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Abstract: This paper is about (non) participation in efficient risk sharing among
agents who have ambiguous beliefs about uncertain states of nature. The question
we ask is whether and how can ambiguous beliefs give rise to some agents not
participating in efficient risk sharing. Ambiguity of beliefs is described by the
multiple-prior expected utility of Gilboa and Schmeidler (1989), or the variational
preferences of Maccheroni et al. (2006). The main result says that if the aggregate
risk is relatively small, then the agents whose beliefs are the most ambiguous do not
participate in risk sharing. The higher the ambiguity of those agents’ beliefs, the
more likely is their non-participation. Another factor making non-participation
more likely is low risk aversion of agents whose beliefs are less ambiguous. We
discuss implications of our results on agents’ participation in trade in equilibrium
in assets markets.
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1. Introduction

Expected utility hypothesis together with (strict) risk aversion and common

probabilities have strong implications on efficient risk sharing among multiple

agents. First, agents’ consumption plans are comonotone with aggregate resources.

Second, every agent participates in risk sharing by holding at least a small fraction

of the aggregate risk. These results are at odds with empirical observations. In-

dividual consumption often deviates from positive correlation with the aggregate

consumption.1 A large fraction of population in the US is not participating in asset

markets thereby abstaining from sharing the aggregate financial risk.

Ambiguity of beliefs has been suggested as a way to reconcile the differences

between the observed patterns and the rules of efficient risk sharing. Two closely re-

lated, standard models of decision making with ambiguous beliefs are the multiple-

prior expected utility of Gilboa and Schmeidler (1989) and the variational pref-

erences of Maccheroni et al. (2006). Under the multiple-prior expected utility

hypothesis, an agent has a set of probability measures (or priors) as her beliefs

and evaluates an uncertain prospect by taking the minimum of expected utilities

over the set of beliefs. One of the main implications of the multiple-prior model

is the possibility of non-participation in trade. A simple illustration of this is

the portfolio inertia of Dow and Werlang (1992). An agent with multiple-prior

expected utility and risk-free initial wealth does not invest in a risky asset for a

range prices. As long as the expected return on the risky asset under the most

pessimistic belief is below the return on the risk-free asset and the expected return

under the most optimistic belief is above the risk-free return, the agent will choose

zero investment in the risky asset.

Mukerji and Tallon (2001, 2004) and Cao et al. (2005) have shown that non-

participation in trade can occur in an equilibrium in asset markets with multiple-

prior expected utilities. Cao et al. (2005) considered a CARA-normal model of

asset markets where agents know the true variance of the payoff of a risky asset

but have ambiguous beliefs about its mean. Those ambiguous beliefs are specified

by intervals of values around the true mean. There is heterogeneity of ambigu-

ous beliefs. Agents with high ambiguity have bigger intervals than those with low

1Positive correlation is implied by comonotonicity, see LeRoy and Werner (2014, pg. 158).
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ambiguity. In equilibrium, agents with high ambiguity do not participate in trade

of the asset. The threshold for non-participation depends on the variance of the

payoff of the outstanding asset supply, the dispersion of ambiguous beliefs, and

the (common) degree of risk aversion. Low variance of asset supply, low risk aver-

sion, and high dispersion of beliefs all lead to greater non-participation. A related

CARA-normal model has been considered by Easley and O’Hara (2009) - with

similar results - in their study of financial regulation and its role in mitigating the

effects of ambiguity on market participation. Ozsoylev and Werner (2011) con-

sider asset markets with asymmetric information and show that ambiguous beliefs

may lead to limited participation and market illiquidity in rational expectations

equilibrium.

