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1. Introduction

Risk aversion has important implications on agents’ choices and on prices and

allocations in security markets under expected utility. Good examples are results

on optimal risk sharing among many risk-averse agents (see LeRoy and Werner

(2001)). The standard theory of risk aversion due to Arrow (1965) and Pratt

(1964) is limited to expected utility. In Werner (2009) we developed a new theory

of risk aversion aimed primarily at applications to preference that have been put

forward as alternatives to expected utility; the so called non-expected utilities. The

theory applies to non-expected utilities that may not be distribution invariant (or

probabilistically sophisticated). That is, when there is no probability measure on

uncertain states such that acts or contingent claims are ranked only according to

probability distributions of claims that they induce. Many non-expected utilities

are not distribution invariant.

The basic concept of Werner (2009) is the mean-independent risk: for a proba-

bility measure π on a finite state space, contingent claim ǫ is a mean-independent

risk at another contingent claim z if the conditional expectation Eπ(ǫ|z) of ǫ on z

equals zero. Utility function U exhibits aversion to mean-independent risk if there

exists a probability measure π such that U(y) ≥ U(x) whenever x differs from y

by a mean-independent risk at π, that is, if x = z + ǫ and y = z + λǫ for some

ǫ and z such that ǫ is a mean-independent risk at z and 0 ≤ λ ≤ 1. Aversion

to mean-independent risk under π implies, in particular, that U(z) ≥ U(z + ǫ)

whenever ǫ is a mean-independent risk at z. Thus, the agent whose initial position

is a contingent claim z rejects a gamble given by the mean-independent risk ǫ. If

utility function U is concave, this last condition is equivalent to aversion to mean-

independent risk (see Werner (2009)). Arrow (1965) and Pratt (1964) defined risk

aversion under the expected utility hypothesis by this condition restricted to risk-

free initial claims. Under expected utility, risk aversion in the Arrow-Pratt sense

implies rejection of gambles with mean-independent risk. Every utility function

that is monotone decreasing with respect to the standard Rothschild-Stiglitz (or

stochastic dominance) order of more risky is averse to mean-independent risk. The

converse does not hold.

The objective of this paper is to provide characterizations of aversion to mean-

independent risk for two popular classes of non-expected utilities: variational pref-
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erences, and multiple-prior (maxmin) expected utilities. Under the variational

preferences model, the decision maker has a primary probability belief but consid-

ers alternative probability beliefs as well. These other probability beliefs involve

cost (in terms of utility) specified by a cost function. The decision criterion is the

minimum over all priors of the sum of the expected utility of an act and the cost

of the prior. A motivation for variational preferences comes from the literature

on robust control and model misspecification, see Hansen and Sargant (2001) and

Maccheroni, Marinacci and Rustichini (2006).

Under the multiple-prior expected utility model, the decision maker has a set of

probability measures over uncertain states as probability beliefs instead of a single

measure under expected utility. This multiplicity of probability measures reflects

her ambiguous information about the states, or uncertainty of her expectations.

The decision criterion is the minimum over the set of multiple priors of the expected

utility of a contingent claim. Taking the minimum reflects the decision maker’s

concern with the “worst case” scenario. An axiomatic derivation of multiple-prior

expected utility has been given by Gilboa and Schmeidler (1989).

The standard motivation for multiple-prior expected utility comes from the

Ellsberg paradox. The pattern of preference over bets on balls drawn from an

urn in the Ellsberg experiment is incompatible with expected utility, but can be

explained by multiple-prior expected utility. For a single urn with 30 red balls and

60 green or yellow balls with unknown proportions of the two colors, a multiple-

prior expected utility with the set of all probability measures that assign probability

1/3 to drawing red ball and arbitrary probabilities (summing up to 2/3) to drawing

yellow or green ball leads to the desired pattern of preferences.

We identify in this paper conditions on the cost function and the von Neumann-

Morgenstern utility function that guarantee that variational preferences exhibit

aversion to mean-independent risk for some probability measure π. The condition

on the cost function is called stability with respect to probability measure π. It

requires that, for every probability measure P and every partition of states F,

the cost of a probability measure that coincides with P on elements of F and has

conditional probabilities of π within each element of F has lower cost than the

cost of P. Our Theorem 1 states that variational preferences with concave utility

function exhibits aversion to mean-independent risk under π if and only if the cost
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function is π-stable.

