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1. Introduction

In times of instability in financial markets, news of price bubbles are frequent.

The Global Financial Crisis of 2007-2009 provides several examples: real-estate

market in the U.S, mortgage-backed securities, etc. Price bubble arises when

the price of an asset exceeds the asset’s fundamental value. As the notion of

fundamental value invites many different interpretations, news of price bubbles

can often be ascribed to misjudgement of the fundamental value. Economists

generally agree though that the “dot-com” bubble of 1998-2000 and the Japanese

stock market bubble of the 1980s were genuine price bubbles. Internet stock prices

reached staggering levels in the U.S. in 2000. Nasdaq composite index rose by 200

% between 1998 and 2000. Returns on some internet stocks over this period were

nearly 1000 %. Then, the market crashed down to virtually no value. Asset prices

in Japan rose sharply in the 1980s. The Nikkei index soared by more than 400

% over the decade. Market capitalization of Japanese stocks exceeded the value

of U.S. stock market in 1990. By 1991 prices plummeted down to levels from the

early 1980s.

Financial economic theory does not provide a satisfactory answer to the ques-

tion of whether and how price bubble can arise in asset markets. The theory of

rational asset pricing bubbles defines the fundamental value of an asset as the

present value of future dividend payments. The main result of the seminal paper

by Manuel Santos and Michael Woodford (1997) says that price bubbles cannot

exists in equilibrium in the standard dynamic asset pricing model as long as assets

are in strictly positive supply and the present value of total future resources over

the infinite time is finite. As most assets are believed to be in strictly positive

supply and equilibria with infinite present value of aggregate resources are usually

considered exotic, the Santos-Woodford result is interpreted as saying that price

bubbles are unlikely to happen.

The no-bubble theorem of Santos and Woodford (1997) has been established

for a particular type of constraint on agents’ portfolio holdings - the borrowing

constraint which restricts the amount of wealth an agent can borrow on a portfolio

at any date. The primary role of borrowing constraints in dynamic asset markets

is to prevent agents from engaging in Ponzi schemes. There are many alterna-

tive portfolio constraints that could be considered: debt (or solvency) constraints,
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collateral constraints, short sales constraints, etc. This paper explores the pos-

sibility of asset price bubbles in dynamic asset markets under debt constraints.

Debt constraints restrict the amount of debt an agent can carry on a portfolio at

every date. Our main focus is on endogenous (or self-enforcing) debt constraints

induced by limited commitment to market transactions (see Alvarez and Jermann

(2000), Hellwig and Lorenzoni (2009), Martins-da-Rocha and Vailakis (2012), and

others). If default on payoff of a portfolio is permitted and has precisely speci-

fied consequences, self-enforcing debt constraints are defined by a sequence of debt

bounds such that an agent is unwilling to default even if his indebtedness is at the

maximum allowed level.

We show that the no-bubble theorem extends to debt constraints including

endogenous debt constraints. The peculiar feature of equilibria with endogenous

debt constraints is that they often give rise to infinite present value of the aggregate

endowment, or “low interest rates.” This is exactly when the sufficient condition

for non-existence of equilibrium price bubbles on assets in strictly positive supply

is violated. Our main result, Theorem 2, shows that if there is an equilibrium with

endogenous debt constraints in which debt bounds are different from zero to an

extent we specify, then price bubbles may be “injected” on assets in strictly positive

supply and present value of the aggregate endowment must be infinite. The term

injecting means that a suitably chosen sequence of positive price bubbles can be

added to equilibrium asset prices so that equilibrium be preserved with unchanged

consumption plans. The idea of injecting bubbles is due to Kocherlakota (2008)

whose results we extend and clarify. Bejan and Bidian (2013) proved a closely

related result in a setting where debt bounds can be negative (so that agents

are forced to hold some savings). We provide two examples of equilibria in asset

markets under endogenous debt constraints with price bubbles on assets in strictly

positive supply. One is the classical example of price bubble on zero-dividend

asset (i.e., fiat money) in strictly positive supply due to Bewley (1980) (see also

Kocherlakota (1992)). We show that debt bounds in this example are self enforcing

when punishment for default is exclusion from further borrowing. The second is a

variation of the leading example in Hellwig and Lorenzoni (2009).

We show in Theorem 3 that there always exist equilibria with price bubbles on

infinitely-lived assets that are in zero supply. There is multiplicity of equilibria,
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and some equilibrium prices have bubbles.

The literature on asset price bubbles is vast and diverse. Gilles and LeRoy

(1992) define price bubbles as manifestation of lack of countable additivity of pric-

ing. Huang and Werner (2000) show that this notion is different from rational

price bubbles in dynamic asset markets. Harrison and Kreps (1978) explore the

possibility of speculative bubbles under short sales constraints and heterogeneous

beliefs.1 Speculative bubbles differ from rational bubbles in the way the fundamen-

tal value of dividends is defined. Instead of the present value of future dividends,

it is the marginal valuation of dividends by an agent for whom such valuation is

the highest. In presence of portfolio constraints and infinite-time horizon, these

two notions may be different. Ofek and Richardson (2005) attribute the dot-com

bubble to heterogeneous beliefs and short-sale constraints in a way that resem-

bles speculative bubbles. Araujo at al (2011) explore the possibility of rational

price bubbles when asset trades are collateralized by durable goods. Loewenstein

and Willard (2000) extend the theory of rational bubbles to continuous-time asset

market models. Miao and Wang (2012, 2014) develop a theory of price bubbles on

productive assets in markets with credit constraints.