In this paper we focus on non-participation in efficient risk sharing. The ques-

tion we ask is whether and how can ambiguity of beliefs give rise to some agents

not participating in risk sharing, that is, having risk-free consumption in Pareto

optimal allocations. First, we show that an agent whose set of priors is a strict

superset of another agent’s set of priors is more likely not to participate in risk

sharing in the sense that she does not participate whenever the other agent chooses

so. Our main result says that if the aggregate risk is small, then agents with the

highest ambiguity - those whose sets of priors are supersets of some other agents’

sets of priors - do not participate in risk sharing in interior Pareto optimal allo-

cations. The bigger the set of priors of an agent with the highest ambiguity, the

greater is the aggregate risk for which she does not participate in risk sharing.

Another factor leading to non-participation of agents with the highest ambiguity

is low risk aversion of agents with less ambiguous beliefs.

Because of the First Welfare Theorem, properties of Pareto optimal allocations

hold for equilibrium allocations in assets markets if markets are complete. If the

aggregate risk is small, agents with the highest ambiguity will have risk-free con-

sumption in an equilibrium. Whether those agents will or will not trade the assets

depends on their initial endowments. If the initial endowment is risk free, then

the agent will not trade. Otherwise, if her initial endowment is risky, then she will

trade so as to achieve a risk-free equilibrium consumption. Thus, she will purchase

full insurance in asset markets. Our results are in concordance with the findings

of Cao et al. (2005) in their specialized setting.
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Properties of efficient allocations for multiple-prior expected utilities and other

non-expected utilities have been extensively studied in the literature over the past

two decades. Billot et al. (2001) show that if agents have at least one prior in

common and there is no aggregate risk, then all interior Pareto optimal allocations

are risk free. Rigotti et al. (2008) extend that result to other models of con-

vex preferences under ambiguity such as variational preferences and the smooth

ambiguity model of Klibanoff et al. (2005). Recent paper by Ghirardato and Sinis-

calchi (2018) provides further extensions to non-convex preferences under ambigu-

ity. They identify a sufficient behavioral condition for risk-free optimal allocations

with no aggregate risk. Gierlinger (2018) studies risk sharing and trade in complete

markets with sunspot uncertainty.

Comonotonicity and measurability of individual consumption plans with re-

spect to the aggregate endowment when there is aggregate risk have been studied

in Chateauneuf et al. (2000) and Dana (2004) for non-additive (or Choquet) ex-

pected utilities of Schmeidler (1989), and, in greater generality, in Strzalecki and

Werner (2011) for multiple-prior utilities, variational preferences, and the smooth

ambiguity model. Kelsey and Chakravarty (2015) study efficient risk sharing for

Choquet expected utilities with heterogeneous ambiguity. Relationship between

ambiguity aversion and trade in complete markets is the subject of a paper by

de Castro and Chateauneuf (2011). They show that if initial endowments are

unambiguous, then the set of individually rational net trades gets smaller when

agents become more ambiguity averse in the sense of Ghirardato and Marinacci

(2002). Kajii and Ui (2006) study the existence of Pareto-improving “agreeable”

bets between two agents with Choquet expected utilities when there is no aggregate

risk. Dominiak et al. (2012) provide some extensions of the results to non-convex

preferences. Kajii and Ui (2009) and Martins-da-Rocha (2010) study interim ef-

ficient allocations in an economy with asymmetric information and multiple-prior

expected utilities. Araujo et al. (2017) consider uncertainty described by infinitely

many states and study the existence of Pareto optimal allocations with convex and

non-convex preferences under ambiguity.

The paper is organized as follows. In Section 2 we introduce the multiple-

prior expected utility and define risk-adjusted beliefs that are the basic tool in the

analysis of Pareto optimal allocations. In Section 3 we review properties of Pareto
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optimal allocations for multiple-prior expected utilities. Our main results about

non-participation in risk sharing are presented in Section 4. In Section 5 we extend

the results to variational preferences. We conclude in Section 6 with comments on

the assumptions.

2. Ambiguity and Risk-Adjusted Beliefs

We consider a static (single-period) economy under uncertainty with I agents.