We show that cost functions defined by any divergence distance from primary

probability belief π are π-stable. It follows that the variational preferences pro-

posed by Hansen and Sargant (2001) with concave utility function and relative

entropy as the cost function - these are called multiplier preferences - exhibit aver-

sion to mean-independent risk. Cost functions defined by the Euclidean distance

fail to be π-stable unless π is the uniform probability measure.

For multiple-prior expected utility, we identify conditions on the set of prob-

ability priors and the von Neumann-Morgenstern utility function that guarantee

aversion to mean-independent risk for some probability measure from the set of

priors. The condition on the set of priors is also called stability with respect to

probability measure π and requires that, for every probability measure in the set

of priors and every partition of states, the probability measure obtained by the

same operation as in the definition of a stable cost function lies in the set of priors.

Theorem 2 states that concave multiple-prior expected utility exhibits aversion to

mean-independent risk under π if and only if the set of priors is π-stable.

The most important cases of sets of priors that are π-stable are cores of convex

distortions of probability measure π and neighborhoods of π in the relative entropy

or other divergence distances. Euclidean neighborhoods of π are not π-stable unless

π is the uniform probability measure. The set of priors in the Ellsberg experiment

is not π-stable for any probability π in the set. The reason is the existence of an

unambiguous non-trivial event – red ball drawn – to which all priors assign the same

probability. We show that, in general, the existence of non-trivial unambiguous

event precludes mean-independent risk aversion under any probability measure.

The paper is organized as follows: In Section 2 we introduce the setting and

briefly review definitions and some results about mean-independent risk and aver-

sion to mean-independent risk. In Section 3 we present a characterization of vari-

ational preferences that exhibit aversion to mean-independent risk. Section 4 con-

tains the respective results for multiple-prior expected utilities. In Section 5 we

study divergence distances and neighborhoods while Section 6 is devoted to other

examples such as distortions of probability measures and the Euclidean distance.

Section 7 is about risk aversion and existence of unambiguous events.
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2. Mean-Independent Risk Aversion

There is a finite set S = {1, . . . , S} of states of nature (with S > 1.) The set of

all (additive) probability measures on S is ∆, the unit simplex in RS. The subset of

strictly positive probability measures is denoted by ∆̊. Any S-dimensional vector

x = (x1, . . . , xS) ∈ RS is called contingent claim. The expected value
∑S

s=1 P (s)xs

of x under a probability measure P ∈ ∆ is denoted by EP (x). For partition F of

states, E(x|F ) denotes conditional expectation of x on F. For contingent claim z,

E(x|z) denotes conditional expectation of x on z, that is, conditional expectation of

x on the partition generated by z. All these conditional expectations are contingent

claims.

Our study of risk aversion for variational preferences and multiple-prior ex-

pected utilities builds on the concepts of mean-independent risk and aversion to

mean-independent risk of Werner (2009). These concepts have been developed

primarily for applications to non-expected utilities that may not be distribution

invariant. That is, when there is no probability measure on states such that con-

tingent claims are ranked only according to probability distributions of claims that

they induce.1 The standard Rothschild-Stiglitz (or stochastic dominance) concept

of more risky is a ranking based on induced probability distributions and hence can

not be used for preferences that are not distribution invariant. Variational pref-

erences and multiple-prior expected utilities are often not distribution invariant.

(See Sections 3 and 4 for further discussion.)

We present now the basic concepts and some results of Werner (2009). Let

π ∈ ∆̊ be a strictly positive probability measure. Contingent claim ǫ ∈ RS is

a mean-independent risk at z ∈ RS if Eπ(ǫ|z) = 0. For two contingent claims

x, y ∈ RS with the same expectation, Eπ(x) = Eπ(y), x differs from y by mean-

independent risk if there exist z, ǫ ∈ RS and 0 ≤ λ ≤ 1 such that ǫ is a mean-

independent risk at z, and x = z + ǫ and y = z + λǫ.

Definition 1: Utility function U on RS is averse to mean-independent risk if there

exists a probability measure π such that U(y) ≥ U(x) whenever x differs from y

by mean-independent risk.