2. Dynamic Asset Markets with Debt Constraints

Time is discrete with infinite horizon and indexed by t = 0, 1 . . . . Uncertainty

is described by a set S of states of the world and an increasing sequence of finite

partitions {Ft}
∞
t=0 of S. The partition Ft specifies sets of states that can be verified

by the information available at date t. An element st ∈ Ft is called a date-t event.

The subset relation sτ ⊂ st for τ ≥ t indicates that event sτ is a successor of st We

use St to denote the set of all successors of event st from t to infinity, and St+ the

set of all successors of st excluding st. The set of one-period (date-(t+1)) successors

of st is denoted by s+
t . The unique one-period predecessor of st is denoted by s−t .

There is a single consumption good. A consumption plan is a scalar-valued

process c = {c(st)}st∈E adapted to {Ft}
∞
t=0. The consumption space is the space C

of all adapted processes and it can be identified with R∞. There are I consumers.

Each consumer i has a consumption set Ci which is a convex subset of C+, a

1The term speculative bubble has only recently been introduced in Scheinkman and Xiong
(2003).

4



strictly increasing utility function ui on Ci, and an initial endowment wi ∈ Ci.

The aggregate endowment w̄ ≡
∑

i w
i is assumed positive, i.e., w̄ ≥ 0.

Asset markets consist of J infinitely-lived assets traded at every date. The

dividend process xj of asset j is adapted to {Ft}
∞
t=0 and positive, i.e., x(st) ≥ 0

for every st for t ≥ 1. There are no dividends at date 0. The ex-dividend price of

asset j in event st is denoted by pj(st). A portfolio of J assets held after trade at

st is h(st). Each agent has an initial portfolio αi
0 at date 0. The supply of assets is

ᾱ0 ≡
∑

i α
i
0.

Agent i faces the following budget constraints when trading in asset markets

c(s0) + p(s0)h(s0) ≤ wi(s0) + p(s0)α
i
0, (1)

c(st) + p(st)h(st) ≤ wi(st) + [p(st) + x(st)]h(s−t ) ∀st 6= s0. (2)

In addition to these budget constraints some restriction on portfolio holdings has to

be imposed for otherwise agents could engage in a Ponzi scheme, that is, borrow any

amount of wealth at any date and roll-over the debt forever. In this paper we focus

on debt constraints which impose limits on debt carried on a portfolio strategy at

every date and in every event. Formally, the debt constraints on portfolio strategy

h are

[p(st+1) + x(st+1)]h(st) ≥ −D(st+1), ∀st+1 ⊂ st (3)

for every st. Bounds D are assumed to be positive in every event.2 They may

depend on prices and be different for different agents. Debt constraints should

be distinguished from borrowing constraints seen in Santos and Woodford (1997)

which are

p(st)h(st) ≥ −B(st) (4)

for some positive bounds B.

The set of consumption plans c satisfying budget constraints (1 - 2) and debt

constraints (3) is denoted by Bi
0(p,D

i, p0α
i
0). We included date-0 financial wealth

p0α
i
0 among the determinants of the budget set for the use later when variations

of financial wealth will be considered.

An equilibrium under debt constraints is a price process p and consumption-

portfolio allocation {ci, hi}I
i=1 such that (i) for each i, consumption plan ci and

2Debt constraints with negative bounds force agents to hold minimum savings. We exclude
this from consideration.
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portfolio strategy hi maximize ui(c) over (c, h) ∈ Bi
0(p,D

i, p0α
i
0), and (ii) markets

clear, that is

∑

i

hi(st) = ᾱ0,
∑

i

ci(st) = w̄(st) + x(st)ᾱ0,

for all st. We restrict our attention throughout to equilibria with positive prices.

3. Arbitrage, Event Prices, and Bubbles.

Portfolio ĥ(st) is a one-period arbitrage in event st if

[p(st+1) + x(st+1)]ĥ(st) ≥ 0, ∀st+1 ⊂ st (5)

and

p(st)ĥ(st) ≤ 0, (6)

with at least one strict inequality. One-period arbitrage cannot exist in an equilib-

rium under debt constraints in any event. The reason is that one-period arbitrage

portfolio could be added to an agent’s equilibrium portfolio without violating debt

constraints. This would result in higher consumption contradicting optimality of

the equilibrium portfolio. It follows from Stiemke’s Lemma that there is no one-

period arbitrage if and only if there exist strictly positive numbers q(st) for all st

such that

q(st)pj(st) =
∑

st+1⊂st

q(st+1)[pj(st+1) + xj(st+1)] (7)

for every st and every j. Strictly positive numbers q(st) satisfying (7) and normal-

ized so that q(s0) = 1 are called event prices.