Uncertainty is described by a finite set of states S. There is a single consumption

good consumed in every state. State contingent consumption plans (or acts) are

vectors c ∈ RS
+. Agent i has a utility function Ui : R

S
+ → R on state-contingent

consumption plans. Utility Ui is assumed to be a multiple-prior (or MinMax)

expected utility. That is,

Ui(c) = min
P∈Pi

EP [vi(c)], (1)

for some utility function vi : R+ → R and a closed and convex set Pi ⊆ ∆ of

probability measures on S. We assume throughout that

(A) vi is strictly increasing, concave and differentiable for every i.

The set of probability measures Pi represents agent ith ambiguous beliefs (or

priors) about uncertain states of nature. The bigger that set, the higher the

ambiguity. More specifically, we say that agent j has higher ambiguity than agent

i if

Pi ⊂ Pj. (2)

If Pi ⊂ intPj, where intPi is the interior of Pi relative to ∆, then agent j has

strictly higher ambiguity than agent i. 2

Multiple-prior utility functions are not differentiable. The natural generaliza-

tion of the derivative, or the marginal utility, for concave non-differentiable utility

function is the superdifferential. The superdifferential ∂Ui(c) at c ∈ RS
+ is the set

of all vectors ϕ ∈ RS (supergradients) such that Ui(c
′) ≤ Ui(c)+ϕ(c

′− c) for every

2The relation of having higher ambiguity should not be confused with that of being more
ambiguity averse introduced by Ghirardato and Marinacci (2002). The latter requires that in
addition to (2) utility function vj is an affine transformations of vi.
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c′ ∈ RS
+. For concave multiple-prior expected utility (1), the superdifferential at

an interior consumption plan c ∈ RS
++ is

∂Ui(c) = {ϕ ∈ RS : ϕ(s) = v′(c(s))P (s) ∀s, for some P ∈ P̄i(c)}, (3)

where P̄i(c) ⊂ P is the subset of priors for which the minimum expected utility is

attained. That is,

P̄i(c) = arg min
P∈Pi

EP [vi(c)]. (4)

It is convenient to normalize the supergradient vectors in ∂Ui(c) so that they

lie in the probability simplex ∆. That set is

Qi(c) = {π ∈ ∆ : π(s) =
v′(c(s))P (s)

EP [v′(c)]
, ∀s, for some P ∈ P̄i(c)}, (5)

for c ∈ RS
++. Probability measures in Qi(c) will be called risk-adjusted beliefs in

accordance with the terminology often used in asset pricing. If utility index vi is

linear, then Qi(c) = P̄i(c) for every c. Note that if Pi ⊂ ∆̊, then Qi(c) ⊂ ∆̊ for

every c ∈ RS
++, where ∆̊ is the strictly positive probability simplex.

Probability measure π is a risk-adjusted belief at c ∈ RS
++ if and only if

Eπ(c
′) ≥ Eπ(c) for every c

′ ∈ RS
+ such that Ui(c

′) ≥ Ui(c). (6)

Probability measures satisfying (6) are sometimes called subjective beliefs at c, see

Rigotti et al. (2008) where also a proof of the equivalence can be found.

We state the following result for the use later.3

Lemma 1: For every c ∈ RS
++, the following hold

(i) If c is risk free, then Qi(c) = Pi.

(ii) If c is risky, then Qi(c) ∩ intPi = ∅.

(iii) If c is risky, vi is strictly concave and Pi ⊂ ∆̊, then

Qi(c) ∩ Pi = ∅.

3We use the terms risk free and risky to mean, respectively, deterministic and non-
deterministic consumption plans.
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Proof: Part (i) is obvious. To prove (ii), suppose by contradiction that there

exists π such that π ∈ intPi and π ∈ Qi(c). Let ĉ = Eπc. Since c is risky and vi is

concave it follows that

min
P∈Pi

EP [vi(c)] < Eπ[vi(c)] ≤ vi(ĉ). (7)

That is, Ui(ĉ) > Ui(c). Since Ui is continuous and c is interior, we obtain from (6)

that Eπ ĉ > Eπc. This contradicts ĉ = Eπc.