Every utility function that is decreasing with respect to the Rothschild-Stiglitz

1Distribution invariance is often called probabilistic sophistication in decision theory, following
Machina and Schmeidler (1992).

5



order of more risky is averse to mean-independent risk (Werner (2009), Theorem

2.1). The converse is not true. Every concave expected utility is averse to mean-

independent risk. Concave expected utility takes the form
∑S

s=1 π(s)v(xs) for a

concave utility function v : R → R, and is denoted by Eπ[v(x)].

Aversion to mean-independent risk is closely related to preference for condi-

tional expectations.

Definition 2: Utility function U on RS exhibits preference for conditional expec-

tations under probability measure π if U(Eπ(x|F )) ≥ U(x) for every x ∈ RS and

every partition of states F.

Equivalently, U exhibits preference for conditional expectations if the agent

rejects any mean-independent risk, that is, U(z) ≥ U(z + ǫ) for every ǫ, z ∈ RS

such that ǫ is mean-independent risk at z. It follows from Theorem 5.1 in Werner

(2009) that a quasi-concave utility function U is averse to mean-independent risk

under π if and only if it exhibits preference for conditional expectations under

π. Werner (2009) provides a characterization of concave utility functions that

are mean-independent risk averse in terms of superdifferentials. Recall that the

superdifferential of a concave function U at x ∈ RS is the set ∂U(x) consisting

of all vectors φ ∈ RS that satisfy U(y) ≤ U(x) + φ(y − x) for every y ∈ RS.

Theorem 6.1 in Werner (2009) says that concave utility function U on RS is averse

to mean-independent risk if and only if for every x there exists φ ∈ ∂U(x) such

that if xs = xs′ , then φs

π(s)
=

φ
s′

π(s′)
.

We conclude this section by introducing an operation on probability measures

that will be repeatedly used in the rest of the paper. For every partition F of

states and every probability measure P ∈ ∆, we define another probability measure

P π
F ∈ ∆ by

P π
F (A) =

k
∑

i=1

π(A|Ai)P (Ai) (1)

for every A ⊂ S, where sets Ai’s are elements of the partition F. Probability mea-

sure P π
F coincides with P on elements of partition F and has the same conditional

probabilities within each element of partition F as π. For the trivial partition

F = {S}, probability measure P π
F equals π; for the full partition F = {{s}s∈S},

P π
F equals P. Two elementary properties of probability measure P π

F will be used:
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Lemma 1: For every π ∈ ∆̊, P ∈ ∆, x ∈ RS, and every partition F,

(i) EP π

F
(x|F ) = Eπ(x|F ),

(ii) if x is F-measurable, then EP π

F
(x) = EP (x).

Lemma 1 implies that EP π

F
(x) = EP [Eπ(x|F )] for every x, and every F.

3. Variational Preferences.

Variational preferences (or variational utility) take the form

min
P∈∆

{

EP [v(x)] + c(P )
}

, (2)

for some strictly increasing and continuous utility function v : R → R and some

convex and lower semicontinuous function c : ∆ → [0,∞] such that c(π) = 0

for some π ∈ ∆. We shall maintain these assumptions on c and v throughout

the paper. For probability measure P, c(P ) is the cost (in terms of utility) of

considering belief P. We shall call c the cost function. Cost function c is finite, if

c(P ) < ∞ for every P ∈ ∆.

An axiomatization of variational preferences is due to Maccheroni, Marinacci

and Rustichini (2006). Variational preferences are often not distribution invariant.

An exception is when the cost function is a divergence distance, see Maccheroni

et al (2006) and Strzalecki (2008). Strzalecki (2009) provides a comprehensive

study of distribution invariance (i.e., probabilistic sophistication) of variational

preferences.

We introduce a property of cost function being decreasing with respect to taking

π-conditional probabilities as in (1). We call this property π-stability.

Definition 3: Cost function c is π-stable for π ∈ ∆̊ if

c(P π
F ) ≤ c(P ) (3)

for every P ∈ ∆ and every partition F.

If c is π-stable, then probability measure π has the lowest cost, that is, c(π) = 0.