If asset prices admit event prices q >> 03 satisfying (7), then the present value

of an asset and the bubble can be defined using any of those event prices. The

present value of asset j in st under event prices q is

1

q(st)

∞
∑

τ=t+1

∑

sτ∈st

q(sτ )xj(sτ ) (8)

This intuitive definition of present value can be given more solid foundations from

the view point of the theory of valuation of contingent claims, see Huang (2002).

3The notation q >> 0 means that q(st) > 0 for all st.
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Price bubble is the difference between the price and the present value of an asset.

Price bubble on asset j at st is

σj(st) ≡ pj(st) −
1

q(st)

∞
∑

τ=t+1

∑

sτ∈st

q(sτ )xj(sτ ) (9)

If there exist multiple event prices, the price bubble may depend on the choice

of event prices (see Huang (2002). Our notation does not reflect that possibility,

but we shall keep this mind. Basic properties of price bubbles are stated in the

following proposition, the proof of which is standard and therefore omitted.

Proposition 1: Suppose that p admits strictly positive event prices q. Then

(i) Price bubbles are non-negative,

0 ≤ σj(st), ∀st ∀j. (10)

(ii) If asset j is of finite maturity (that is, xjt = 0 for t ≥ τ for some τ , and that

asset is not traded after date τ), then σj(st) = 0 for all st.

(iii) It holds

q(st)σj(st) =
∑

st+1⊂st

q(st+1)σj(st+1) (11)

for every st and every j.

Property (11) is referred to as the discounted martingale property of bubble σj

with respect to event prices q. The reason for this terminology is that if a risk-free

payoff lies in the one-period asset span for every event st, then the discount factor

ρ(st) can be defined as the product of one-period risk-free returns along the path of

events from s0 to st so that event prices rescaled by the discount factor q(st)/ρ(st)

become probabilities.4 Property (11) says that discounted bubble ρ(st)σj(st) is a

martingale with respect to these probabilities.

The discounted martingale property of price bubbles together with their non-

negativity have strong implications on the dynamics of bubbles. It follows that

price bubble can be zero in an arbitrary event if and only if it is zero in every

4For details, see LeRoy and Werner (2014, Chapter 26).
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immediate successor of that event. Thus, non-zero price bubble can exist on an

asset only if date-0 bubble is non-zero. Further, if price bubble is non-zero at

date 0 (the issuance date of the asset), then there must exist a sequence of events

throughout the event tree such that the bubble is strictly positive in every event

of that sequence.

4. No-Bubble Theorem

In this section we establish sufficient conditions for non-existence of price bub-

bles in equilibrium and discuss their necessity.

We first introduce a restriction on agents’ utility functions. For a consumption

plan c and an event st, let c(St+) denote the consumption plan for all events in

St+, that is, for events that are successors of event st. Let c(−St) denote the

consumption plan for all events not lying in St, that is, for events that are not

successors of an event st, excluding st. It holds c = (c(−St), c(st), c(S
t+)). Further,

let ŵ(st) ≡ w̄(st) + ᾱ0x(st).

We say that utility function ui of agent i exhibits uniform impatience with

respect to ŵ if there exists γi satisfying 0 ≤ γi < 1 such that

ui(ci(−St), ci(st) + ŵ(st), γ
ici(St+)) > ui(ci), (12)

for every st and every ci such that ci ≤ ŵ.

Condition (12) concerns the trade-off in terms of utility between current con-

sumption and consumption over the infinite future. It says that adding the aggre-

gate (cum dividend) endowment to an agent’s consumption in event st and scaling

down her future consumption by scale-factor γi leaves the agent strictly better off.

Restrictiveness of condition (12) lies in the requirement that factor γi is uniform

over all feasible consumption plans and all events. Assumption of uniform impa-

tience is usually imposed in existence theorems of an equilibrium in asset markets

with infinite time, see Levine and Zame (1996) and Magill and Quinzii (1994). Any

discounted time-separable expected utility with strictly increasing and continuous

period-utility function exhibits uniform impatience with respect to the aggregate

endowment ŵ as long as ŵ is bounded above and bounded away from zero (see

LeRoy and Werner (2014, Chapter 30) for a proof).5

5Other examples of uniform impatient utility functions are discussed in Santos and Woodford
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Theorem 1: Assume that agents’ utility functions exhibit uniform impatience with

respect to the aggregate endowment ŵ. Let p be equilibrium asset prices under debt

constraints and q be strictly positive event prices associated with p. If present value

of the aggregate endowment is finite,

∞
∑

t=1

∑

st∈Ft

q(st)w̄(st) < ∞, (13)

and assets are in strictly positive supply,

ᾱ0 >> 0, (14)

then price bubbles are zero.

Theorem 1 is an extension of the main result of Santos and Woodford (1997)

from borrowing to debt constraints. A proof of Theorem 1 can be found in Ap-

pendix B (see also LeRoy and Werner (2014, Chapter 30). The assumption of

uniform impatience can be dispensed with if markets are complete6 and debt lim-

its are the “natural” bounds equal to the present value of current and future initial

endowments (see Remark 1 with proof in Appendix B).

If either one of conditions (13) or (14) is violated, there may exist price bubbles.