The proof of (iii) is the same as for (ii) except that, for π ∈ Pi the first inequality

in (7) is weak but the second is strict because of strict concavity of vi and π ∈ ∆̊.

We obtain Ui(ĉ) > Ui(c), and the rest of the argument applies. 2

Risk-adjusted beliefs provide a simple characterization of Pareto optimal alloca-

tions. We recall first some standard definitions. A feasible allocation is a collection

of consumption plans {ci}Ii=1 such that ci ∈ RS
+ for every i and

∑I
i=1 ci = ω, where

ω ∈ RS
++ the aggregate endowment of the economy assumed to be strictly positive.

A feasible allocation {ci} is Pareto optimal if there is no other feasible allocation

{c̃i}, such that Ui(c̃i) ≥ Ui(ci) for all i and Uj(c̃j) > Uj(cj) for some j. The follow-

ing characterization of interior Pareto optimal allocations can be found in Rigotti

et al. (2008) (see also Kaji and Ui (2009) and de Castro and Chateauneuf (2011)):

Proposition 1: An interior allocation {ci} is Pareto optimal if and only if there

exists a probability measure π such that π ∈ Qi(ci) for all i.

3. Efficient Risk Sharing

The most fundamental rule of efficient risk sharing for expected utility func-

tions is comonotonicity of individual consumption plans with the aggregate en-

dowment. Comonotonicity means that every agent’s consumption in every state

is a non-decreasing function of the aggregate endowment in that state. It holds if

agents have common probabilities and are strictly risk averse. If in addition their

utility functions are differentiable, then strict comonotonicity (i.e., individual con-

sumption being a strictly increasing function of the aggregate endowment) holds

for interior Pareto optimal allocations. Comonotonicity implies that if there is no

aggregate risk (i.e., aggregate endowment is risk free), then every agent’s consump-

tion plan is risk free. Strict comonotonicity implies that if there is aggregate risk,

then every agent’s consumption plan is risky.
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Properties of Pareto optimal allocations for multiple-prior expected utilities

depend on agreement among agents’ beliefs. The minimal agreement is that the

sets of priors are overlapping,
I∩

i=1

Pi ̸= ∅, (8)

so that there exists at least one common belief. Strzalecki and Werner (2011) show

by means of a counterexample that condition (8) is not sufficient for comonotonicity

of Pareto optimal allocations for strictly concave multiple-prior expected utilities.

Their sufficient condition for comonotonicity requires existence of common con-

ditional beliefs and is quite stringent. Nevertheless, the condition of overlapping

sets of priors guarantees that every Pareto optimal allocation is risk free if there

is no aggregate risk. More precisely, Billot et al. (2001) show that if agents’ utility

functions are strictly concave and there is no aggregate risk, then (8) is sufficient

(and necessary) for every Pareto optimal allocation to be risk free. The same

holds for concave utility functions provided that the intersection of sets of priors

has non-empty interior4, that is, int
∩I

i=1 Pi ̸= ∅.
A stronger condition of belief agreement is that agents have a common set of

ambiguous beliefs. Chateauneuf et al. (2000) (see also Dana (2004)) show that

if the common set of probabilities is the core of a convex capacity5, then Pareto

optimal allocations are comonotone.

We say that an agent participates in risk sharing in a feasible allocation if there

is aggregate risk and the agent’s consumption plan is risky. If the consumption

plan is strictly comonotone with the risky aggregate endowment, the the agent

participates in risk sharing, but not vice versa. We show in Proposition 2 that for

a common set of priors and strictly concave utility functions (satisfying assumption

(A)) every agent participates in risk sharing if there is aggregate risk.

Proposition 2: Suppose that vi is strictly concave and Pi = P for some P ⊂ ∆̊,

for every i. If there is aggregate risk, then every agent participates in risk sharing

in every interior Pareto optimal allocation.