Theorem 1: If cost function c is π-stable for π ∈ ∆̊, then variational preferences

with cost c and arbitrary concave utility v are averse to mean-independent risk un-

der π. Conversely, if c is finite and variational preferences with cost c and concave

utility v are averse to mean-independent risk under π ∈ ∆̊, then c is π-stable.

7



Proof: Suppose that c is π-stable. Since variational utility with concave utility

v is concave, it follows from Theorem 5.1 in Werner (2009) that it suffices to

show that it exhibits preference for conditional expectation under π. Consider an

arbitrary partition F. From Lemma 1, we have that

EP [v(Eπ(x|F ))] = EP π

F
[v(EP π

F
(x|F ))]. (4)

Using conditional Jensen’s inequality on the right-hand side of (4), we obtain

EP [v(Eπ(x|F ))] ≥ EP π

F
[v(x)]. (5)

Adding (5) and (3) side by side and taking minimum on both sides gives

min
P∈∆

{

EP [v(Eπ(x|F ))] + c(P )
}

≥ min
P∈∆

{

EP π

F
[v(x)] + c(P π

F )
}

(6)

The right-hand side of (6) is greater than or equal to minP∈∆

{

EP [v(x)] + c(P )
}

.

This shows preference for conditional expectations for variational preferences with

cost c and utility v.

The proof of the converse implication can be found in the Appendix. 2

Theorem 1 implies that variational preferences with finite cost c and concave

utility v are averse to mean-independent risk if and only if the same holds for

variational preferences with cost c and linear utility. Aversion to mean-independent

risk for variational preferences with linear utility has a simple characterization

that can be derived from Theorem 6.1 in Werner (2009). The superdifferential

of variational preferences with cost c and linear utility coincides with the set of

minimizing probability measures (see Theorem 18 of Maccheroni et al (2006)).

That is, the superdifferential at x is

Mc(x) = arg min
P∈∆

{

EP (x) + c(P )
}

. (7)

It follows from Theorem 1 and Theorem 6.1 that

Proposition 1: Variational preferences with finite cost c and any concave utility

v are averse to mean-independent risk under π if and only if, for every x, there

exists P ∈ Mc(x) such that

if xs = xs′, then
P (s)

π(s)
=

P (s′)

π(s′)
. (8)

8



For finite cost function c, condition (8) is equivalent to π-stability.

4. Multiple-Prior Expected Utilities

Multiple-prior (or maxmin) expected utility takes the form

min
P∈P

EP [v(x)], (9)

for some strictly increasing and continuous utility function v : R → R and some

convex and closed set P ⊂ ∆ of probability measures. We shall maintain these

assumptions on P and v throughout the paper. If the set P consists of a single

probability measure, then multiple-prior expected utility reduces to the standard

expected utility. If P is the set of all probability measures ∆, then it reduces to

the Wald’s criterion mins∈S v(xs).

An axiomatization of multiple-prior expected utility (9) with an arbitrary closed

and convex set of priors has been first given by Gilboa and Schmeidler (1989).

Multiple-prior expected utilities are often not distribution invariant under any

probability measure on states. An exception is when the set of priors is a convex

distortion of a probability measure (see Section 6).2 The multiple-prior expected

utility with linear utility minP∈P EP (x) has been extensively studied in the context

of coherent measures of risk (see Föllmer and Schied (2002)).

Multiple-prior expected utility is a special case of variational preferences. In-

deed, for the cost function cP defined by

cP(P ) =

{

0 if P ∈ P

+∞ if P /∈ P
(10)

variational preferences (2) take the form of multiple-prior expected utility (9) with

set of priors P.

We introduce the concept of stability of a set of priors with respect to proba-

bility measure π.

Definition 4: Set of probability measures P ⊂ ∆ is π-stable for π ∈ ∆̊ if P π
F ∈ P

for every P ∈ P and every partition F.

2Marinacci (2002) studies probabilistic sophistication of multiple-prior expected utilities on
a continuum state space. For further results and examples, see Grant and Kaji (2005) and
Strzalecki (2009).
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Note that set of priors P is π-stable if and only if cost function cP is π-stable.

Further, if P is π-stable, then π ∈ P. We have the following theorem.

Theorem 2: Multiple-prior expected utility with set of priors P and concave

utility v is averse to mean-independent risk under π if and only if P is π-stable.

