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Abstract

This note provides a formal justification for the Friedman and Savage
nonconcavity in the utility of money. This is based on the possibility of
indivisibilities in the consumption possibilities set. A precise characteri-
zation of when gambling is optimal (and the optimal type) is provided in
one special case. Some possible limitations are considered.

1 Preamble

I started working on this paper when I was working in the MEDS Department
at Northwestern University, an extremely stimulating place for a theorist. I
had been puzzled by use of lotteries in General Equilibrium models which I
first encountered in the paper on contracting by Prescott and Townsend (1984).
That paper made me think, hard, about the social value of randomization —
when would it be valuable, why was it valuable in the Prescott and Townsend
setting, etc. Was this something that would always work when there was a
non-convexity in the individual’s feasible set?
At some point I realized that if I was going to understand the problem better

I would need to think about it in a much simpler setting than where they were
working. This led me to consider a simple setting in which there were two goods,
one divisible and one indivisible. It was in thinking about that simple version of
the problem that I realized that in a setting such as that, the indirect utility of
wealth would have a non-concave region, much like that envisioned by Friedman
and Savage in their paper on choice and risk (1948). It was not exactly the same
however, since this non-concave region was bounded above and below by regions
of strict concavity. This difference is important for understanding who would

∗I am indebted to V.V. Chari, E. Prescott, T. Sargent and E. Zemel for helpful conver-
sations, the National Science Foundation for financial support, Anderson Schneider for his
expert research assistance and seminar participants at the University of Chicago for their
always stimulating hospitality.
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gamble — the middle income and the rich in the Friedman and Savage approach
and the middle income group here.
The note also included two other examples beyond that first basic one. Both

were designed to show that there were interesting and realistic cases when there
were indivisibilities in goods, but not a non-concavity in the indirect utility
of wealth. One of these was based on quality differentiation with increasing
marginal cost of quality and the second was a simple continuous time example
showing that division over time could act as a substitute for randomization.
Soon after writing the note, it was pointed out to me (by Mark Machina)

that the first example was already known. Indeed it had appeared in 1965 in a
short paper by Kwang (Kwang (1965)). Since that example was the one that
I found most interesting and it had already been done, I set the project aside
and went on to work on other things.
Since then, the Rogerson (1985) approach to labor supply as an indivisible

good and the use of lotteries to decentralize efficient allocations has become
more and more popular.1 And because of this the continuous time example
mentioned above has become of more interest to other authors. Indeed, it was
the recent work by Ljungqvist and Sargent (2006) and their interest in the topic
that got me to get this note back out again (see also Prescott (2004) and (2006)).
To put this topic into a larger context, note that there is an important

debate going on in the literature now (and over the years since this note was
first written). It concerns the responsiveness of labor supply to changes in policy
both at the level of the individual and the aggregate. The answers to these
questions typically depend on one (or two) key parameter(s) — the elasticity of
labor supply, or, at a deeper level, the parameters of preferences determining
this elasticity, e.g., the intertemporal elasticity of substitution of leisure.
Although this debate is diverse, it is useful to frame it as a discussion between

two camps. The traditional labor economists say that they know the answer
to these questions based on micro studies of labor supply. This is that labor
supply is very inelastic. The other camp argues that it is quite elastic.
The Rogerson approach, as it is typically implemented, has the implication

that labor supply is quite elastic — once lotteries are introduced, the utility
function is effectively linear in leisure. This is standard in Expected Utility
models, utility is linear in probabilities. In the Rogerson approach, it is these
probabilities which map directly into the analog of labor supplies. This, along
with other features, has been used as an argument against the model by micro
labor economists.
In the continuous time version of the model with indivisibilities, the linearity

of utility in leisure comes from a slightly different source. It is directly from the
indivisibility of working instant by instant—either you are working at t, or you are
not. Because of this, in certain cases, the effective margin for determining labor
supply is something like the ’fraction of time spent working.’ This analogy is
exact in some, but not all cases (separable utility and balanced growth behaviour

1I have not made an attempt to include a complete set of references of papers that use
that approach here. See Hansen (1985) and Prescott and Rios-Rull (1992) for examples.
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of prices are sufficient in the example). And it is because of this property that
lotteries are irrelevant (i.e., have no social value) in examples like this.
The second is a more palatable interpretation for most people, but the two

models give rise to the same aggregate implications (see Ljungqvist and Sargent
(2006)).
Because of this debate and its importance, I have changed only one sub-

stantive thing in the note this time around. This is to add a set of sufficient
conditions under which the indirect utility function over wealth is concave in the
continuous time setting even with discounting. When these conditions are met,
and a balanced growth interest condition also holds, the continuous time model
is concave, and looks very much like a model with lotteries already included.
Here, the relevant margin for labor supply is the fraction of time spent working,
and utility is linear in this quantity. Because of this, labor supply will be, as in
Rogerson, very elastic.