We show in Section 6 that there always exists equilibria with price bubbles on

assets in zero supply. Here, we present an example of an asset price bubble in an

equilibrium with infinite present value of the aggregate endowment. The condition

of infinite present value of the aggregate endowment is often referred to as low

interest rates. The example is due to Bewley (1980) (see also Kocherlakota (1992)

and Huang and Werner (2000)) and it shows an equilibrium with price bubble on

a zero-dividend asset, that is, fiat money with strictly positive price.

Example 1: There is no uncertainty. There are two agents with utility functions

ui(c) =
∞

∑

t=0

βt ln(ct),

(1997). Yet, uniform impatience is not an innocuous restriction on utility functions. An example
of utility function that does not satisfy (12) in the setting with no uncertainty is inft ct+

∑∞
t=0

βtct.
See Werner (1997) and Araujo, Novinski and Pascoa (2011) for discussions of the possibility of
price bubbles for utility functions that may not satisfy uniform impatience.

6That is, the one-period payoff matrix [pj(s
+
t ) + xj(s

+
t )]j∈J , where p are equilibrium prices,

has rank equal to the number of one-period successors of st, for every event st.
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where 0 < β < 1. Their endowments are w1
t = B and w2

t = A for even dates t ≥ 2,

and w1
t = A and w2

t = B for odd dates t ≥ 1, where A > B. Date-0 endowments

will be specified later.

There is one asset that pays zero dividend at every date, that is, fiat money.

Initial asset holdings are α1
0 = 1 and α2

0 = 0 so that the total supply is 1. Debt

bounds are Dt = pt so that agents can short sell at most one share of the asset. It

will be seen in Section 5 that these debt limits are self enforcing.

There exists a stationary equilibrium with consumption plans that depend only

on current endowment, strictly positive prices pt, and debt constraint binding the

agent with low endowment at every date t. Such equilibrium has consumption

plans c1
t = B + η and w2

t = A − η for even dates t ≥ 0, and c1
t = A − η and

w2
t = B + η for odd dates t ≥ 1, asset holdings h1

t = −1 and h2
t = 2 for even dates

and h1
t = 2 and h2

t = −1 for odd dates, and constant prices

pt =
1

3
η. (15)

The first-order condition for the unconstrained agent,

βt

c1
t

pt =
βt+1

c1
t+1

pt+1, (16)

holds provided that η = βA−B

(1+β)
and βA > B. For the constrained agent, the

first-order condition requires that the left-hand side in (16) is greater than the

right-hand side, and it holds. Transversality condition (see (41) in Appendix A)

holds, too. If date-0 endowments are w1
0 = B + 1

3
η and w2

0 = A − 1
3
η, then this is

an equilibrium.

Event prices associated with equilibrium prices (15) are qt = 1 for every t. The

present value of the aggregate endowment
∑

∞

t=0 qtw̄t is infinite. 2

A sufficient condition for finite present value of the aggregate endowment is

that there exist portfolio θ ∈ ℜJ
+ and date T such that

w̄(st) ≤ θx(st), (17)

for every st ∈ Ft and every t ≥ T. This follows from the fact that present value

of dividend stream xj
t is finite for every asset j, see Proposition 1. Another suffi-

cient condition - for standard utility functions - is that the equilibrium allocation
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be Pareto optimal and interior. Needless to say, neither one of those sufficient

conditions holds in Example 1.

5. Bubbles under Endogenous Debt Constraints.

An important class of debt constraints that may lead to equilibria with infinite

present value of the aggregate endowment and price bubbles on assets in strictly

positive supply are endogenous debt constraints.

Endogenous debt constraints are induced by limited commitment to market

transactions. We have assumed thus far that agents are fully committed to repay

any debt incurred by their portfolio decisions. We shall relax this assumption now.

Agents may consider defaulting on the payoff of a portfolio at any date. Whether

an agent would want to default or not depends on gains and losses that such action

would present to him. Once those gains and losses of default are precisely specified,

endogenous (or self-enforcing) debt constraints can be defined as a sequence of debt

bounds such that the agent is unwilling to default even if his indebtedness is at

the maximum allowed level.

We assume throughout this section that each agent’s utility function induces

continuation utility for every event st. That is, for every st there exists a utility

function ui
st

on consumption plans for event st and all its successor events, that is,

for events in St, such that

ui
st
(c(St)) ≤ ui

st
(c′(St)) iff ui(c̄(−St), c(St)) ≤ ui(c̄(−St), c′(St)), (18)

for every c, c′, c̄. To simplify notation, we write ui
st
(c) instead of ui

st
(c(St)).

Condition (18) requires that agent’s preferences be independent of unrealized

events and past consumption. It holds for time-separable expected utility and for

recursive utility of Epstein and Zin (1989).

