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Abstract: When uncertainty is associated with some intrinsically relevant states
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of marginal utilities of (non-expected) utility functions that exhibit aversion to
mean-independent risk. We study implications of aversion to mean-independent
risk on agents’ choices under uncertainty.
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1. Introduction

According to the classical theory of risk aversion, due to Pratt (1964) and Arrow

(1965), an agent is risk averse if she or he is unwilling to take any actuarially fair

(i.e., zero expectation) gamble when starting from a position of no risk. The

Arrow-Pratt theory is rooted in the expected utility theory of decision making.

A necessary and sufficient condition for an expected-utility maximizing agent to

be risk averse is that the agent’s von Neumann-Morgenstern utility function be

concave. Concavity of expected utility implies that the agent is unwilling to take a

mean-independent gamble when starting from a risky position. Furthermore, the

greater the scale of a mean-independent gamble, the more unwilling is the agent

to take the gamble. Mean-independent gamble has zero expectation conditional

on each possible realization of the initial risk.

There are many important implications of risk aversion under expected utility.

Examples include Consumption-Based Security Pricing that establishes a relation-

ship between expected return of a risky security and covariance of the return

with consumption growth, and comonotonicity of Pareto-optimal risk sharing (see

LeRoy and Werner (2001) for a textbook treatment). Expected utility has for many

years been loosing its appeal as the primary model of decision making under uncer-

tainty. The list of problems with expected utility is long: the paradoxes of Allais

and Ellsberg, the negative experimental evidence, the failure of expected-utility

based asset pricing models, etc. Rabin (2000) has pointed out some limitations of

risk aversion under expected utility.

The objective of this paper is to extend the theory of risk aversion beyond

the expected utility theory of decision making. The original Arrow and Pratt

definition is very weak in the absence of expected utility. In particular, it does

not imply that the agent is unwilling to take a mean-independent gamble when

starting from a risky position, or that the unwillingness to take a mean-independent

gamble increases with the scale of the gamble. We take this latter condition as the

definition of risk aversion.

We consider an agent facing a choice of a contingent claim under uncertainty.

Contingent claims are real valued random variables on a finite set of states of nature
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equipped with a probability measure. The agent’s preferences are described by an

arbitrary (continuous) utility function on contingent claims. We first introduce

the concept of mean-independent gamble (or risk): contingent claim ǫ is a mean-

independent risk at another contingent claim z if the conditional expectation of

ǫ on z is zero. We say that one contingent claim differs from another by mean-

independent risk if they differ by the scale of mean-independent risk at a common

“initial” contingent claim. More precisely, x differs from y by mean-independent

risk if x = z + ǫ and y = z + λǫ for some 0 ≤ λ ≤ 1 and some ǫ and z such

that ǫ is a mean-independent risk at z. To differ by mean-independent risk is an

antisymmetric relation, but it is usually not transitive. We are led to consider its

transitive closure which we call mean-independent more risky.

Utility function that are monotone decreasing with respect to the relation of

mean-independent more risky are called averse to mean-independent risk. We

prove in Theorem 4.1 that these utility functions are characterized by the property

that marginal utilities of consumption in different states rescaled by probabilities

of states are inversely related to consumption levels in the states. That is, utility

function U exhibits aversion to mean-independent risk, if ∂sU(x)/πs ≤ ∂tU(x)/πt,

whenever xs ≥ xt, where ∂sU denotes ∂U/∂xs. For an expected utility function,

this condition means decreasing marginal utility and is equivalent to concavity of

the von Neumann-Morgenstern utility function.

Our concept of risk is related to, but different from the standard Rothschild-

Stiglitz (1970) (or second-order stochastic dominance) concept. We prove that

if x is mean-independent more risky than y, then x is more risky than y in the

Rothschild-Stiglitz sense. The converse does not hold. The main difference between

the two concepts is that the Rothschild-Stiglitz relation is defined on (cumulative)

distribution functions of random variables and hence it identifies random variables

with their distributions, while our relation is defined directly on random variables

and it does not identify random variables with distributions. Utility functions

that are monotone decreasing with respect to the Rothschild-Stiglitz relation of

more risky – these are called strongly risk averse – are averse to mean-independent

risk and distribution invariant. In contrast, aversion to mean-independent risk
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does not necessitate distribution invariance. Often, when states of nature are

associated with some intrinsically relevant events, there is no reason for an agent

to base her preferences over state-contingent claims only on distribution of claims.