Proof: Suppose by contradiction that there is an interior Pareto optimal allo-

4For completeness, we prove this result in Proposition 5 in the Appendix.
5Multiple-prior expected utility with core of convex capacity as a set of priors has an equivalent

representation as Choquet expected utility of Schmeidler (1989).
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cation {ci} and an agent j such that cj is risk free. By Lemma 1 (i), we have

Qj(cj) = P . Since there is aggregate risk, there exists at least one other agent k

such that ck is risky. Lemma 1 (iii) implies that Qk(ck) ∩ P = ∅. This contradicts
Proposition 1. 2

4. Non-Participation in Risk Sharing

If agents have different but overlapping sets of beliefs, non-participation in risk

sharing (i.e., some agents’ consumption plans being risk free) can occur in Pareto

optimal allocations. We start this section with an observation that agents who

have high ambiguity are more likely not to participate in risk sharing than those

with low ambiguity. This is a simple consequence of Lemma 1.

Proposition 3: If {ci} is an interior Pareto optimal allocation and cj is risk free

for some agent j, then ck is risk free for every agent k who has strictly higher

ambiguity than j. The same holds if k has higher ambiguity than j, vk is strictly

concave, and Pk ⊂ ∆̊.

Proof: Let π ∈
∩I

i=1Qi(ci). If cj is risk free, then, by Lemma 1 (i), π ∈ Pj. If k

has strictly higher ambiguity than j, then π ∈ intPk. Lemma 1 (ii) implies that ck

is risk free. Applying Lemma 1 (iii) instead of (ii) gives the same conclusion if k

has higher ambiguity than j and the additional assumptions hold. 2

The main question we ask in this section is under what conditions agents with

high ambiguity do not participate in risk sharing. There are three separate condi-

tions: (1) when their ambiguity is sufficiently high; (2) when the aggregate risk is

small, and (3) when risk aversion of agents with low ambiguity is low. We explain

each of these conditions below.

First, an agent whose ambiguity is the highest possible does not participate in

risk sharing in every interior Pareto optimal allocation.

Proposition 4: If agent k has strictly higher ambiguity than some agent j and

Pk = ∆, then agent’s k consumption plan is risk free in every interior Pareto

optimal allocation.

Proof: Consider an interior Pareto optimal allocation {ci}. By Proposition 1,

there exist π ∈
∩I

i=1Qi(ci). Since Pj ⊂ ∆̊ and therefore Qj(cj) ⊂ ∆̊, it follows

that π ∈ ∆̊. Lemma 1 (ii) implies that ck is risk free. 2
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Second, an agent with high ambiguity does not participate in risk sharing if the

aggregate risk is sufficiently small. We say that there is small aggregate risk if the

aggregate endowment ω lies in an ϵ-neighborhood Bϵ(D) of risk-free consumption

plans for some small ϵ > 0. Here D = {λe : λ ≥ 0} is the set of risk-free

consumption plans where e = (1, . . . , 1).

We have

Theorem 1: Suppose that sets of priors are overlapping (8) and every utility

function vi is strictly concave. If agent k has strictly higher ambiguity than some

agent j, then there exists ϵ > 0 such that if ω ∈ Bϵ(D), then agent’s k consumption

plan is risk free in every interior Pareto optimal allocation.

Proof: See Appendix 2

Theorem 1 is the main result of this paper. Condition (8) guarantees that

individual risk in Pareto optimal allocations is small when the aggregate risk is

small. The assumption of strict concavity of utility functions can be weakened

to concavity provided that the intersection of the sets of priors has non-empty

interior.

Third, low risk aversion of agents with low ambiguity makes them likely to take

all the risk so that agents with high ambiguity do not participate in risk sharing.