Proof: The first implication, that the multiple-prior expected utility is averse to

mean-independent risk, follows from Theorem 1. The converse implication does

not follow from Theorem 1 since cost function cP is not finite (unless P = ∆). The

proof can be found in the Appendix. 2

It follows from Theorem 2 that multiple-prior expected utility with set of priors

P and concave utility v is averse to mean-independent risk if and only if the same

holds for multiple-prior expected utility with set of priors P and linear utility. The

latter has a simple characterization derived from Theorem 6.1 in Werner (2009).

The superdifferential of multiple-prior expected utility with set of priors P and

linear utility coincides with the set of minimizing probability measures (see Aubin

(1998)). That is, the superdifferential at x is

MP(x) = arg min
P∈P

EP (x). (11)

It follows from Theorem 2 and Theorem 6.1 that

Proposition 2: Multiple-prior expected utility with set of priors P and any con-

cave utility v is averse to mean-independent risk under π if and only if, for every

x, there exists P ∈ MP(x) such that

if xs = xs′, then
P (s)

π(s)
=

P (s′)

π(s′)
. (12)

Condition (12) is equivalent to the set of priors P being π-stable.

5. Divergence Distances and Neighborhoods

For a convex function Φ : R+ → R+ such that Φ(1) = 0, the divergence

distance (or statistical measure of distance) between probability measures P ∈ ∆

and π ∈ ∆̊ is

dΦ(P, π) =
S

∑

s=1

π(s)Φ
(P (s)

π(s)

)

. (13)
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It can be shown that the distance function dΦ is non-negative and a convex function

of P. If Φ is strictly convex, then dΦ(P, π) is zero if and only if P equals π. In general

dΦ is not a metric for it is asymmetric and violates the triangle inequality.

Important examples of divergence distances are the following:

Example 1. (Kullback-Leibler relative entropy) For Φ(t) = t ln(t) −

t + 1, the divergence distance is the relative entropy

dkl(P, π) =
S

∑

s=1

P (s) ln
(P (s)

π(s)

)

. (14)

Example 2. (Gini index) For Φ(t) = (t − 1)2, the divergence distance is the

Gini index
S

∑

s=1

(P (s) − π(s))2

π(s)
. (15)

Example 3. (Total variation) For Φ(t) = |t − 1|, the divergence distance is

the total variation
S

∑

s=1

|P (s) − π(s)|. (16)

A neighborhood of probability measure π ∈ ∆̊ in divergence distance is the set

NΦ(π, ǫ) = {P ∈ ∆ : dΦ(P, π) ≤ ǫ} (17)

for ǫ > 0. We restrict our attention to neighborhoods that are contained in the

interior of the probability simplex.

We have the following

Proposition 3: The divergence distance dΦ(·, π) is π-stable for every convex Φ

and π ∈ ∆̊. Further, the neighborhood NΦ(π, ǫ) is π-stable.

Proof: It suffices to show that

dΦ(P π
F , π) ≤ dΦ(P, π) (18)

for every P ∈ ∆ and every partition F. The proof of (18) can be found in Strzalecki

and Werner (2009, Proposition 7). We present it here for completeness. From (1)

and (13), we obtain

dΦ(P π
F , π) =

k
∑

i=1

π(Ai)φ
(P (Ai)

π(Ai)

)

(19)
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From Jensen’s inequality and convexity of Φ, it follows that

π(Ai)φ
(P (Ai)

π(Ai)

)

≤
∑

s∈Ai

π(s)Φ
(P (s)

π(s)

)

. (20)

Using (19) and (20) we obtain

dΦ(P π
F , π) ≤

k
∑

i=1

∑

s∈Ai

π(s)Φ
(P (s)

π(s)

)

= dΦ(P, π). (21)

2

Variational preferences with cost function c given as a scale-multiple of a di-

vergence distance, that is, c(P ) = θdΦ(P, π) where θ > 0 is a scale parameter, are

called divergence preferences. It follows from Theorem 1 and Proposition 3 that

divergence preferences exhibit aversion to mean-independent risk under π. Hansen

and Sargent(2001) and Strzalecki (2008) consider divergence preferences with cost

function c given by c(P ) = θdkl(P, π), where dkl is the relative entropy of (14) and

π is the agent’s reference belief. Such variational preferences are called multiplier

preferences. They exhibit aversion to mean-independent risk under π.

