
Risk Aversion as a Foundation of Expected Utility�

Jan Werner

Department of Economics

University of Minnesota

Minneapolis, MN 55455

October 2002
�rst draft - October 1999.

�I am pleased to thank Rose-Anne Dana, Rich Kihlstrom, Igor Livshits, and Ket Richter

for helpful discussions, and Jack Stecher for help with the proof of Theorem 2.1. I gratefully

acknowledge the �nancial support of the NSF under Grant SES-0099206.

1



Abstract: An agent's preferences exhibit risk aversion with respect to some

probabilities of states of the world if she prefers deterministic outcome equal to

the expected value of a state-contingent outcome under these probabilities to the

state-contingent outcome itself. We show that if preferences exhibit risk aversion

with respect to some probabilities and satisfy the independence axiom (sure thing

principle), then they have an expected utility representation with respect to these

probabilities. This gives a simple axiomatization of risk-averse expected utility

with a �nite set of states of the world. We also provide an axiomatization of

general expected utility based on a condition on agent's attitude toward risk.
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1. Introduction

An agent's preferences exhibit risk aversion if she prefers deterministic outcome

equal to the expectation of a state-contingent outcome to the state-contingent

outcome itself. Risk aversion gives rise to many important results in economics

of uncertainty. The most frequently used speci�cation of risk-averse preferences

is expected utility with concave von Neumann-Morgenstern utility function. The

question we ask in this paper is when does a risk-averse preference have an ex-

pected utility representation? The answer turns out to be surprisingly simple. It

is the independence axiom (sure-thing principle) that, when added to risk aversion,

implies expected utility representation (with concave von Neumann-Morgenstern

utility function). This gives a simple axiomatization of expected utility.

We consider a setting of uncertainty described by a �nite set of states of the

world. Outcomes take values in real numbers or an Euclidean space. The in-

tended interpretation is that of consumption of a single or multiple goods under

uncertainty. Of course, our de�nition of risk aversion refers to some probabilities

of states. It could be that these probabilities are \objective" probabilities, but it

does not have to be so. The agent may not know any objective probabilities and

yet her preference may exhibit risk aversion with respect to some probabilities.

This simply means that, when faced with a binary choice between state-contingent

consumption plan c and a deterministic consumption plan E(c), where E(c) is cal-

culated using these probabilities, she will choose E(c), for every c. Our result says

that if preferences exhibit risk aversion with respect to some probabilities and sat-

isfy the independence axiom, then they have expected utility representation with

respect to these probabilities. These probabilities become agent's \subjective"

probabilities of states, and they are revealed by agent's risk aversion.

The setting of �nite-state uncertainty and a continuum of outcomes plays an

important role in economic theory. It is the basic setting for equilibrium theory

under uncertainty and most of �nancial economics. Yet, the setting proved to be

problematic for an axiomatization to expected utility. The famous axiomatiza-
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tion of expected utility due to Savage [11] requires that there be a continuum of

states. The axiomatization of Anscombe and Aumann [1] requires an extension

of the domain of preferences to include arbitrary lotteries on outcomes. Alterna-

tives to our axiomatization of expected utility under �nite-state uncertainty are

due to Wakker [13] (see LeRoy and Werner [9] for a recent exposition), Gul [4],

Hens [5] and Stigum [12]. Wakker's axiomatization involves strengthening of the

independence axiom to cardinal coordinate independence.

Results analogous to our main theorem hold for risk proclivity and risk neu-

trality in place of risk aversion. For instance, risk proclivity with respect to some

probabilities along with the independence axiom implies expected utility represen-

tation with respect to these probabilities, with convex von Neumann-Morgenstern

utility function. Again, it is the agent's attitude toward risk that reveals her sub-

jective probabilities. We also provide an axiomatization of general, neither concave

nor convex, expected utility. The condition on risk attitude in this axiomatization

concerns risk compensation for small risks.

The paper is organized as follows: In section 2 we present and prove our main

axiomatization of risk-averse expected utility. Section 3 contains the axiomatiza-

tion of general expected utility. Extensions of our two axiomatizations to arbitrary

Euclidean spaces of outcomes are discussed in section 4. Most of the proofs can

be found in the Appendix.

2. Risk Aversion and Concave Expected Utility

Uncertainty is represented by a �nite set of states S = f1; : : : ; Sg with S > 1.