For instance, if the two possible states of nature are sunshine and rain, then even

if they have equal probabilities, an agent may not be indifferent between, say,

contingent claims (100, 0) and (0, 100). For an excellent discussion of this issue see

Arrow (1971).

Utility functions that exhibit aversion to mean-independent risk have a simple

characterization of Theorem 4.1. This is in contrast to strongly risk averse utility

functions for which there exist no such characterization (with an exception of the

case of uniform probabilities of states, see Section 4).

Our theory of risk aversion is aimed at applications to models of decision making

other than the expected utility. The most important models in the setting of

contingent claims on a set of states of nature are the multiple-prior (or maxmin)

expected utility of Gilboa and Schmeidler (1989) and the Choquet expected utility

with non-additive probabilities of Schmeidler (1979). Many (but not all) multiple-

prior expected utility and Choquet expected utility functions are not distribution

invariant under any probabilities of states.1 In the multiple-prior expected utility

model the agent has a set of probability measures on states instead of a single

measure. In the companion paper (Werner (2005b)) we study the question of

whether a multiple-prior expected utility is averse to mean-independent risk with

respect to some probability measure in the set of multiple priors. We show that

for many sets of priors there exists one such probability measure. It should be

noted that some important sets of multiple priors come with a specific “reference”

probability measure. Such are neighborhoods of a measure with respect to a metric

such as, for instance, relative entropy (introduced in this context by Hansen and

Sargent (2001)). These reference measures are of special relevance in the question

of aversion to mean-independent risk.

Karni (1985) extended the Arrow-Pratt theory of risk aversion to state-dependent

1That is, they are not probabilistically sophisticated, using the terminology of Machina and
Schmeidler (1992).
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utility functions. He defined risk aversion as unwillingness to take actuarially fair

gamble when starting from a position of risk-free marginal utility of wealth. This

approach is designed specifically for utility functions that are state separable, and it

should be considered complementary to our approach. Multiple-prior and Choquet

expected utilities are non-separable. We show in Section 4 that a state-separable

utility function exhibits aversion to mean-independent risk if and only if it is an

expected utility.

The paper is organized as follows: In Section 2 we introduce the concept of

mean-independent risk and the relation of mean-independent more risky. A com-

parison with the Rothschild-Stiglitz relation is in Section 3. A characterization

of differentiable utility functions that exhibit aversion to mean-independent risky

is proved in Section 4. In Section 5 we show that a property termed preference

for conditional expectation is equivalent to aversion to mean-independent risk for

quasi-concave utility functions. In Section 6 we extend our characterization result

of Section 4 to non-differentiable utility functions using the concept of the su-

perdifferential. This extension is important since most of multiple-prior expected

utility functions are not differentiable. In Section 7 we study some implications

of aversion to mean-independent risk on agents’ choices under uncertainty. We

extend Peleg and Yaari (1973) and Dybvig and Ross (1995) characterizations of

efficient claims from risk-averse expected utility functions to utility functions that

are averse to mean-independent risk.

2. Mean-Independent Risk

There is a finite set S = {1, . . . , S} of states of nature (with S > 1) and a

probability measure π on the set S of all subsets of S. Any S-dimensional vector

x = (x1, . . . , xS) ∈ RS can be regarded as random variable on (S,S, π) and will be

termed a contingent claim. Probability measure π can be identified with a vector

(π1, . . . , πS) of probabilities of states. We assume that πs > 0 for every state s.

We use E(x) to denote the expected value of x under π, and E(x) to denote the

contingent claim (or vector) that takes value E(x) in every state.

We will frequently use conditional expectations. For partition F of states,

E(x|F ) denotes conditional expectation of x on F. For contingent claim z, E(x|z)
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denotes conditional expectation of x on z, that is, conditional expectation of x

on the partition generated by z. All these conditional expectations are contingent

claims (or vectors).

We say that ǫ ∈ RS is a mean-independent risk at z ∈ RS if ǫ is mean-

independent of z with zero mean, that is,

E(ǫ|z) = 0. (1)

Thus, a mean-independent risk at z is a contingent claim that has zero expectation

conditional on each possible value that z may take.

Note that if ǫ 6= 0 is a mean-independent risk at z, then z must be state

independent for some subset of states, that is, zs = zs′ for at least two states

s 6= s′. If there are only two states, then ǫ 6= 0 is mean-independent risk at z if

only if z is deterministic and E(ǫ) = 0. In general, for any partition F of states, if

E(ǫ|F ) = 0 and z is measurable with respect to F, then ǫ is a mean-independent

risk at z. In Appendix A we provide characterizations of mean-independent risk.