Multiple-prior expected utilities with neighborhoods in divergence distances as

the sets of priors have been used in asset pricing models. For example, Cao, Wang

and Zhang (2005) consider relative entropy neighborhoods; Epstein and Wang

(1995) consider total variation neighborhoods.

6. Cores of Convex Distortions and Other Examples

An important class of stable sets of priors are cores of convex distortions. Let

f : [0, 1] → [0, 1] be an increasing and convex function satisfying f(0) = 0 and

f(1) = 1. Set function f ◦ π is the distortion of probability π by f. The core of

f ◦ π is

core(f ◦ π) = {P ∈ ∆ : P (A) ≥ f(π(A)), ∀A} (22)

Multiple-prior expected utility with set of priors core(f◦π) for convex distortion

function f can be written as

S
∑

i=1

v(x(i))[f(π{s : xs ≥ x(i)}) − f(π{s : xs ≥ x(i−1)})], (23)
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where we used x(i) to denote the i-th highest value from among all xs, so that

x(1) ≥ x(2) ≥ · · · ≥ x(S). Utility function (23) is the rank-dependent expected

utility axiomatized by Quiggin (1982) and, in the case of linear v, by Yaari (1987).

Convex distortion of a probability measure is a convex capacity. Multiple-prior

expected utility with the set of priors core(f ◦ π) is the Choquet (non-additive)

expected utility of Schmeidler (1989) with the capacity f ◦ π.

Proposition 4: If f is convex, then core(f ◦ π) is π-stable.

Proof: Every contingent claim x when regarded as random variable on proba-

bility space (S, 2S, π) dominates Eπ(x|F ) in the sense of second order stochastic

dominance, for every partition F. It is well known (see Yaari (1987)) that rank-

dependent expected utility (23) with linear v and convex f is monotone decreasing

with respect to the second order stochastic dominance. Therefore

min
P∈core(f◦π)

EP (x) ≤ min
P∈core(f◦π)

EP (Eπ(x|F )). (24)

We apply (24) to x = χA for A ⊂ S. The left-hand side equals f(π(A)) while the

right-hand side is min P π
F (A) over all P in core(f ◦ π). Thus

f(π(A)) ≤ P π
F (A) (25)

for every P ∈ core(f ◦π) and every A and F. This shows that core(f ◦π) is π-stable.

2

Proposition 4 and Theorem 2 imply that every rank-dependent expected utility

with concave utility and convex distortion function is averse to mean-independent

risk. Yaari (1987) proved (using an inequality of Hardy, Litlewood and Polya) that

rank-dependent expected utility (23) with linear utility v and convex distortion

function f is decreasing with respect to the Rothschild-Stiglitz order of more risky.

Therefore it is also averse to mean-independent risk. Chew, Karni and Safra (1987)

proved that rank-dependent expected utility on the set of all distributions on a real

interval is decreasing with respect to the relation of R-S more risky if and only if

utility v is concave and distortion function f is convex. The proof in Chew, Karni

and Safra (1987) (see also Chew and Mao (1995)) relies on Gateaux differentiability

of the utility function on the space of distributions.
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Examples of cores are intervals of probabilities. The set

Pl = {P ∈ ∆ : P (s) ≥ γs, ∀s}, (26)

where γs ∈ (0, 1) are lower bounds on probabilities such that
∑

s γs ≤ 1, is the

core of convex distortion of probability measure π defined by π(s) = γs
P

s
γs

, and is

π-stable. The distortion function is a convex function fl such that fl(t) = λt for

every t ≤ maxA⊂S,A 6=S π(A) and fl(1) = 1. The set

Pu = {P ∈ ∆ : P (s) ≤ λs, ∀s}, (27)

where λs ∈ (0, 1) are upper bounds on probabilities such that
∑

s λs ≥ 1, is the

core of convex distortion of probability measure π given by π(s) = γs
P

s
γs

and is

π-stable. The distortion function is fu given by fu(t) = max{λ(t − 1) + 1, 0} for

every t ∈ [0, 1]. Since the intersection (and the union) of any two π-stable sets is

π-stable, it follows that the order interval of probabilities

[γπ, λπ] = {P ∈ ∆ : γπ ≤ P ≤ λπ}, (28)

where γ ≤ 1 ≤ λ, is π-stable, too. It is the core of f ◦ π for convex function

f = max{fl, fu}. The set of all possible priors ∆ is π-stable for every π ∈ ∆̊.