We proceed now to a formal definition of endogenous debt constraints. Let

Bi
st
(p,Di, Φi(st)) denote the budget set in event st at date t under debt constraints

with bounds Di when initial financial wealth (or debt) at st is Φi(st). Specifically,

this set consists of all consumption plans and portfolio holdings for events in St

satisfying budget constraints (2) and debt constraints (3) for sτ ∈ St. Further, let

U∗i
st

(p,Di, Φi(st)) be the maximum event-st continuation utility over all consump-

tion plans in the budget set Bi
st
(p,Di, Φi(st)).
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Gains and losses of default are described by a sequence of reservation utility

levels that agent i can obtain if she defaults. We denote this sequence by V̄ i
d =

{V̄ i
d (st)} and call it default utilities. We focus on two specifications of default

utilities that have been proposed in recent literature. They are

V̄ i
d (st) = ui

st
(wi), (19)

and

V̄ i
d (st) = U∗i

st
(p, 0, 0). (20)

Under the first specification (19), default results in permanent exclusion from the

markets so that the agent is forced to consume her endowment from st on (see

Alvarez and Jermann (2000)). Under the second specification (20), default re-

sults in prohibition from taking any debt from st on, but the agent continues to

participate in the markets under zero-debt constraints (see Hellwig and Lorenzoni

(2009)). Note that default utilities (20) depend on asset prices p.

Debt bounds Di are self enforcing for agent i at p given default utilities V̄ i
d if

U∗i
st

(p,Di,−Di(st)) ≥ V̄ i
d (st) (21)

for every st. Debt bounds Di are not too tight for agent i at p given default option

V̄ i
d if (21) holds with equality. Equilibrium with not-too-tight debt constraints is an

equilibrium with any debt bounds Di such that Di are not too tight at equilibrium

price p for every i.

The property of being not too tight does not determine debt constraints in a

unique way. This is explained as follows. We say that a real-valued process {κt}

lies in the asset span if

κ(s+
t ) ∈ span{pj(s

+
t ) + xj(s

+
t ) : j ∈ J} (22)

for every st. Process {κt} is a discounted martingale, if there exists a strictly positive

event price process q such that the discounted martingale property (11) holds for

{κt} with respect to q.

The relation ≃c between any two sets of consumption-portfolio plans indicates

that consumption plans in those sets are the same. We have
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Lemma 1: If {κt} is a discounted martingale and lies in the asset span, then

Bi
st
(p,Di, Φi(st)) ≃c Bi

st
(p,Di + κ, Φi(st) − κ(st)) (23)

for every st.

Proof: We prove (23) for s0. Let (c, h) ∈ Bi
0(p,D

i, Φi(s0)). Since {κt} lies in the

asset span, there is a portfolio strategy ĥ such that [p(st+1)+x(st+1)]ĥ(st) = κ(st+1)

for every st+1 ⊂ st and every st. Since κ is a discounted martingale, it follows that

p(st)ĥ(st) = κ(st). It is easy to see now that (c, h + ĥ) ∈ Bi
0(p,D

i + κ, Φi(s0) −

κ(s0)). The same argument shows that if (c, h̃) ∈ Bi
0(p,D

i +κ, Φi(s0)−κ(s0)), then

(c, h̃ − ĥ) ∈ Bi
0(p,D

i, Φi(s0)). This concludes the proof. 2

Lemma 1 implies that if debt bounds Di are not too tight, then Di + κ are

not too tight as well, for any discounted martingale κ that lies in the asset span.

Indeed, it follows that U∗i
st

(p,Di,−Di(st)) = U∗i
st

(p,Di + κ,−(Di(st) + κ(st))).

For default utilities (20), zero bounds Di ≡ 0 are not too tight. This implies

that Di = κ is not too tight for every discounted martingale that lies in the asset

span. Hellwig and Lorenzoni (2009, Theorem 1) and Bidian and Bejan (2012) show

that the converse holds, too, if markets are complete: If debt bounds D are not

too tight for default utilities (20), then D is a discounted martingale. In Example

1, event prices are equal to one and debt bounds are constant, which implies that

they are discounted martingale. Consequently, this equilibrium has not-too-tight

debt constraints.

Next, we present a method of injecting price bubbles on infinitely-lived assets.

Let {ǫt} by a ℜJ -valued process. We say that {ǫt} is asset-span preserving if

span{pj(s
+
t ) + xj(s

+
t ) : j ∈ J} = span{pj(s

+
t ) + ǫj(s

+
t ) + xj(s

+
t ) : j ∈ J} (24)

for every st. The property of asset-span preservation (24) and the spanning con-

dition (22) are closely related. If ǫt is asset-span preserving, then ǫj
t lies in the

asset span at p for every j. The converse holds for almost every ǫt. We elaborate

on this in Appendix C, see also Bejan and Bidian (2013). It is important to note

that the set of asset-span preserving processes is always non-empty. If markets are

complete at p, then almost every {ǫt} is asset-span preserving.

The ℜJ -valued process {ǫt} is a discounted martingale, if {ǫj
t} is a discounted

martingale for every j. We have
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Lemma 2: If {ǫt} is a positive asset-span preserving discounted martingale, then

Bi
0(p,D

i, Φi(s0)) ≃c Bi
0(p + ǫ,Di, Φi(s0)) (25)

for every Φi(s0).