At �rst, we assume that there is a single consumption good. A typical consumption

plan is a S-vector c = (c1; : : : ; cS), where cs represents consumption conditional

on state s. For x 2 R, we write x = (x; : : : ; x) to denote the deterministic

consumption plan equal to x in every state.

An agent's preferences over state-contingent consumption plans are indicated

by a strictly increasing and continuous utility function U : RS !R. Let U denote

the set of all such utility functions.
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Let � be the (open) simplex of strictly positive vectors of probabilities of states.

For � 2 � and any S-vector such as, say, c 2 RS, we use E�(c) 2 R to denote the

expectation with respect to �; and E�(c) 2 R
S to denote the vector with E�(c) in

every coordinate.

Utility function U exhibits risk aversion with respect to probabilities � if the

agent prefers deterministic consumption equal to the expected value of a consump-

tion plan to the consumption plan itself, that is,

U(c) � U(E�(c)); (1)

for every c 2 RS.

Utility function U has an expected utility representation with respect to �, if

there exists function v : R ! R ( a von Neumann-Morgenstern utility) such that

U(c) � U(d) i� E�[v(c)] � E�[v(d)] (2)

for all c; d 2 RS. As usual, the von Neumann-Morgenstern utility, if it exists,

is unique up to a positive aÆne transformation. Utility function U that has ex-

pected utility representation exhibits risk aversion if and only if the von Neumann-

Morgenstern utility function v is concave. In such case we say that U has concave

expected utility representation.

A condition that has long been recognized as crucial for an axiomatization of

expected utility under uncertainty is the independence axiom (also called sure-thing

principle). It says that

U(c�sx) � U(d�sx) i� U(c�sy) � U(d�sy) (3)

for all c; d 2 RS , x; y 2 R, and s 2 S. Here c�sx denotes the consumption plan c

with consumption cs in state s replaced by x.

We have the following

Theorem 2.1 Assume that S � 3. Utility function U 2 U obeys the independence

axiom and exhibits risk aversion with respect to probabilities � 2 � if and only if

it has a concave expected utility representation with respect to �.
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Proof: To prove the only non-trivial suÆciency part of the theorem, suppose

that U obeys the independence axiom. It follows from Debreu [2] that U has

state-separable representation

U(c) � U(d) i�

SX

s=1

vs(cs) �

SX

s=1

vs(ds) (4)

for all c; d 2 RS, for some functions vs : R ! R, s = 1; : : : S. We shall assume

that each function vs in (4) is di�erentiable. A considerably more diÆcult proof

without this extra assumption can be found in the Appendix.

For each x 2 R, consider the following constrained maximization problem

max
c

X

s

vs(cs) (5)

subject to

E�(c) = x: (6)

Risk aversion implies that x is a solution to (5). The �rst-order conditions are

v0s(x) = ��s; s = 1; : : : ; S; (7)

where � is a strictly positive Lagrange multiplier.

Eq. (7) can be rewritten as

v0s(x) =
�s

�1
v01(x): (8)

Since (8) holds for every x, we obtain

vs(x) =
�s

�1
v1(x) +  s; (9)

for every x and some  s 2 R. It follows that
P

s vs(cs) =
1
�1

P
s �sv1(cs)+ where

 =
PS

s=2  s. Therefore, expected utility E�[v(c)] with v � v1 represents utility

function U . Risk aversion implies that function v is concave. 2

If there are only two states, then the suÆciency part of Theorem 2.1 does not

hold. Our proof does not apply since the independence axiom does not imply state-

separable representation with only two states. In fact, the independence axiom is
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satis�ed by every strictly increasing utility on R2. Theorem 2.1 can be extended

to the case of S = 2 by replacing the independence axiom by some other condition

that guarantees a state-separable representation. For such condition, see Debreu

[2].

It should be clear that an analogous result holds under risk proclivity de�ned

by U(c) � U(E�(c)) for every c. Risk proclivity and the independence axiom are

equivalent to convex expected utility representation. Risk neutrality, de�ned by

U(c) = U(E�(c)) for every c, is equivalent to (linear) representation of U(c) by

E�(c) even without the independence axiom.

3. Axiomatization of Expected Utility

In this section we provide an axiomatization of general, not necessarily concave,

expected utility. In the proof of Theorem 2.1 risk aversion with respect to � im-

plies that the marginal rate of substitution between consumption in two di�erent

states at any deterministic consumption plan equals the ratio of probabilities. This

combined with state-separability of utility function leads to expected utility rep-

resentation. Consequently, an axiomatization of expected utility can be obtain by

imposing the independence axiom along with the requirement that the aforemen-

tioned marginal rates of substitution be the same for all deterministic consumption

plans. This is the approach taken by Hens [5]. Here we take a di�erent approach.