Proposition 4 does not extend to the more general class of cores of convex

capacities. The set of priors in our discussion of the Ellsberg paradox in Section 1

is the core of a convex capacity but it is not π-stable for any probability measure

π (see Section 7).

The Euclidean distance from a reference probability measure π is not π-stable

unless π is the uniform probability measure. Similarly, Euclidean neighborhoods

of π are not π-stable unless π is the uniform probability measure. This can be

demonstrated using conditions Propositions 1 and 3, respectively. We present here

an argument for π-stability of an Euclidean neighborhood of uniform probability

measure π and lack thereof for non-uniform π. Let P = {P ∈ ∆ : ||P − π|| ≤ ǫ},

and assume that P ⊂ ∆̊. For every non-deterministic x, the set MP(x) consists of

a unique probability measure P ∗
x . The first-order conditions for P ∗

x as a solution to

the minimization in (11) imply that if xs = xs′, then P ∗
x (s)−π(s) = P ∗

x (s′)−π(s′).

If π is uniform, then this implies P ∗
x (s) = P ∗

x (s′) which is condition (12) in this case.
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If π is not uniform, say π(1) 6= π(2), and S ≥ 3, then on can show that for x such

that x1 = x2 6= x3 the first-order conditions for P ∗
x contradict (12). The Euclidean

distance from uniform probability measure is a monotone transformation of the

Gini-index (15) and the Euclidean neighborhood is the Gini-index neighborhood.

7. Risk Aversion and Unambiguous Events.

Under multiple-prior expected utility, the agent’s probabilistic beliefs about

events are described by the set of probability measures P. A natural definition

(see Nehring (1999)) of an unambiguous event for P is as an event A ⊂ S such

that P (A) = P ′(A) for all P, P ′ ∈ P. Of course, the trivial events, ∅ and S, are

always unambiguous.

It turns out that, if a set of priors - other than a singleton set - permits non-

trivial unambiguous events, then it cannot be π-stable for any π. Thus, the exis-

tence of a non-trivial unambiguous event precludes mean-independent risk aver-

sion.

Proposition 5: Let P be π-stable. There exists a non-trivial unambiguous event

for P if and only if P = {π}.

Proof: Suppose that P is π-stable, has a non-trivial unambiguous event A,

and, by contradiction, there exists P ∈ P such that P 6= π. Let s be such that

π(s) 6= P (s). Suppose first that s /∈ A. Consider a partition F of S into two sets:

A∪{s}, and its complement. Note that the complement of A∪{s} is non-empty, for

it cannot be that P (A) = π(A), π(s) 6= P (s), and A∪{s} = S. For the probability

measure P π
F defined by (1), we have

P π
F (A) = π(A)

π(A) + P (s)

π(A) + π(s)
6= π(A). (29)

Since P π
F ∈ P, this contradicts the assumption that A is unambiguous. If s ∈ A,

then we consider the complement event Ac instead of A. Event Ac is unambiguous

and s /∈ Ac, so that the above arguments apply. This concludes the proof of the

non-trivial part of the proposition. 2

For the set of priors in our discussion of the Ellsberg paradox in Section 1,

the event of red ball drawn from the urn is unambiguous. It has probability 1/3.

Proposition 5 implies that there is no measure π in the set of priors such that
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π-stability holds. Thus, the form of ambiguity of beliefs in the Ellsberg paradox

precludes risk aversion.

8. Concluding Remarks.

The main contribution of the paper is identifying the property of stability of a

cost function and a set of priors as necessary and sufficient for aversion to mean-

independent risk of variational preferences and multiple-prior expected utilities. It

should be noted that the condition of stability of a set of priors has some similarity

to the condition of rectangularity introduced by Epstein and Schneider (2003) in

their study of dynamic consistency of multiple-prior preferences. The similarity

appears superficial though. In the setting of this paper, a set of priors P is called

rectangular with respect to a fixed partition of states F if P π
F ∈ P for all probability

measures P and π in P.