Proof: Let (c, h) ∈ Bi
0(p,D

i, Φi(s0)). Since {ǫt} is asset-span preserving, there

exists portfolio strategy ĥ such that

[p(st+1) + x(st+1)]h(st) = [p(st+1) + ǫ(st+1) + x(st+1)]ĥ(st) (26)

for every st+1 ⊂ st and every st. Further, since {ǫt} is a discounted martingale, it

follows

p(st)h(st) = [p(st) + ǫ(st)]ĥ(st) (27)

It is easy to see now that (c, ĥ) ∈ Bi
0(p + ǫ,Di, Φi(s0)). The same argument shows

that if (c, ĥ) ∈ Bi
0(p + ǫ,Di, Φi(s0)), then (c, h) ∈ Bi

0(p,D
i, Φi(s0)). This concludes

the proof. 2

It follows from Lemmas 1 and 2 that if a ℜJ -valued process {ǫt} is an asset-span

preserving discounted martingale, then

Bi
0(p,D

i, p0α
i
0) ≃c Bi

0(p + ǫ,Di − αi
0ǫ, [p0 + ǫ0]α

i
0) (28)

Observation (28) leads to the following

Theorem 2: Let p and {ci} be an equilibrium with not-too-tight debt constraints Di

for default utilities (19) or (20). For every positive asset-span preserving discounted

martingale {ǫt} such that αi
0ǫt ≤ Di

t, price process p+ǫ and consumption allocation

{ci} are an equilibrium with not-too-tight debt constraints, too.

Proof: It follows from (28) that p + ǫ and {ci} are an equilibrium under debt

constraints with positive bounds Di −αi
0ǫ. Debt bounds Di −αi

0ǫ are not too tight

by Lemma 1. Further, default utilities (19) and (20) remain the same at prices

p + ǫ. For (20) this is so because U∗i
st

(p, 0, 0) = U∗i
st

(p + ǫ, 0, 0) by Lemma 2. 2

The discounted martingale {ǫt} is a price bubble in the equilibrium of Theorem

2. If assets are in strictly positive supply and utility functions are uniformly

impatient (12), then the present value of the aggregate endowment must be infinite

for otherwise we would have a contradiction to Theorem 1. Condition αi
0ǫt ≤ Di

t
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guarantees that the adjusted debt bounds Di −αi
0ǫ are positive. Bejan and Bidian

(2013) and - for complete markets - Kocherlakota (2008) proved results similar to

Theorem 2 without the condition αi
0ǫ ≤ Di

t but allowing for negative debt bounds.

A sufficient condition guaranteeing that there exists ǫt such that αi
0ǫt ≤ Di

t for

every i is that the discounted value of debt bounds, i.e., ρtD
i
t is bounded away

from zero for every agent i whose initial portfolio αi
0 is non-zero, and the risk-

free payoff lies in the one-period asset span for every st. Bidian and Bejan (2012)

provide further sufficient conditions.

Hellwig and Lorenzoni (2009, Example 1) present an example of an equilibrium

with not-too-tight debt constraints for default utilities (20) such that debt limits

are bounded away from zero and present value of the aggregate endowment is

infinite. Theorem 2 implies that there are equilibria with price bubbles in that

example. We demonstrate such equilibria in Example 2.

Example 2: Uncertainty is described by a binomial event-tree with the two suc-

cessor events of every st indicated by up and down. The (Markov) transition prob-

abilities are

Prob(up|st) = 1 − α, Prob(down|st) = α, (29)

whenever st = (st−1, up), and

Prob(up|st) = α, Prob(down|st) = 1 − α, (30)

for st = (st−1, down), where 0 < α < 1. Initial event is s0 = up.

There are two consumers with the same expected utility functions with log-

arithmic period-utility and discount factor 0 < β < 1. Endowments depend

only on the current state and are given by w1(up) = A, w2(up) = B, and

w1(down) = B, w2(down) = A. It is assumed that A > B > 0. Note that

there is no aggregate risk. Traded assets are one-period Arrow securities at every

date-event and an infinitely-lived asset with zero dividends (fiat money). Arrow

securities are in zero supply. Fiat money is in strictly positive supply with each

agent holding one share at date 0.

We first find an equilibrium with zero price of the fiat money. There exists

a stationary Markov equilibrium such that, at every event, the debt constraint is

binding for the agent who receives high endowment. The equilibrium is as follows:

15



Prices of Arrow securities are

pc(st) = 1 − β(1 − α), pnc(st) = β(1 − α), (31)

where subscript c stands for “change” of state (for example, from up to down) and

nc for “no change.” Consumption allocation is

c1(st) = c̄, c2(st) = c (32)

whenever st = (st−1, up), and

c1(st) = c, c2(st) = c̄ (33)

whenever st = (st−1, down). Consumption plans c̄ and c are such that c̄+c = A+B

and

1 − β(1 − α) = βα
c̄

c
. (34)

The solution must satisfy c̄ < A, which is a restriction on parameters α and β.

Debt bounds are

D(st) = D̄ =
A − c̄

2[1 − β(1 − α)]
, (35)

constant over time and across events.

Equilibrium holdings of Arrow securities are such that agent 1 always holds the

maximum possible short position −D̄ in the Arrow security that pays in the up-

event (where she gets high endowment A) and long position D̄ in the Arrow security

that pays in the down-event. The opposite holds for agent 2. Transversality

condition (see (41) in Appendix A) holds. Date-0 endowments must be w1(s0) =

A − D̄ and w2(s0) = B + D̄.