Suppose that agent k has higher ambiguity than agent j whose utility function

vj is linear. If vk is strictly concave and Pk ⊂ ∆̊, then it follows from Lemma 1

(iii) and Proposition 1 that agent k does not participate in risk sharing in every

interior Pareto optimal allocation. The agent with linear utility function provides

full insurance to agents who have higher ambiguity and strictly concave utility

functions. This extends the well-known result for expected utility functions with

common probabilities which says that a risk-neutral agent provides full insurance

to strictly risk-averse agents in every interior Pareto optimal allocation.

More generally, we show that if agent k has strictly higher ambiguity than agent

j and agent’s j risk aversion is sufficiently small, then agent k does not participate

in risk sharing. We assume that each utility function vi is twice continuously

differentiable. The Arrow-Pratt measure of risk aversion is Ai(x) = −v′′i (x)

v′i(x)
. The

supremum of Ai(x) on the interval [0, ω̂] where ω̂ = maxs ωs is the global measure
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of risk aversion of utility function vi.
6 Of course, Âi = 0 if and only if vi is linear.

Theorem 2: If agent k has strictly higher ambiguity than some agent j, then

there exists ϵ > 0 such that if the global measure of risk aversion Âj of agent j is

less than ϵ, then agent’s k consumption plan is risk free in every interior Pareto

optimal allocation.

Proof: See Appendix 2

The following example illustrates the results of this section.

Example 1: There are two states of nature and two agents. Agents have CARA

utility functions vi(x) = −e−ρix with ρi > 0. Note that Âi = ρi because of constant

risk aversion. Agents’ sets of prior beliefs are intervals Pi = {(q, 1− q) : qil ≤ q ≤
qih}, where 0 ≤ qil < qih ≤ 1. Let q2l < q1l and q1h < q2h, so that agent 2 has strictly

higher ambiguity. The aggregate endowment is ω = (d, d + ∆d), for some d > 0

and ∆d > 0, so that there is aggregate risk.

Consider an allocation {c1, c2} where agent 2 does not participate in risk shar-

ing, that is, c1 = (a, a+∆d) and c2 = (b, b) for some a > 0, b > 0 such that a+b = d.

The risk-adjusted probability of agent 1 at c1 is
1

q1h+(1−q1h)e
−ρ1∆d (q1h, (1− q1h)e−ρ1∆d).

The risk-adjusted probabilities of agent 2 at risk-free c2 are the set of priors

P2. The risk-adjusted probability of agent 1 is contained in P2, if and only if
1

q1h+(1−q1h)e
−ρ1∆d q

1
h ≤ qh2 , or equivalently

eρ1∆d q1h
1− q1h

≤ q2h
1− q2h

, (9)

provided that q1h < 1 and q2h < 1. Inequality (9) is a necessary and sufficient

condition for Pareto optimality of allocations where agent’s 2 consumption is risk

free. Suppose that qh1 = 5
8
and qh2 = 7

8
. We have eρ1∆d ≤ 41

5
, or ρ1∆d ≤ 1.43. For

given ∆d, it follows that if the risk aversion of agent 1 satisfies ρ1 ≤ 1.43
∆D

, then

agent 2 does not participate in risk sharing in every Pareto optimal allocation.

6Our use of the standard concepts of the theory of aversion to risk should be taken with care.
Those concepts have been developed in the setting of expected utility and their meaning for the
multiple-prior expected utility may not be the same. For instance, linear utility v exhibits risk
neutrality for expected utility, but this does not mean that the agent with multiple-prior expected
utility is indifferent between the expectation of a consumption plan delivered with certainty and
the consumption plan itself.
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This illustrates Theorem 2. The same holds for given ρ1, if the aggregate risk is

small so that ∆d ≤ 1.43
ρ1
, as per Theorem 1. If q2h = 1, then agent 2 does not

participate in risk sharing regardless of the aggregate risk or the risk aversion of

agent 1. This illustrates Proposition 4. 2

5. Risk Sharing with Variational Preferences

Results of Sections 2-4 can be extended to variational preferences. Variational

preferences are closely related to multiple-prior expected utility and have been

extensively studied in the literature (see Maccheroni et al. (2006) and Strzalecki

(2011)). We provide an outline of an extension.