2 Introduction

In their 1948 paper on decisions under uncertainty, Friedman and Savage pre-
sented a puzzle. This is the empirical fact that many individuals both gamble
and buy insurance. The puzzle in this observation is that the fact of gam-
bling seems to imply risk-loving, while that of insurance purchase implies risk-
aversion. The difficulty is then the reconciliation of these two seemingly con-
tradictory behaviors. Friedman and Savage proposed a solution to the puzzle
which involved a utility function which is first concave and then convex. This
formulation allows for the possibility of both risk taking and insurance by the
same individual.
The purpose of this note is to propose a slightly different solution to this

puzzle. In the model presented below, agents are expected utility maximizers
with preferences that are strictly concave and yet, optimal choices by individ-
uals involve both gambling and the purchase of insurance. At this point, the
natural question to ask is: What is the trick? (Of course, there must be one.)
The answer lies in our choice of consumption set. In the simplest version of
the model, the consumption set consists of R × {0, 1}. We will interpret the
first coordinate of this, (m,h), as money, the second as some indivisible good
such as a house, a trip, or some other expensive but indivisible good. It is
this indivisibility (quite reasonable in practice) that is the driving force in the
examples.
Of course, with the presence of an indivisibility in the consumption set, con-

cavity of the utility function is not defined in a strict sense. What we will mean
by this is that the expected utility function is the restriction to the consumption
set of a function strictly concave on R2.
Although the motivation here is quite different, it is easy to see that this

formulation of the problem induces an indirect utility function over money (the
price of the indivisible good is known with certainty ahead of time), which
features a non-concavity of the Friedman and Savage type. There are important
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differences, however. In particular, while the Friedman and Savage assumptions
would lead one to expect that the rich would gamble and the poor would buy
insurance (assuming the same tastes), our approach would lead to the opposite
conclusion. In essence, within the model, individuals gamble in order to acquire
the ability to “jump across” the indivisibility in the consumption set. This is
neither necessary nor desirable for an agent with high initial wealth.
The reader will note the strong similarity between this model and recent

results concerning the possibility of the benefits (social) from lotteries arising in
competitive systems. Notable contributions to this literature include Prescott
and Townsend (1984), Rogerson (1985), and Prescott and Rio-Rull (1992).
Although the results noted above are interesting, it is rare in practice that a

good is indivisible to the extent utilized in the example. There are often possi-
bilities for effectively convexifying the consumption set through the availability
of continuous gradation of quality or characteristics (e.g., the Rosen (1974) and
Mas-Collel (1975) models) and/or timing. Some initial investigation of these
mitigating possibilities is offered in Section 5.

3 An Example

Consider an agent who at time 2 must choose how to split his income, m,
between consumption of money and an indivisible good. Let x1 denote his
consumption of money and x2 his consumption of the indivisible good. We will
constrain x2 to be 0 or 1. Assume that his utility is given by

u (x1, 0) =
√
x1, u (x2, 1) =

√
x1 + 1/2.

Thus, preferences are separable in the two goods. Suppose that the agent’s
initial endowment is random, on money only with p(m = 0) = p(m = 2) = 1/2
and that the cost of the indivisible good is p = 3/4.
Finally, assume that the uncertainty in his income is resolved at time 1. It is

straightforward to check that ifm = 0 the agent’s final consumption is (0, 0) and
that if m = 2, his consumption is given by (5/4, 1). Assuming that u represents
his preferences over risk as well, we see that his expected utility at the initial
endowment is given by

u0 = 1/2 ∗ 0 + (1/2)
³p

5/4 + 1/2
´
= .809.

Would this agent buy “fair” insurance? As it turns out, the answer is yes. This
gives him m = 1 with probability one. With m = 1, the agent is indifferent
between buying the second good and not. Thus, his expected utility with fair
insurance is

u1 = 1.

The story does not end here, however. Consider a lottery ticket which costs
7/16 and pays off 0 with probability 5/12 and 12/16 with probability 7/12.
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(Note this lottery ticket is fair in that its expected payout equals the ticket
price.) If the agent purchases both the insurance and the lottery ticket his
distribution over final wealth is given by m = 9/16 with probability 5/12 and
21/16 with probability 7/12. It is optimal in this case for him to set x2 = 1 if
he wins and x2 = 0 if he loses.
This gives him expected utility of

u2 = (5/12)
p
9/16 + (7/12)

³p
21/16− 3/4 + 1/2

´
= 15/48 + 35/48 = 50/48.