Consider two contingent claims x, y ∈ RS with the same expectation, E(x) =

E(y). We say that x differs from y by mean-independent risk if there exist z, ǫ ∈ RS

and 0 ≤ λ ≤ 1 such that ǫ is a mean-independent risk at z and

x = z + ǫ and y = z + λǫ. (2)

Thus, x and y differ by the scale of mean-independent risk at a common “initial”

contingent claim, with the former having a greater scale than the latter. If (2)

holds with ǫ 6= 0 and λ < 1 (equivalently, if x 6= y), then x strictly differs from x

by mean-independent risk.

For any contingent claim x and a partition F of states, x differs from E(x|F ) by

mean-independent risk. This is so because x−E(x|F ) is a mean-independent risk

at E(x|F ). Further, x differs from E(x|F ) + λ[x − E(x|F )] by mean-independent

risk for any 0 ≤ λ ≤ 1 (see Appendix A).

Example 2.1: Let there be three equally probable states. Consider y = (5, 1, 3)

and x = (5, 0, 4). Set z = (5, 2, 2) and ǫ = (0,−2, 2). Clearly, E(ǫ|z) = 0, hence ǫ

is a mean-independent risk at z. Since x = z+ǫ and y = z+ 1
2
ǫ, x differs from y by
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mean-independent risk. Note also that z = E(x|F ) for partition F = {{1}, {2, 3}}.

2

If x differs from y by mean-independent risk and x 6= y, then z, ǫ and λ satisfying

(2) are unique. First, we note that if x 6= y, then λ < 1 and

ǫ =
1

1 − λ
(x − y). (3)

If there exist another triple z′, ǫ′, λ′ satisfying (2), then, because of (3) ǫ and ǫ′ are

related via ǫ′ = 1−λ
1−λ′

ǫ. This implies that 0 = (z′ − z) + λ′−λ
1−λ′

ǫ, and that E(ǫ|z′) = 0.

Since also E(ǫ|z) = 0, it follows that ǫ is uncorrelated with z and z′, and hence

also with z′ − z. Therefore z = z′ and λ = λ′, which implies ǫ = ǫ′.

To differ by mean-independent risk (DMIR, for short) is a binary relation on

the set of contingent claims. Of course, it is reflexive. It is also antisymmetric as

established by the following

Proposition 2.2 If x DMIR y and y DMIR x, then x = y

Proof: We have (2) and

y = z′ + ǫ′ and x = z′ + λ′ǫ′ (4)

for some ǫ′ and z′ such that E(ǫ′|z′) = 0. Suppose that x 6= y. Then λ < 1 and

λ′ < 1. Using (3) for ǫ and for ǫ′, we obtain ǫ′ = − 1−λ
1−λ′

ǫ. It follows now from (2)

and (4) that 0 = (z′−z)+(λλ′−1
1−λ′

)ǫ. Since ǫ is uncorrelated with z−z′, this implies

that z = z′ and λλ′ = 1. The latter contradicts λ < 1 and λ′ < 1. 2

It is clearly desirable that a relation of more risky be transitive. If there are

only two states, then relation DMIR is transitive (see Appendix A). However, if

S ≥ 3, then DMIR is not transitive.

Example 2.4: As in Example 2.1, there are three equally probable states. We

have seen that x DMIR y for x = (5, 0, 4) and y = (5, 1, 3). It is also true that y

DMIR w for w = (4, 2, 3) (take ǫ = (2,−2, 0) and z = (3, 3, 3)). It is however not

true that x DMIR w. 2

We are led to consider the transitive closure of DMIR. The transitive closure

of DMIR – called mean-independent more risky – is defined as follows: for two
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contingent claims x and y, x is mean-independent more risky than y, if there

exists a finite collection x1, . . . , xN of contingent claims such that x DMIR x1, xn

DMIR xn+1 for each 1 ≤ n ≤ N − 1, and xN DMIR y. If, in addition, x 6= y, then

x is strictly mean-independent more risky than y. Mean-independent more risky

is a reflexive and transitive relation. It is also antisymmetric as will be seen in

Section 3.