Event prices are products of Arrow securities prices (31). They have the prop-

erty that, at any date, the sum of event prices for all date-t events equals one. In

other words, there is no discounting (i.e., ρ(st) = 1). Consequently, the present

value of the aggregate endowment is infinite. Further, constant debt bounds D̄ are

a martingale, and therefore they are not too tight.

Since debt bounds (35) are strictly positive, we can take any positive martingale

{ǫt} such that ǫt ≤ D̄ and “inject” it as a bubble on fiat money as described in

Theorem 2. For simplicity, we take a deterministic process ǫt = ǭ for ǭ ≤ D̄. Price
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process for fiat money given by pt = ǭ together with consumption allocation {ci}

given by (34) and debt bounds D̄− ǭ for each agent constitute an equilibrium with

non-too-tight debt constraints.

6. Bubbles on Assets in Zero Supply

Theorem 2 implies that if assets are in zero supply, then there exist equilibria

with not-too-tight debt constraints with price bubbles on infinitely-lived assets.

This result extends to equilibria under debt constraints with arbitrary bounds.

Theorem 3: Suppose that all infinitely-lived assets are in zero supply. If p and {ci}

are an equilibrium under debt constraints, then p + ǫ and {ci} are an equilibrium,

too, for every positive asset-span preserving discounted martingale ǫ.

Proof: Lemma 2 implies that

Bi
0(p,D

i, 0) ≃c Bi
0(p + ǫ,Di, 0)

Since p0α
i
0 = [p0 + ǫ0]α

i
0 = 0, it follows that p + ǫ and {ci} are an equilibrium. 2

Related results have been previously established in Magill and Quinzii (1996)

for the transversality constraint on portfolio holdings and in Huang and Werner

(2004) for the natural borrowing constraint and complete markets.

Equilibria with price bubbles in Theorem 3 have the same asset span (and the

same consumption allocation) as their no-bubble counterparts. There may exist

equilibria with price bubbles on assets in zero supply such that the injection of

price bubble changes the asset span and leads to different consumption allocation.

We present an example which is a variation of Example 1.

Example 3: Consider the economy of Example 1. The Arrow-Debreu equilibrium

in this economy has time-independent consumption plans ci
t = c̄i for i = 1, 2 and

event prices equal to the discount factor, that is,

qt = βt, (36)

for every t. Consumption plans c̄i are given by

c̄i =
∞

∑

t=0

βtwi
t, (37)
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that is c̄1 = 1
1−β2 [Aβ + B] + η and c̄2 = 1

1−β2 [A + Bβ] − η.

The Arrow-Debreu equilibrium allocation can be implemented by trading fiat

money in zero supply under the natural debt constraints. The natural debt con-

straints have bounds equal to the present value of current and future agent’s en-

dowments, that is, Di
t = 1

qt

∑

∞

τ=t qτw
i
τ . The price of fiat money equals bubble σt

that must satisfy the discounted-martingale property (11), that is

qtσt = qt+1σt+1. (38)

We take σt = β−t so that the price of fiat money is

pt = β−t. (39)

The present value of agent 1 future endowments at event prices (36) is 1
1−β2 [Aβ+

B] for even dates, and 1
1−β2 [A + Bβ] for odd dates. The reverse holds for agent 2.

Debt bounds are equal to those present values.

7. Concluding Remarks

The standard theorem establishing sufficient conditions for non-existence of

price bubbles in equilibrium under borrowing constraints is extended to debt con-

straints including endogenous debt constraints. The no-bubble theorem leaves two

possibilities (beside violations of uniform impatience) for price bubbles to arise

in equilibrium: infinite present value of aggregate resources, and zero supply of

assets. We argued that equilibria with endogenous debt constraints are prone to

generate infinite present value of aggregate endowments. Two examples were given

to illustrate that assertion. Further, we showed that there always exist equilibria

with price bubbles on assets in zero supply.
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Appendix

A. First-Order and Transversality Conditions.

Assuming that the utility function ui is differentiable, the necessary first-order

conditions for an interior solution to the consumption-portfolio choice problem

under debt constraints are

p(st) =
∑

st+1⊂st

[p(st+1) + x(st+1)]
[∂st+1

ui

∂st
ui

+
γi (st+1)

∂st
ui

]

. (40)

for all st, where γi(st) ≥ 0 is the Lagrange multiplier associated with debt con-

straint (3).

First-order conditions (40) together with transversality condition are sufficient

to determine an optimal consumption-portfolio choice for concave utility function.

For the discounted time-separable expected utility
∑

∞

t=0 βtE[v(ct)] with concave

period-utility v, the transversality condition for (c, h) is

lim
t→∞

∑

st∈Ft

βtπ(st)v
′(c(st))[(p(st) + x(st))h(s−t ) + D(st)] = 0. (41)

B. Proof of Theorem 1. We show first that the value p(st)h
i(st) of each agent’s

equilibrium portfolio cannot exceed fraction 1/(1−γi) of the aggregate endowment

for every st. If it did, the agent could scale down her portfolio holdings and

consumption at all successor events of st by factor γi and use the retained wealth

to purchase the aggregate endowment in st. Because of uniform impatience, doing

so would result is a strictly preferred consumption plan contradicting optimality of

the equilibrium plan. Since the present value of the aggregate date-t endowment

converges to zero as t goes to infinity, the discounted price of the aggregate portfolio

converges to zero. This will be shown to imply that σ0 = 0. The discounted

martingle property (11) implies then that σ(st) = 0 for every st.