Of course, u2 > u1 > u0. Thus, the agent will buy both the insurance
policy and the lottery ticket. As it turns out, buying complete insurance and
the lottery ticket as specified is in fact the best the agent can do in terms of
fair gambles and insurance. (This is shown in the next section.) Finally, after
the lottery above, the agent will not gamble again. That is, the gambling that
the agent does must put the right mass in the right locations, and because
of this (and the Strong Law of Large Numbers), this theory would be unable
to rationalize repeated gambling with a negative expected value. This is also
shown in the next section.

4 The Basic Model

Consider an individual agent facing a decision problem under uncertainty. Let
X = R+ × {0, 1}. This is assumed to be his consumption set. As noted in the
introduction, we will interpret a point (x1, x2) ∈ X 0 as consisting of money or
some appropriate aggregate Hicksian commodity and the consumption of some
indivisible choice such as housing, career choice or residential location.
Assume that the individual has preferences, %, over probability distribu-

tions µ on X which we will denote by ∆. We will assume that the preferences
satisfy the relevant version of the von neumann-Morgenstern axioms (see, e.g.,
Grandmont (1972)) so that preferences can be represented by an expected util-
ity function. That is, we will assume that there is a u : X → R such that
µ1 % µ2 ⇔

R
u(x) dµ1 ≥

R
u(x) dµ2 for all µ1and µ2in ∆.

Since our aim is only to show that certain things can happen we will make
the (strong) assumption that u (x1, x2) = v (x1) + w (x2). This is equivalent to
assuming u (x1, 0) = v (x1) and u (x1, 1) = v (x1) + δ. We will assume that u is
strictly increasing, strictly concave and C1 and that δ > 0.
For simplicity, we will assume the agent starts with a random endowment

only on money. Implicitly, we have assumed state independence of the utility
function and hence will regard his initial endowment as a probability distribu-
tion, µ0 ∈ ∆. Our assumptions imply that µ0 (R+ × {1}) = 0.
Consider a two period model. In the first period, the agent buys insurance

and/or gambles and the realization of his uncertain income is drawn. There is
no consumption during the first period. In the second period the agent decides
on how to split his income between consumption of money and the indivisible
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good x2. We will assume that at time 1 it is known with certainty that the price
of the second good will be p.
We will assume that in the first period the agent faces a (large) risk-neutral

market willing to sell him any mean zero random variable. (The risk-neutrality
is for convenience only.)
Formally, the agent must choose a “rule” r : R+ → X and a probability

distribution µ ∈ ∆ subject to:

(i) ∫ xdµ = ∫ xdµ0 (1)

(ii) pr2 (m) + r1 (m) ≤ m for all m

to maximize

U (µ, r) = ∫ u (r1 (m) , r2 (m)) dµ (m) .

Note: This formulation of the problem is somewhat clumsy from the formal
point of view. Ideally, one would want to choose a state space Ω first, assume
that agents are endowed with random income on (ω) during period 1, have
agents choose random variables x1(ω), x2(ω) ∈ X subject to the constraint thatR
(x1(ω) + x2(ω)p) dP (ω) ≤

R
m(ω) dP (ω) (we have imposed the assumption of

risk neutrality of a large market by having the price of money identically equal
to one–the assumption that p is constant could be justified that p is the value
to the market of one unit of the second good). The difficulty with this approach
is in setting Ω in the first place. That is, in a model in which lotteries are
“created,” Ω is naturally endogenous to the model. Since there seem to be no
natural limits on randomizing devices used to create Ω, the formulation above
was chosen. If a sufficiently rich Ω was available, the alternative approach could
be chosen making the obvious changes along the way. Perhaps this is possible.
It is easy to see that there is a “best” r for this problem which is indepen-

dent of µ(a.s.). Let m∗ be the unique (because of our separability assumption)
solution to v (m∗ − p) + δ = v (m∗). It follows that the optimal consumption
choice is to set r1(m

∗) = m, r2(m) = 0 if m ≤ m∗and r1(m) = m−p, r2(m) = 1
if m ≥ m∗. (Note that at m∗, the agent is indifferent between setting r2 = 0
or 1.) In general (i.e., without separability) there may be multiple “switches”
between r2 = 0 and r2 = 1.
Because of this fact, it follows that solving (1) is equivalent to solving

Maximize

Z
V ∗(m) dµ(m) (2)

s. t.

