { (19) } \quad h_{i}\left(p_{1}, p_{2}, \hat{p}_{3}\left(p_{1}, p_{2}\right), p_{1} \tilde{y}_{1}(\cdot)+p_{2} \tilde{y}_{2}(\cdot)+\hat{p}_{3}\left(p_{1}, p_{2}\right) \tilde{y}_{3}(\cdot)+D\right) \quad(i=1,2) . \tag{19}
\end{align*}
$$

Making use of (15) we have

$$
\left[\begin{array}{cc}
\frac{\partial \tilde{x}_{1}}{\partial p_{1}} & \frac{\partial \tilde{x}_{1}}{\partial p_{2}} \tag{20}\\
\frac{\partial \tilde{x}_{2}}{\partial p_{1}} & \frac{\partial \tilde{x}_{2}}{\partial p_{2}}
\end{array}\right]=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]-\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\left[\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right]+\left[\begin{array}{l}
s_{13} \\
s_{23}
\end{array}\right] B^{3 \prime}\left(B^{1 \prime}\right)^{-1}
$$

Since

$$
\begin{equation*}
\frac{\partial \tilde{x}_{i}}{\partial D}=\frac{\partial h_{i}}{\partial Y}=c_{i} \quad(i=1,2) \tag{21}
\end{equation*}
$$

it follows that

$$
\left[\begin{array}{ll}
\frac{\partial \tilde{x}_{1}}{\partial p_{1}}+\frac{\partial \tilde{x}_{1}}{\partial D} z_{1} & \frac{\partial \tilde{x}_{1}}{\partial p_{2}}+\frac{\partial \tilde{x}_{1}}{\partial D} z_{2} \tag{22}\\
\frac{\partial \tilde{x}_{2}}{\partial p_{1}}+\frac{\partial \tilde{x}_{2}}{\partial D} z_{1} & \frac{\partial \tilde{x}_{2}}{\partial p_{2}}+\frac{\partial \tilde{x}_{2}}{\partial D} z_{2}
\end{array}\right]=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]+\left[\begin{array}{l}
s_{13} \\
s_{23}
\end{array}\right] B^{3 \prime}\left(B^{1 \prime}\right)^{-1}
$$

The trade-demand function is defined by

$$
\hat{h}_{i}\left(p_{1}, p_{2}, D, l\right)=\tilde{x}_{i}\left(p_{1}, p_{2}, D, l\right)-\tilde{y}_{i}\left(p_{1}, p_{2}, D, l\right) \quad(i=1,2),
$$

hence, subtracting (18) from (22) we obtain the trade-Slutsky matrix:

$$
\begin{aligned}
\hat{S}= & {\left[\begin{array}{ll}
\hat{s}_{11} & \hat{s}_{12} \\
\hat{s}_{21} & \hat{s}_{22}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
\frac{\partial \hat{h}_{1}}{\partial p_{1}}+\frac{\partial \hat{h}_{1}}{\partial D} \hat{h}_{1} & \frac{\partial \hat{h}_{1}}{\partial p_{2}}+\frac{\partial \hat{h}_{1}}{\partial D} \hat{h}_{2} \\
\frac{\partial \hat{h}_{2}}{\partial p_{1}}+\frac{\partial \hat{h}_{2}}{\partial D} \hat{h}_{1} & \frac{\partial \hat{h}_{2}}{\partial p_{2}}+\frac{\partial \hat{h}_{2}}{\partial D} \hat{h}_{2}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]+\left[\begin{array}{l}
s_{13} \\
s_{23}
\end{array}\right] B^{3 \prime}\left(B^{1 \prime}\right)^{-1}+\left(B^{1}\right)^{-1} B^{3}\left[\begin{array}{ll}
s_{31} & s_{32}
\end{array}\right] } \\
& +\left(B^{1}\right)^{-1} B^{3} s_{33} B^{3 \prime}\left(B^{1 \prime}\right)^{-1}+\left(B^{1}\right)^{-1} H\left(B^{1 \prime}\right)^{-1} \\
= & {\left[\begin{array}{ll}
I_{2} & \left.\left(B^{1}\right)^{-1} B^{3}\right]\left[\begin{array}{ll}
S_{11} & S_{13} \\
S_{31} & s_{33}
\end{array}\right]\left[\begin{array}{c}
I_{2} \\
B^{3 \prime}\left(B^{1 \prime}\right)^{-1}
\end{array}\right]+\left(B^{1}\right)^{-1} H\left(B^{1 \prime}\right)^{-1}, \\
= & \left(B^{1}\right)^{-1}\left\{B S B^{\prime}+H\right\}\left(B^{1 \prime}\right)^{-1},
\end{array}\right.}
\end{aligned}
$$

where

$$
S_{11}=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right], \quad S_{31}=\left[\begin{array}{ll}
s_{31} & s_{32}
\end{array}\right], \quad S_{13}=\left[\begin{array}{l}
s_{13} \\
s_{12}
\end{array}\right],
$$

and thus

$$
S=\left[\begin{array}{ll}
S_{11} & S_{13} \\
S_{31} & s_{33}
\end{array}\right]=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right], \quad \text { and where } \quad B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]
$$

Since S and H are symmetric and negative semi-definite, so is \hat{S}.

References

Chipman, John S. "A General-Equilibrium Framework for Analyzing the Responses of Imorts and Exports to External Price Changes: An Aggregation Theorem." In Günter Bamberg and Otto Opitz (eds.), Methods of Operations Research, Vol. 44: 6th Symposium on Operations Research, Universität Augsburg, September 7-9, 1981, Vol. 2 (Königstein: Verlag Anton Hain, Meisenheim GmbH, 1981), 43-56.

Hurwicz, Leonid and Hirofumi Uzawa. "On the Integrrability of Demand Functions." In John S. Chipman, Leonid Hurwicz, Marcel K. Richter, and Hugo F. Sonnenschein (eds.), Preferences, Utility, and Demand (New York: Harcourt Brace Jovanivich, Inc., 1971), 114-162.

[^0]: ${ }^{1}$ This notation departs from that of Chipman (1981) where Φ stood for the Hessian of the domestic-cost function and no further use was made of this domestic-cost function.