3. Mean-Independent More Risky and Rothschild-Stiglitz More Risky

In this section we compare the relation of mean-independent more risky with

the Rothschild-Stiglitz (1970) (or second-order stochastic dominance) relation of

more risky. We begin by showing that every concave expected utility is decreasing

with respect to the relation of mean-independent more risky. One consequence of

this is that mean-independent more risky is an antisymmetric relation.

Proposition 3.1 If x is mean-independent more risky than y, then E[v(y)] ≥

E[v(x)] for every concave function v : R → R. Further, if x is strictly mean-

independent more risky than y, then E[v(y)] > E[v(x)] for every strictly concave

v.

Proof: It suffices to show that the claimed inequalities hold if x DMIR y, or

x strictly DMIR y, respectively. Suppose that x DMIR y, so that (2) holds. It

follows that y = λx + (1 − λ)z for λ ∈ [0, 1]. Concavity of v implies that

v(y) ≥ λv(x) + (1 − λ)v(z). (5)

Taking expectations in (5) we obtain

E[v(y)] ≥ λE[v(x)] + (1 − λ)E[v(z)]. (6)

Since x = z + ǫ and E(ǫ|z) = 0, conditional Jensen’s inequality implies that

E[v(z)] ≥ E[v(x)]. Now, (6) implies that

E[v(y)] ≥ E[v(x)]. (7)

The strict version follows in the same way since Jensen’s inequality is strict for

ǫ 6= 0 and strictly concave v. 2
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Contingent claim x is more risky in the Rothschild-Stiglitz sense than y (R-S

more risky) if

x =d y + ǫ (8)

for some random variable ǫ such that E(ǫ|y) = 0. Relation =d indicates that

the two random variables have the same distribution. Note that ǫ need not be a

random variable on S. If x is R-S more risky than y and y is R-S more risky than

x, i.e. if x and y are R-S equally risky, then x and y have the same distribution.

A well-known necessary and sufficient condition for x to be R-S more risky than

y is that E[v(y)] ≥ E[v(x)] holds for every strictly increasing and concave utility

function v.

Proposition 3.1 implies the following

Theorem 3.2: If x is mean-independent more risky than y, then x is R-S more

risky than y.

A converse to Theorem 3.2 does not hold.

Example 3.3: Let there be two equally probable states. Consider x = (5, 2) and

y = (3, 4). Clearly, x is R-S more risky than y. However, it is not true that x

DMIR y. Since DMIR coincides with mean-independent more risky in the case of

two states, x is not mean-independent more risky than y. 2

4. Aversion to Mean-Independent Risk

An agent’s preferences over contingent claims on (S,S, π) are described by a

strictly increasing and continuous utility function U : RS → R. We say that U

is averse to mean-independent risk under π if U(y) ≥ U(x) whenever x is mean-

independent more risky than y. Most of the time we drop the phrase “under π,”

except when a reference to a specific probability measure is required.

By Proposition 3.1, every utility function that has concave expected utility

representation is averse to mean-independent risk. Concave expected utilities are in

fact the only state-separable utility functions that are averse to mean-independent

risk. It follows from Werner (2005a) that any utility function that satisfies the sure-

thing principle (and hence is state separable) and is averse to mean-independent

risk must have concave expected utility representation. By Theorem 3.2, every
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utility function that is decreasing with respect to the relation of R-S more risky is

averse to mean-independent risk. Utility functions that are decreasing with respect

to the relation of R-S more risky are called strongly risk averse (see Cohen (1995)),

or Schur concave. Examples of non-expected utility functions that are strongly

risk averse include mean-variance utility functions that are variance averse, that

is, utility functions that depend only on the expectation and the variance of a

contingent claim and are decreasing in variance.

Strongly risk averse utility functions are distribution invariant. Utility function

U is distribution invariant under π if U(x) = U(y) whenever x=dy. Utility functions

that are averse to mean-independent risk need not be distribution invariant. For

example, the multiple-prior expected utility on two-state contingent claims

min
0.5−δl≤µ≤0.5+δu

{µv(x1) + (1 − µ)v(x2)} (9)

with 0 < δu, δl < 0.5, δu 6= δu and concave v, is averse to mean-independent risk

under equal probabilities of states, but it is not distribution invariant under such

probabilities. For instance, claims (1, 2) and (2, 1) have the same distribution, but

different utilities. It is not hard to verify that multiple-prior expected utility (9) is

averse to mean-independent risk using the definition, but we defer the proof until

Section 5.