Variational preferences have a utility representation of the form

min
P∈∆

{
EP [vi(c)] + ψi(P )

}
(10)

for some strictly increasing and continuous utility function vi : R+ → R and some

convex and lower semicontinuous function ψi : ∆ → [0,∞] such ψi(Q) = 0 for

some Q ∈ ∆. Function ψi is a “cost” function of beliefs. We assume that vi is

concave and differentiable, and that ψi is continuous.

The superdifferential of variational utility function has the same representation

(3) as for multiple-prior expected utility, with the set of minimizing probabilities

of (10), see Maccheroni et al. (2006). The normalized supergradients at any risk-

free consumption plan are the zero-cost probabilities, that is, probability measures

Q ∈ ∆ such that ψi(Q) = 0. We denote the set of such measures by P0
i . Lemma

1 holds with the set of zero-cost probabilities P0
i in place of set of beliefs Pi for

multiple-prior expected utility. Proposition 1 has been extended to variational

preferences in Rigotti et al. (2008). Our new Proposition 2 holds for variational

preferences with the set of zero-cost probabilities P0
i in place of Pi. In particular, if

all agents’ cost functions are scale-multiples of the same function and their utility

functions are strictly concave, then all agents participate in efficient risk sharing.

Non-participation in efficient risk-sharing can occur with variational preferences

if sets of zero-cost probabilities are different across agents. Results of Section 4

hold for variational preferences with sets of zero-cost probabilities in place of sets of

beliefs for multiple-prior expected utilities. Agents whose sets of zero-cost beliefs

are strict supersets of other agents’ sets of zero-cost beliefs are more likely not to
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participate in risk sharing. If the aggregate risk is small, then those agents do not

participate in risk sharing at in any interior Pareto optimal allocation.

6. Concluding Remarks

We conclude with a discussion of some assumptions we made in Sections 2-4.

The assumption of differentiability of utility functions in (A) is not essential for

the results of Sections 2 and 3, and for Proposition 3. Of course, representation (5)

of the superdifferential cannot be used but, for instance, Lemma 1 can be extended

to any concave multiple-prior expected utility using normalized superdifferentials

and its properties found in Rockafellar (1970). Theorems 1 and 2 require that

utility functions be twice continuously differentiable. We restricted our attention

to interior consumption plans and interior Pareto optimal allocations in most of

Sections 2-4. Again Lemma 1, the results of Section 3, and Proposition 3 can

be extended to hold for boundary allocations using normalized superdifferentials.

Hypotheses of Theorems 1 and 2 may not be true for boundary allocations as it

can be easily seen in an Edgeworth-box illustration of an economy with 2 states

and two agents.
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Appendix

For two probability measures P,Q ∈ ∆, let |P − Q| denote the total-variation

distance between them. That is,

|P −Q| =
S∑

s=1

|P (s)−Q(s)|. (11)

Further, let Vδ(P) ⊂ ∆ denote the δ-neighborhood of the set P ⊂ ∆ in the

variational distance for δ > 0. Let ω̂ = maxs ωs and let Âi = sup{Ai(x) : x ∈
[0, ω̂]} where Ai(x) = −v′′i (x)

v′i(x)
is the Arrow-Pratt measure of risk aversion.

Proof of Theorem 1:

First we show the following lemma.

Lemma 2: If c ∈ Bϵ(D) and c ∈ RS
++, then Qi(c) ⊂ Vδ(Pi) for δ = e2ϵÂi − 1.