We provide a condition that pertains directly to agent's attitude toward risks.

We say that z 2 RS is a �-risk for probabilities of states � 2 � if E�(z) = 0.

Risk compensation for �-risk z at a deterministic consumption level x 2 R is

�(x; z) 2 R de�ned by

U(x� �(x; z)) = U(x + z) (10)

We introduce the following condition on the asymptotic order of risk compen-

sation:

(C) lim�!0
�(x;�z)

�
= 0; for every x 2 R and every �-risk z 2 RS .
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If utility function U exhibits risk neutrality with respect to �, then �(x; z) = 0

for every x and every �-risk z, and (C) holds. More important, if U has ex-

pected utility representation with respect to � with di�erentiable von Neumann-

Morgenstern utility, then condition (C) holds. A simple proof can be given if the

von Neumann-Morgenstern utility is twice continuously-di�erentiable while the

more general case follows from Theorem 3.1 below. The second-order approxi-

mation of risk compensation under expected utility (see, for instance, LeRoy and

Werner [9]) is

�(x; �z) �=
1

2
ra(x)�

2(z)�2; (11)

for small �, where ra(x) is the Arrow-Pratt measure of absolute risk aversion and

�2(z) is the variance of z. Thus,
�(x;�z)

�
is approximately proportional to � and

converges to zero as � goes to zero. Note also that if U has di�erentiable expected

utility representation with respect to probabilities di�erent from �, then condition

(C) does not hold for �-risks. The reason is that for an expected utility with respect

to, say, �0 approximation (11) of risk compensation for �-risk has an additional

�rst-order term �E�0(z).

A condition similar to (C) has been found by Nielsen [10] to be necessary and

suÆcient for di�erentiability of a concave von Neumann-Morgenstern utility.

We have

Theorem 3.1 Assume that S � 3. Di�erentiable utility function U 2 U obeys the

independence axiom and satis�es condition (C) for some � 2 � if and only if it

has an expected utility representation with respect to �.

The proof can be found in the Appendix.

Expected Utility with Multiple Goods

If there are L goods, then state-contingent consumption plans are vectors in

R
SL and von Neumann-Morgenstern utility function v is a multivariable function
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on RL. Theorem 2.1 extends without any change to the case of L goods. In its

proof, equation (8) becomes Dvs(x) = �s

�1
Dv1(x), where Dvs(x) is the gradient

vector, and it implies (9).

An extension of Theorem 3.1 is more problematic since equation (10) does not

lead to a well-de�ned concept of risk compensation (see Kihlstrom and Mirman

[6]) with multiple goods. Therefore we introduce risk compensations measured in

individual goods. Risk compensation for �-risk z in consumption of good l at a

deterministic consumption level x 2 RL is �l(x; z) 2 R de�ned by

U(x� �l(x; z)el) = U(x + zel); (12)

where el is the lth unit vector in RL, l = 1; : : : ; L. We extend condition (C) to

(C.1) lim�!0
�
l
(x;�z)

�
= 0; for every x 2 R, every �-risk z 2 RS, and l = 1; : : : ; L.

If condition (C) is replaced by (C:1), then Theorem 3.1 and its proof extend

to the case of L goods.
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Appendix.

Lemma A.1: Let v : R ! R be a continuous function and let 0 < � < 1. If

v(y + h) + v(y � h) � v(y + �h) + v(y � �h) (13)

for every y and h, then v is concave.

Proof: Using (13) repeatedly n times we obtain

v(y + h) + v(y � h) � v(y + �nh) + v(y � �nh) (14)

Taking the limit in (14) as n goes to in�nity, there results

1

2
v(y + h) +

1

2
v(y � h) � v(y); (15)

for every y and h. This implies that v is concave. 2

Proof of Theorem 2.1: The independence axiom implies that U has represen-

tation
P

s vs(cs). We prove that function vs is concave for each s. For � 2 R and

states s; t with s 6= t, we de�ne ~� 2 RS by ~�t = �, ~�s = �(�t=�s)� and ~�k = 0 for all

k 6= t; s. For every x 2 R, E�(x + ~�) = x and, by risk aversion, U(x + ~�) � U(x).