We provide now a characterization of differentiable utility functions that are

averse to mean-independent risk. For a differentiable function U, we use DU(x) =

(∂1U(x), . . . , ∂SU(x))2 to denote the gradient of U at x, and DU(x)/π to denote

the gradient rescaled by probabilities π, that is, the vector with ∂sU(x)/πs as its s-

th coordinate. Further, two vectors φ, x ∈ RS are said to be negatively comonotone

if (φs − φt)(xs − xt) ≤ 0 for every s, t.

Theorem 4.1: Differentiable utility function U is averse to mean-independent

risk if and only if DU(x)/π is negatively comonotone with x, for every x.

Proof: Utility function U is averse to mean-independent risk if and only if U(z +

λǫ) is a non-increasing function of λ for λ ≥ 0, for every z, ǫ ∈ RS such that ǫ is

2∂sU(x) denotes (∂U/∂xs)(x).
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a mean-independent risk at z. Since U is differentiable, a necessary and sufficient

condition for U(z + λǫ) non-increasing in λ is that DU(z + λǫ)ǫ ≤ 0 for every

λ ≥ 0. Since ǫ can be rescaled, this is equivalent to DU(z + ǫ)ǫ ≤ 0 for every ǫ

and z. Using Proposition A.1, Appendix A, we have DU(x)[x − E(x|F )] ≤ 0 for

every x and every partition F . Applying Lemma B.1 from Appendix B concludes

the proof. 2

For an expected utility function U(x) = E[v(x)] with differentiable von Neumann-

Morgenstern utility v, it holds ∂sU(x)/πs = v′(xs). Thus, negative comonotonicity

of DU(x)/π with x means that marginal utility v′ is decreasing, or equivalently,

that v is concave.

Since strongly risk averse utility functions are averse to mean-independent risk,

Theorem 4.1 implies that negative comonotonicity of the rescaled gradient with

consumption holds for strongly risk averse utility functions (see Chew and Mao

(1995) for a related result.) A fundamental result of Schur and Ostrowski (see

Marshall and Olkin (1979)) says that when all states are equally probable, then

utility function U is strongly risk averse if and only if it is (1) symmetric and (2)

DU(x) is negatively comonotone with x for every x. Utility U is symmetric (or

rearrangement invariant) if it is invariant to permutations of coordinates. This

is a necessary and sufficient condition for U to be distribution invariant when

probabilities of states are equal. No characterization of strongly risk averse utility

functions is known for the case of unequal probabilities. It follows from Theorem

4.1 that if probabilities are equal, then symmetric utility function is strongly risk

averse if and only if it is averse to mean-independent risk.

5. Preference for Conditional Expectations

We say that utility function U exhibits preference for conditional expectations

under π if U(E(x|F )) ≥ U(x) for every x ∈ RS and every partition F. Equivalently,

U exhibits preference for conditional expectations if the agent always rejects a

mean-independent risk, that is, U(z) ≥ U(z + ǫ) for every ǫ, z ∈ RS such that ǫ

is mean-independent risk at z (see Proposition A.1, Appendix A). If U is averse

to mean-independent risk, then it exhibits preference for conditional expectations.

11



For quasi-concave utility function the converse is also true.

Theorem 5.1: Suppose that U is quasi-concave. Then U is averse to mean-

independent risk if and only if exhibits preference for conditional expectations.

Proof: We already proved that aversion to mean-independent risk implies pref-

erence for conditional expectations. For the converse implication suppose that U

exhibits preference for conditional expectations and let x be mean-independent

more risky than y. By Proposition A.2 there exists a partition F such that

y = (1 − λ)E(x|F ) + λx. Since U(E(x|F )) ≥ U(x), quasi-concavity implies that

U(y) ≥ U(x), and hence that U is averse to mean-independent risk. 2

Preference for conditional expectations implies preference for unconditional ex-

pectation, U(x) ≤ U(E(x)) for all x. For expected utility, the two are equivalent

and also equivalent to concavity of the von Neumann-Morgenstern utility func-

tion. Also, if there are only two states, preference for conditional expectations is

equivalent to preference for unconditional expectation. This makes it is easy to see

that multiple-prior expected utility function (9) exhibits preference for conditional

expectations. Since function (9) is concave, Theorem 5.1 implies that it is averse

to mean-independent risk.