Proof: Take any Q ∈ Qi(c). Let P ∈ Pi be such that Q(s) =
v′i(c(s))P (s)

EP [v′i(c)]
for every

s. Further, let c = mins cs and c̄ = maxs cs. We have

|P −Q| =
S∑

s=1

P (s)
|EP [v

′
i(c)]− v′i(c(s))|
EP [v′i(c)]

≤ v′i(c)− v′i(c̄)

v′i(c̄)
=
v′i(c)

v′i(c̄)
− 1. (12)

Further,

ln v′i(c)− ln v′i(c̄) =

∫ c̄

c

Ai(x)dx ≤ 2ϵÂi, (13)

where we used the fact that c̄− c ≤ 2ϵ for c ∈ Bϵ(D). Combining, we obtain

|P −Q| ≤ e2ϵÂi − 1. (14)

Therefore Q ∈ Vδ(Pi). 2

We proceed now with the proof of Theorem 1. Since Pj ⊂ intPk, there exists

δ be such that Vδ(Pj) ⊂ intPk. Let ϵ̃ be such that e2ϵ̃Âj − 1 = δ. By Lemma 2,

Qj(cj) ⊂ intPk for every cj ∈ Bϵ̃(D). If cj is part of an interior Pareto optimal

allocation and Qj(cj) ⊂ intPk, then it follows from Proposition 1 and Lemma 1

(ii) that ck is risk free. Hence, it suffices to show that there exists ϵ > 0, such that

if ω ∈ Bϵ(D), then cj ∈ Bϵ̃(D) for every consumption plan cj that is part of an

interior Pareto optimal allocation.

14



Let Ej(ω) be the set of Pareto optimal consumption plans of agent j. Let b ∈ D

be such that b >> ω. Mapping Ej(·) is an upper hemi-continuous correspondence

on the compact set [0, b]. Let D̂ = D ∩ [0, b]. By assumption (8), Ej(ω) ⊂ D̂ if

ω ∈ D̂. Therefore there exists ϵ be such that if ω ∈ Bϵ(D̂), then Ej(ω) ⊂ Bϵ̃(D̂).

This concludes the proof of Theorem 1. 2

Proof of Theorem 2:

We start with a lemma.

Lemma 3: If Âi < ϵ, then Qi(c) ⊂ Vδ(Pi) for δ = eϵω̂ − 1 and every c ∈ RS
++ such

that c ≤ ω.

Proof: The proof is similar to Lemma 2. For any Q ∈ Qi(c) let P ∈ Pi be such

that Q(s) =
v′i(c(s))P (s)

EP [v′i(c)]
for every s. We have

|P −Q| =
S∑

s=1

P (s)
|EP [v

′
i(c)]− v′i(c(s))|
EP [v′i(c)]

≤ v′i(0)− v′i(ω̂)

v′i(ω̂)
. (15)

Since

ln v′i(0)− ln v′i(ω̂) =

∫ ω̂

0

Ai(x)dx ≤ ϵω̂, (16)

it follows that

|P −Q| ≤ eϵω̂ − 1, (17)

Therefore Q ∈ Vδ(Pi) for δ = eϵω̂ − 1. 2

We proceed with the proof of Theorem 2. Since Pj ⊂ intPk, there exists δ such

that Vδ(Pj) ⊂ intPk. Let ϵ be such that eϵω̂ − 1 = δ. If Âj < ϵ and cj is part of

an interior Pareto optimal allocation {ci}, then Qj(cj) ⊂ intPk, where we used

Lemma 3. Using Proposition 1 and Lemma 1 (ii) we obtain that ck is risk free. 2

Proof of footnote 4 in Section 3:

Proposition 5: If int
∩I

i=1Pi ̸= ∅ and there is no aggregate risk, then every

Pareto optimal allocation is risk free.

Proof: Let {ci} be a feasible allocation. Let π ∈ int
∩I

i=1Pi. For each i, let

ĉi = Eπ(ci). Since ω̄ is risk free, it follows that allocation {ĉi} is feasible. Inequality

(7) implies that Ui(ĉi) ≥ Ui(ci), with strict inequality if ci is risky. It follows that

every Pareto optimal allocation is risk free. 2
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