That is,

vt(x+ �) + vs(x�
�t

�s
�) � vt(x) + vs(x) (16)

Next, consider deterministic consumption plan x+ � equal to x+ � in every state.

Again, by risk aversion, we have U(x + �� ~�) � U(x+ �). That is,

vt(x) + vs(x+ (1 +
�t

�s
)�) � vt(x+ �) + vs(x+ �) (17)

Adding (16) and (17) side-by-side and rearranging terms, we obtain

vs(x+ (1 +
�t

�s
)�) + vs(x�

�t

�s
�) � vs(x) + vs(x + �): (18)

If we change variables in (18) by setting

y � x+
�

2
; h � (1 + 2

�t

�s
)
�

2
; � �

1

1 + 2 �t

�s

; (19)
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we obtain (13). Since x and � were chosen arbitrarily, y and h are arbitrary while

� is �xed with 0 < � < 1. Thus Lemma A.1 can be applied implying that function

vs is concave.

Since each function vs is concave and continuous, it is di�erentiable except

for at most countably many points. Therefore, function
P

s vs(�) is di�erentiable

except for at most countably many points in RS. By the argument of the proof in

Section 2,

v0s(x) =
�s

�1
v01(x); (20)

for x 2 R, with exception of at most countably many points. This implies (see

Kuczma [7, pg. 74]) that

vs(x) =
�s

�1
v1(x) +  s (21)

for every x. 2

Proof of Theorem 3.1: We �rst prove suÆciency of the independence axiom

and condition (C) for expected utility representation. Since U is di�erentiable

and S � 3, the independence axiom is equivalent to the following condition (see

Leontief [8]) on marginal rates of substitution between consumption in any two

states:

@sU(c�kx)

@tU(c�kx)
=
@sU(c�ky)

@tU(c�ky)
(22)

for every k 6= s; t and every c; x; y, where @sU denotes the partial derivative of U

with respect to cs. Condition (22) implies the existence of state-separable repre-

sentation (4) with di�erentiable functions vs (see the proof of Green [3]). Without

loss of generality we can assume that U(c) =
P

s vs(cs).

For � 2 R and state s 6= 1, de�ne ~� 2 RS by ~�s = �, ~�1 = �(�s=�1)� and ~�t = 0

for every t 6= s; 1. Of course, ~� is a �-risk. For every x 2 R, we have

1

�
[U(x + ~�)� U(x)] =

1

�
[vs(x+ �)� vs(x) + v1(x�

�s

�1
�)� v1(x)] = (23)
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=
vs(x+ �)� vs(x)

�
+
v1(x�

�s

�1
�)� v1(x)

�
(24)

Since vs and v1 are di�erentiable, we obtain

lim
�!0

1

�
[U(x + ~�)� U(x)] = v0s(x)�

�s

�1
v01(x) (25)

On the other hand, we have

1

�
[U(x + ~�)� U(x)] =

1

�
[U(x� �(x; ~�))� U(x)] = �

�(x; ~�)

�
[
U(x� �(x; ~�))� U(x)

��(x; ~�)
]

(26)

If � converges to zero so does the risk compensation �(x; ~�) and the limit of the right-

most term in (26) equals the derivative of U at x in the direction of deterministic

consumption. It follows from condition (C) that

lim
�!0

�(x; ~�)

�
= 0: (27)

Consequently,

lim
�!0

1

�
[U(x + ~�)� U(x)] = 0: (28)

Combining (25) with (28), we obtain that

v0s(x) =
�s

�1
v01(x): (29)

holds for every x and every s. The rest of the proof is the same as of Theorem 2.1.

Next we prove necessity of the independence axiom and condition (C) for ex-

pected utility representation. Of course, the independence axiom holds for ex-

pected utility, and so only condition (C) is of concern. For every �-risk z we

have

lim
�!0

1

�
(E�[v(x+ �z)]� v(x)) = v0(x)E�(z) = 0: (30)

Note that di�erentiability of v follows from di�erentiability of U and the unique-

ness, up to aÆne transformation, of expected utility representation. As in (26),

we can write

lim
�!0

1

�
(E�[v(x+ �z)]� v(x)) = �

�(x; �z)

�
[
E�[v(x� �(x; �z))]� v(x)

��(x; �z)
]: (31)
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Since the right-most term in (31) converges to v0(x), we obtain from (30) and (31)

that

lim
�!0

�(x; �z)

�
= 0: (32)

This completes the proof.

2
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