A characterization of preference for conditional expectations for differentiable

and quasi-concave utility functions is given in the following

Theorem 5.2: Suppose that U is quasi-concave and differentiable. U exhibits

preference for conditional expectations if and only if, for every x and every s, s′,

if xs = xs′, then
∂sU(x)

πs

=
∂s′U(x)

πs′
. (10)

Proof: Consider arbitrary contingent claim x, and let Fx be the partition of

states generated by x. Let A1, . . . Ak be the elements of partition Fx. Of course,

xs = xs′ for every s, s′ ∈ Al, for every l. If U exhibits preference for conditional

expectations, then x solves the following maximization problem

max
y

U(y) (11)

subject to E(y|Fx) = x.

12



The constraint E(y|Fx) = x can be equivalently written as k constraints E(y|Al) =

xl, for l = 1, . . . , k, where xl denotes the common value of xs on the set Al. The

first-order Lagrange conditions for the solution x to this maximization problem can

be written as ∂sU(x)
πs

=
∂s′U(x)

πs′
for every s, s′ ∈ Al and every l. This implies that (10)

holds. Conversely, if (10) holds, then x satisfies the first-order conditions for the

maximization problem (11). Since U is quasi-concave, the first-order conditions

are sufficient so that x is a solution. This implies that U exhibits preference for

conditional expectations. 2

Of course, preference for conditional expectations in Theorem 5.2 can be sub-

stituted by aversion to mean-independent risk, because of Theorem 5.1. Condition

(10) can be equivalently stated as that the rescaled gradient DU(x)/π is measur-

able with respect to the partition generated by x.

When all states are equally probable, every symmetric differentiable utility

function satisfies condition (10). If, in addition, U is quasi-concave, then it follows

that it is averse to mean-independent risk under equal probabilities. Dasgupta,

Sen and Starrett (1973) (see also Rothschild and Stiglitz (1973)) proved that every

symmetric and quasi-concave utility function is strongly risk averse when states

are equally probable.

6. Mean-Independent Risk Aversion without Differentiability

The drawback of our characterization results in sections 4 and 5 is that they

require differentiability of the utility function. Many interesting non-expected

utility functions are not differentiable. Multiple-prior expected utility functions

are non-differentiable, although usually on small sets of contingent claims. Multi-

prior expected utility (9) is non-differentiable at every deterministic contingent

calim.

The results of Sections 4 and 5 can be extended to non-differentiable utility

functions by the use of superdifferentials. Let utility function U be concave. The

superdifferential of U at x is defined as the set of all vectors φ ∈ RS that satisfy

U(y) ≤ U(x) + φ(y − x), (12)

for every y. The superdifferential of U at x is denoted by ∂U(x). It is a nonempty
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set that reduces to single vector DU(x) if U is differentiable at x.

An extension of Theorem 5.2 to non-differentiable, concave utility functions is

the following

Theorem 6.1: Suppose that U is concave. U is averse to mean-independent risk

if and only if for every x there exists φ̂ ∈ ∂U(x) such that

if xs = xs′, then
φ̂s

πs

=
φ̂s′

πs′
. (13)

Proof: By Theorem 5.1, U is averse to mean-independent risk if and only if it

exhibits preference for conditional expectations. This is in turn equivalent (see the

proof of Theorem 5.2) to x solving the maximization problem (11), for every x.

The maximization problem (11) can be rewritten as

max
ǫ

U(x + ǫ) (14)

subject to E(ǫ|Fx) = 0.

Clearly, x is a solution to (11) if and only if 0 is a solution to (14). The constraint

set in (14) is the linear subspace of all ǫ that are mean-independent risk at x. In

Appendix A we discuss geometrical structure of this subspace.

A necessary and sufficient condition for 0 to be a solution to (14) for concave

function U is that there exists φ̂ ∈ ∂U(x) such that φ̂ is orthogonal to the constraint

set at x (see Rockafellar [12], page 54). It follows from Proposition A.3 in Appendix

A that φ̂ is orthogonal to the subspace of all ǫ that are mean-independent risk at x

if and only if φ̂/π is measurable with respect to Fx. This is equivalent to condition

(13). 2

A partial extension of Theorem 4.1 to non-differentiable, concave functions is

the following

Proposition 6.1: Suppose that U is concave. If, for every φ ∈ ∂U(x) and every

x, φ/π is negatively comonotone with x, then U is averse to mean-independent

risk.