In Strzalecki and Werner (2009) we extend the standard results on optimal risk

sharing among risk averse agents from expected utilities to multiple-prior utilities

and variational preferences using some results from this paper.
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Appendix

Proof of Theorem 1. The proof of the second part proceeds in two steps. First

we show that if variational preferences with cost c and concave utility v are mean-

independent risk averse under π, then so are the variational preferences with cost

c and linear utility function. Second, we show that if variational preferences with

finite cost c and linear utility are mean-independent risk averse under π, then c is

π-stable.

The first step relies on the characterization of aversion to mean-independent

risk in terms of superdifferentials established in Theorem 6.1 in Werner (2009). It

says that a concave utility function U is averse to mean-independent risk under π

if and only if for every x there exists φ ∈ ∂U(x) such that

if xs = xs′ , then
φs

π(s)
=

φs′

π(s′)
. (30)

The superdifferential of variational preferences with cost c and concave utility v

at a point x at which v is differentiable is (see Theorem 18, of Maccheroni et al

(2006))

{φ ∈ RS : φs = v′(xs)P (s), ∀s ∈ S, for some P ∈ Mv
c(x)}, (31)

where Mv
c(x) denotes the set of minimizing probability measures. That is

Mv
c(x) = arg min

P∈∆

{

EP [v(x)] + c(P )
}

(32)

For linear utility, the superdifferential is simply the set of minimizing probabilities

Mc(x) of (7).

We need to show that (30) holds for some P ∈ Mc(x) in place of φ. For every

x there exist y ∈ ℜS and a constant k ∈ ℜ such that v(y) = x + k and v is

differentiable at y. The differentiability of v at y can be guaranteed by a suitable

choice of constant k because concave function v has at most a countable set of

points of nondifferentiablity. Since Mv
c(y) = Mc(x + k) and Mc(x + k) = Mc(x),

the sought out condition follows from the assumption of mean-independent risk

aversion of variational preference with cost c and utility v via condition (30).

For the second step we have the following
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Lemma 2: For every P̄ ∈ ∆ such that c(P̄ ) < ∞, there exists x̄ ∈ ℜS such that

P̄ = arg min
P∈∆

{

EP (x̄) + c(P )
}

(33)

Proof: One can take x̄ so that −x̄ ∈ ∂c(P̄ ), where ∂c denotes the subdifferential

of convex function c. By the definition of the subdifferential it holds c(P ) ≥ c(P̄ )+

EP (−x̄) − EP̄ (−x̄) for every P ∈ ∆. 2

Suppose that, for some P̂ ∈ ∆,

c(P̂ π
F ) > c(P̂ ) (34)

Since c is finite, we have c(P̂ π
F ) < ∞. By Lemma 2, there exists x̂ be such that

(33) holds for P̂ π
F . Using Lemma 1 and (34), we obtain

min
P∈∆

{

EP [x̂] + c(P )
}

= EP̂ [Eπ[x̂|F ]] + c(P̂ π
F ) > EP̂ [Eπ[x̂|F ]] + c(P̂ ). (35)

The right-hand side of (35) exceeds minP∈∆

{

EP [Eπ[x̂|F ]]+c(P )
}

. This contradicts

preference for F -conditional expectation of variational preferences with cost c and

linear utility. This concludes the proof. 2

Proof of Theorem 2. The first step of the Proof of Theorem 1 in this Appendix

implies that if multiple-prior expected utility with set of priors P and concave

utility v is averse to mean-independent risk under π then so is the multiple-prior

expected utility with set of priors P and linear utility.

We show now that if multiple-prior expected utility with set of priors P and

linear utility is mean-independent risk averse under π, then P is π-stable. Suppose

by contradiction that P is not π-stable. Then there exists probability measure

P̄ ∈ P such that P̄ π
F /∈ P for some partition F . By the separation theorem, there

exists y ∈ RS such that

EP̄ π

F

(y) < min
P∈P

EP (y) (36)

Using Lemma 1 and the fact that P̄ ∈ P, we obtain from (36) that

min
P∈P

EP [Eπ(y|F )] < min
P∈P

EP (y) (37)

This contradict preference for conditional expectations under π, which is equivalent

to mean-independent risk aversion. This contradiction concludes the proof. 2
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