Let γi be be such that the uniform impatience condition (12) holds for agent i.

We claim that

(1 − γi)p(st)h
i(st) ≤ ŵ(st), (42)

for every st, every i. To prove (42), suppose that there exists st such that

(1 − γi)p(st)h
i(st) > ŵ(st), (43)
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for some i. Consider consumption plan

c̃i = (ci(−St), ci(st) + (1 − γi)p(st)h
i(st), γ

ici(St+)). (44)

Consumption plan c̃i together with portfolio strategy h̃i = (hi(−St), γihi(St)) sat-

isfy budget constraints (2). Further, because bounds Di are positive, h̃i satisfies

debt constraints. By assumption (12), ui(c̃i) > ui(ci) which is a contradiction to

optimality of ci. This proves (42).

It follows from (42) that

(1 − γ̄)p(st)ᾱ0 ≤ Iŵ(st), (45)

for every st, where γ̄ = max γi. Multiplying both sides of (45) by q(st) and summing

over all date-t events, we obtain

∑

st∈Ft

q(st)p(st)ᾱ0 ≤
I

(1 − γ̄)

∑

st∈Ft

q(st)ŵ(st). (46)

Assumption (13) implies that
∑

∞

t=1

∑

st∈Ft
q(st)ŵ(st) < ∞ since the present value

of each asset, and hence of the portfolio ᾱ0, is finite. It follows that

lim
t→∞

∑

st∈Ft

q(st)ŵ(st) = 0. (47)

Summing eq. (7) recursively from 0 to t and taking the limit as t goes to infinity

we obtain

σ0 = lim
t→∞

∑

st∈Ft

q(st)p(st). (48)

Using (46), (47) and (48), we obtain

σ0ᾱ0 ≤ 0, (49)

Since σ0 ≥ 0 and ᾱ0 >> 0, it follows σ0 = 0. 2

Remark 1: The assumption of uniform impatience in Theorem 1 can be dispensed

with if markets are complete and debt limits are the “natural” bounds.

Proof: The natural debt bounds are

D̃i(st) =
1

q(st)

∞
∑

τ=t

∑

sτ∈st

q(sτ )w
i(sτ ) (50)
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for every st, t ≥ 1. Following the arguments in Huang and Werner (2004) for the

natural borrowing constraints, one can show that if asset markets are complete,

then consumption plans in the budget set B0(p, D̃
i, p0α

i
0) with natural debt bounds

D̃i are the same as the consumption plans satisfying a single budget constraint

∞
∑

t=0

∑

st∈Ft

q(st)c(st) ≤
∞

∑

t=0

∑

st∈Ft

q(st)w
i(st) + p0α

i
0. (51)

In equilibrium, constraint (51) holds with equality for every agent i. Summing

those constraints over all agents and using market clearing,
∑

i c
i =

∑

i w
i + ᾱ0x,

we obtain σ0ᾱ0 = 0. As in the proof of Theorem 1, this implies σ0 = 0 and hence

σ(st) = 0 for every st. 2

C. Asset-span preserving process {ǫt}.

Here, we discuss the properties of asset-span preservation and lying in the asset

span introduced in Section 5. Let {ǫt} be a ℜJ -valued process. First, it is easy

to see that if {ǫt} is asset span preserving at p, then {ǫj
t} lies in the asset span at

p for every j. The converse holds under a minor rank condition which we explain

next.

Suppose that {ǫj
t} lies in the asset span at p. For any st, let hj(st) be a portfolio

such that ǫ(s+
t ) = [p(s+

t ) + x(s+
t )]hj(st). It follows that p(s+

t ) + ǫ(s+
t ) + x(s+

t ) =

[p(s+
t ) + x(s+

t )](hj(st) + Ij), where Ij denotes a portfolio consisting of one share

of asset j. Let H(st) be the J × J matrix with rows hj(st) for all j and I be the

J × J identity matrix. If matrix H(st) + I is invertible, then {ǫt} is asset span

preserving at p.

Summing up, if {ǫj
t} lies in the asset span at p for every j. and H(st) + I is

invertible for every st, then {ǫt} is asset span preserving at p.

We conclude with construction of an asset-span preserving process: For each

asset j, consider a strategy that starts with buying 1 share of asset j at date 0 and

consists of rolling over the payoff at every event after date 0. This may by called a

reverse Ponzi scheme on asset j. Formally it is a real-valued process γj defined by

pj(st)γj(st) = [pj(st) + xj(st)]γj(s
−

t )

for every st, and γj(s0) = 1. Note that γj is positive. Let ǫt be an ℜJ -valued
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process defined by

ǫj(st) = [pj(st) + xj(st)]γj(s
−

t ).

Since

p(st) + ǫ(st) + x(st) = [p(st) + x(st)](I + γ(s−t )),

it follows that ǫt is asset-span preserving. Further, it is a discounted martingale.
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