Proof: We first observe, as in the proof of Theorem 4.1, that U is averse to

mean-independent risk if and only if U(z + λǫ) is a non-increasing function of λ
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for λ ≥ 0, for every z, ǫ ∈ RS such that ǫ is a mean-independent risk at z. Let

g(λ) = U(z + λǫ). Single-variable function g is concave. For x = z + λǫ it holds

∂g(λ) = {ǫφ : φ ∈ ∂U(x)}, where ∂g(λ) is the superdifferential of g (see Aubin

(1998)). By Proposition A.1, Appendix A, ǫ can be written as x− E(x|Fz) where

Fz is the partition generated by z. Using Lemma B.1 we obtain that ∂g(x) ≤ 0.

This implies (Aubin (1998)) that g is a non-increasing function of λ. 2

7. Efficient Claims Under Aversion to Mean-Independent Risk

In this section we study some implications of aversion to mean-independent

risk on agents’ choices under uncertainty. We extend characterizations of efficient

claims of Peleg and Yaari (1973) and Dybvig and Ross (1995) from risk-averse

expected utility functions to utility functions that are averse to mean-independent

risk. Chew and Zilcha (1990) demonstrated that the Peleg-Yaari characteriza-

tion remains unchanged for strongly risk averse utility functions. We show that

the same characterizations hold for utility functions that are averse to mean-

independent risk. This implies that such features of expected utility as state

separability and distribution invariance have no implications on efficient claims.

All the implications come from risk aversion.

Let X ⊂ RS be a closed and convex set of contingent claims on (S,S, π) that

are available to a decision maker. A claim x∗ ∈ X is supported by a price system

p ∈ RS, p 6= 0 if

px∗ ≥ px ∀x ∈ X. (15)

We say that x∗ ∈ X is EUC-efficient if there exists a strictly increasing and

concave utility function v : R → R such that

E[v(x∗)] ≥ E[v(x)] ∀x ∈ X. (16)

Similarly, we say that x∗ ∈ X is MIC-efficient if there exists a strictly increasing

and quasi-concave utility function U : RS → R exhibiting aversion to mean-

independent risk such that

U(x∗) ≥ U(x) ∀x ∈ X. (17)
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Theorem 7.1: The following conditions are equivalent

(i) x∗ is EUC-efficient,

(ii) x∗ is MIC-efficient,

(iii) x∗ is supported by some price system p ∈ RS
++ such that x∗ and p/π are

negatively comonotone.

Proof: Obviously, (i) implies (ii). Suppose that (ii) holds, that is, that x∗ is

utility maximizing for U . Let P denote the preferred-to-x∗ set for U , and P o

the strictly preferred-to-x∗ set. Clearly P = clP o, and P is closed and convex.

Further, E(x∗|F ) ∈ P for every partition F . Let p be a price vector that separates

X from P o. Then p supports x∗, and py ≥ px∗ for all y ∈ P . In particular,

pE(x∗|F ) ≥ px∗. Using Lemma B.1 we obtain (iii).

A proof that (iii) implies (i) can be found in Peleg and Yaari (1973). 2

When the choice set X is given as budget feasible payoffs of marketed assets,

the decision maker’s problem is termed the canonical portfolio problem (Dybvig

and Ross (1995)). Formally, this choice set is

XA = {x ∈ RS : x =
k∑

j=1

hjaj for some h ∈ Rk satisfying
k∑

j=1

hjqj = w}, (18)

where aj ∈ RS
+ and qj ∈ R+ are, respectively, the payoff and the price of asset j,

k is the number of assets, and w ∈ R+ is the decision maker’s wealth. Since the

choice set XA is affine, it follows that p supports x∗ ∈ XA if and only if qj = paj for

every j. If p is strictly positive, then this is, of course, the no-arbitrage condition

on asset price vector q. We have the following corollary to Theorem 7.1

Corollary 7.2: The following conditions are equivalent for the canonical portfolio

problem

(i) x∗ is EUC-efficient,

(ii) x∗ is MIC-efficient,

(iii) x∗ and p/π are negatively comonotone for some p ∈ RS
++ such that qj = paj

for all j.
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Appendix

A. The Structure of Mean-Independent Risk.

Characterizations of mean independent risk and the relation DMIR can be

given using conditional expectations.

Proposition A.1 ǫ is a mean-independent risk at z if and only if there exist x

and a partition F such that

z = E(x|F ), and ǫ = x − E(x|F.) (19)

Proof: Suppose that ǫ is mean-independent risk at z. Let partition F be gener-

ated by z, and let x = z + ǫ. Then E(x|F ) = E(x|z) = z and ǫ = x − E(x|F ).