Z
xdµ =

Z
x dµ0 = m0

where V ∗(m) = v(m) if m ≤ m∗ and V ∗(m) = v(m − p) + δ if m ≥ m∗.
(Formally, µ∗, r∗is a solution to (1) if and only if µ∗ is a solution to (2) and r∗

is as described above a.s. µ∗.) See Figure 1.
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Figure 1:
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Note that (2) is simply a (infinite dimensional) linear programming problem.
In general, (2) will not have a solution (e.g., if V ∗ was convex) but it is easy to
set conditions on v so that a solution exists. One set of conditions is given by:
i) Assume that v(p)− v(0) > δ (this is not essential but simplifies the argu-

ment),
ii) that v0(0) > δ/p and,
iii) that limm→∞ v0(m) < δ/p.
In this case, it follows that m∗ > p and that there is a unique m̂ for which

v0 (m̂) = δ/p. It follows that m̂ < m∗ < m̂+ p. Consider the linear function of
m defined by g(m) = δ/p (m− m̂) + v (m̂).
It can be shown that g(m) ≥ V ∗(m) for all m with equality at m̂ and m̂+p.

(Although this may look mysterious, the function defined by h(m) = v∗(m) if
m ≤ m̂ or m ≥ m̂ + p and g(m) otherwise is the concave upper envelope of
V ∗–thus, it is a natural construct to consider.)
Our goal is to completely characterize the solution to (2). There are three

cases to consider.

Case 1: If m0 < m̂, µ
∗ puts probability one on m0.

To see this, let t(m) be the tangent line to m0. It follows that t(m) ≥
V ∗(m) with equality only at m0. The usual Jensen’s inequality argument
now can be used. It follows that µ∗ is unique.

Case 2: If m0 > m̂+ p, µ
∗ puts probability one on m0.

The argument here is the same as in Case 1.

Case 3: If m̂ ≤ m0 ≤ m̂+ p, write m0 = αm̂+ (1− α) (m̂+ p) where 0 ≤ α ≤ 1.
Then µ∗ puts probability α on m̂ and probability (1− α) on m̂+ p.

As in the standard Jensen’s inequality argument, it follows that (since g(m) ≥
v∗(m) for all m)Z

V ∗(m) dµ(m) ≤
Z
g(m) dµ(m) = δ/p (m0 − m̂) + v (m̂)

and the inequality is strict unless µ ({m̂, m̂+ p}) = 1. Note that setting µ∗

as claimed above gives
R
v∗(m) dµ∗ = δ/p (m0 − m̂) + v (m̂) completing the

argument.
Summarizing, we have to this point

Proposition 1 For all values of m0, (2) has a unique solution.
If m0 is either sufficiently low (m0 ≤ m̂) or sufficiently high (m0 ≥ m̂+ p)

the solution to (2) consists of complete insurance. If m̂ < m0 < m̂ + p the
solution to (2) is a lottery on m̂ and m̂+ p.

Notes
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1. If µ0 is not degenerate at m0, we can think of the solution, µ
∗, as arising

by the purchase of both insurance and a lottery ticket. For example, if
m̂ < m0 < m̂+ p but µ0 [0, m̂) > 0 the solution to (2) completely insures
the agent against outcomes below m̂.

2. Clearly the assumption of a risk neutral market is not necessary here.
The fundamental fact that V ∗ is not concave is what is important. The
existence of a risk neutral market just shows this most strikingly (we would
not get such a strong conclusion concerning the optimality of gambling if
the market was risk-averse).

3. The proposition shows that in this simple model at least, we would not
expect to see the rich gambling (holding preferences constant).

4. The fact that the optimal lottery has only two prizes is not an accident
here. As noted above, (2) is a linear programming problem. There are
two constraints to this problem, so we should “expect” no more than two
active variables in the basis.

5. The arguments of the proposition are quite general. In particular, as noted
in 4, even for more general V ∗’s, the solution (if one exists) should involve
only two m’s.

6. Note that in the case that m̂ < m0 < m̂ + p, the lottery constructed
exhausts all desire to gamble on the agent’s part. (This seems to be a
type of arbitrage condition.) In particular, after the first period he has
either m̂ or m̂ + p. In either case, he would accept no further lotteries.
This implies that an effect described by Friedman and Savage will be an
outcome. That is, holding preferences fixed, at period 2 there are two
“social classes”–those with wealth above m̂ + p and those with wealth
below m̂: equivalently, those who buy houses and those who do not.

7. More than two choices.

5 Extensions

In this section, we will expand the model of the previous section in two direc-
tions. The first is in the direction of multiple qualities, the second concerns
the addition of multiple time periods. In both cases, we will show that the
results of the previous two section on the existence (and optimality) of lotteries
in equilibrium can be overturned in some cases.