Conversely, if (19) holds for some x and F, then E(ǫ|z) = E(ǫ|F ) = E([x −

E(x|F )]|F ) = 0, so that ǫ is mean-independent risk at z. 2

An immediate consequence of Proposition A.1 is the following

Proposition A.2 x DMIR y if and only if there exists partition F such that

y = E(x|F ) + λ[x − E(x|F )] (20)

for some 0 ≤ λ ≤ 1.

Note that (20) implies that E(x|F ) = E(y|F ). Taking λ = 0 in Proposition

A.2, we obtain that x DMIR E(x|F ) for ever partition F and every x. In particular,

x DMIR E(x).

With two states, ǫ 6= 0 is mean-independent risk at z only if z is deterministic,

and consequently x DMIR y if and only if y = E(x) + λ[x − E(x)] for some

0 ≤ λ ≤ 1. It is easy to show that this a transitive relation on R2.

For a contingent claim z, let Fz denote the partition generated by z and Xz

the set of all contingent claims that are measurable with respect Fz. If ǫ is mean-

independent risk at z, then it is also mean-independent risk at any z′ ∈ Xz. Indeed,

since z′ is Fz-measurable, it follows that E(ǫ|z′) = E[E(ǫ|z)|z′] = 0.

The set of ǫ that are mean-independent risks at z is a linear subspace of RS.

Of course, Xz is a linear subspace, too. There is a simple geometry of these
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subspaces. To explain this, we introduce the expectations inner product in RS

defined by the expectation E(xy) with respect to π of the (state-by-state) product

any two contingent claims x and y. Whenever two claims or two subspaces of

claims are orthogonal to each other under the expectation inner product, we refer

to them as π-orthogonal. Note that x is π-orthogonal to y if and only if x/π is

orthogonal to y in the usual Euclidean inner product. We have the following

Proposition A.3 ǫ is mean-independent risk at z if and only if ǫ is π-orthogonal

to Xz.

Proof: If ǫ is mean-independent risk at z, then, as we already proved, E(ǫ|z′) = 0

for every z′ ∈ Xz. This implies E(ǫz′) = 0 for every z′ ∈ Xz, hence ǫ is π-orthogonal

to Xz. For the converse implication, suppose that ǫ is π-orthogonal to Xz. Let

A1, . . .Ak be the elements of partition Fz. Since the indicator function 1Aj
lies in

Xz, for every j, we have E(ǫ1Aj
) = 0. This implies E(ǫ|Aj) = 0 for every j, and

hence E(ǫ|Fz) = 0, or equivalently E(ǫ|z) = 0. This concludes the proof. 2

B. Negative Comonotonicity.

Lemma B.1: For x, φ ∈ RS, φ/π and x are negatively comonotone if and only if

φx ≤ φE[x|F ] (21)

for every partition F of S.

Proof: Let F be an arbitrary partition of S consisting of disjoint subsets

S1, . . . , Sk. For any φ, x ∈ RS we have

φ[x − E(x|F )] =
∑

j

∑

s∈Sj

φs[xs − E(x|Sj)] = (22)

=
∑

j

(
1

π(Sj)

∑

s∈Sj

φs[π(Sj)xs −
∑

t∈Sj

πtxt]). (23)

Using π(Sj) =
∑

t∈Sj
πt, we can rewrite each summand in (23) as

1

π(Sj)

∑

s,t∈Sj

φsπt[xs − xt] =
1

π(Sj)

∑

s,t∈Sj ,s<t

(φsπt[xs − xt] + φtπs[xt − xs]). (24)
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Finally, we obtain that

φ[x − E(x|F )] =
∑

j

(
1

π(Sj)

∑

s,t∈Sj ,s<t

πsπt[
φs

πs
−

φt

πt
][xs − xt]). (25)

If φ/π and x are negatively comonotone, then it follows from (25) that φ[x −

E(x|F )] ≤ 0 for every partition F .

Conversely, suppose that (21) holds for every partition F . For any s, t ∈ S,

consider partition Fst of S that consists of the set {s, t} and singleton sets for all

states other than s or t. Applying (25) to Fst, we have

0 ≥ φ[x − E(x|Fst)] =
πsπt

πs + πt

[
φs

πs

−
φt

πt

][xs − xt]. (26)

Since (26) holds for every s, t ∈ S, it follows that φ/π and x are negatively comono-

tone. 2
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