5.1 Multiple Qualities

Alter the problem considered in Section 4 by allowing the agent to choose from a
continuum of qualities. Formally, model the agent’s choice at time 2 as choosing
an (x1, x2) ∈ R×Q = X where Q ⊂ R+ is the set of possible varieties. We will
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assume that 0 ∈ Q and interpret the choice of a point (x1, 0) as choosing not
to buy the second good. (That is, buying a good of quality 0 is the same as
not buying one at all.) Note that this is the model of commodity differentiation
analyzed by Rosen (1974). This assumes that the agent buys one and only one
unit of the second good and that this is of only one quality. (The model of
Mas-Colell (1975) is a generalization of this in which the purchase of more than
one unit is allowed. This model is formally a special case of that of Mas-Colell’s
if there are no qualities near zero other than zero itself.)
Assume that at time 2 the agent faces a price schedule p(q) for buying the

second good and that this schedule is known (for simplicity) at time 1. Assume
that p(0) = 0 and that p is continuous. Assume that the agent has a utility
function u (x1, x2) over X. At time 2 then the agent must choose an (x1, x2)
combination to

max
(x1,x2)

u (x1x2) s.t. x1 + p (x2) ≤ m (3)

where m is the outcome of his time 1 income.
As long as u is monotonic, this is equivalent to choosing an x2 to maximize

u (m− p (x2) , x2). Assume that u is an expected utility function for distribu-
tions on X. Let V ∗(m) denote the utility at the optimal choice given m. Then,
we have:

Proposition 2 If

i. Q is convex and bounded (e.g., Q = [qL, qH ]);

ii. p is convex;

iii. u is monotonic and concave;

then V ∗ is concave in m.

The proof is standard. It is immediate that if the conditions of the propo-
sition hold that although the agent may well buy insurance during the first
period, he will not gamble.

Notes

1. Note that (ii) and (iii) are assumptions advocated by Rosen in his presenta-
tions. Intuitively they say that the marginal value of quality is decreasing
and that its cost is increasing.

2. Dropping any of the three assumptions can return us to the situation
analyzed in Proposition 1. The most obvious of these is (i). That is, it
is quite natural to assume that Q = {0} ∪ [qL, qH ] with qL > 0. In this
case, we could interpret x2 = 0 as choosing not to buy the good while
if he chooses to buy he must pick x2 ∈ [qL, qH ]. The natural analogs of
assumptions (ii) and (iii) in this case are:

10



ii0. p(0) = 0 and p is convex on [qL, qH ], and
iii0. u (x1, 0) is concave in x1, and u (x1, x2) is concave on R+ × [qL, qH ].

Here, even though marginal utility is decreasing (wherever this makes
sense), we have the same problems as in Section 4. That is, due to the
nonconvexity in X, V ∗ will in general have nonconcave regions (one).
The analysis of Proposition 1 goes through basically unchanged.

3. Note that this model is formally equivalent to one of nonlinear pricing. In
that case, it is natural to assume that p is concave.

5.2 Multiple Time Periods

One of the main uses of the idea of using lotteries in a competitive system is
that in Rogerson (1985). It is used there to explain the existence of unemploy-
ment. Assume that working is a zero-one decision as in Section 4. Then, as
above it is optimal to allow randomization. As we have seen, it follows that the
“odds” on the lottery are directly related to (exactly equal in our case) the prior
probability that the agent ends up in states 0 and 1. If there are many identical
agents buying identical lottery tickets which are independent, we should see (in
our formulation) roughly µ∗ (m̂+ p) percent of the agents buying the indivisible
good (unemploymed) and µ∗ (m̂) percent not buying the good. Thus, the out-
come of the lottery tickets is used to ration (in a nonprice way) the indivisible
good (jobs).
A natural question to raise here is that if the time horizons we are considering

are sufficiently divisible, why cannot timing perform the same function as the
lotteries? Thus, if winning the lottery means spending two weeks in Hawaii
(two weeks unemployed) and losing means spending those two weeks at home
(working), why not spend one week at home, one week in Hawaii, and avoid the
lottery altogether? Whether or not this alternative is optimal clearly depends
upon the costs, etc.
Our aim here is simply to show that this affect can overturn the results of

Section 4, so we will analyze a very simple continuous time model. At time 2,
the agent must choose a time path of consuming some indivisible good. That
is, he must choose a (x1(t), x2(t)), t ∈ [2, 3] to maximize U (x1, x2) subject to a
budget constraint and the constraint that x2 = 0 or 1 (a.e. dt).
To make our point, we will assume that both U and the budget constraint

are of very special forms.
Assume that

U (x1, x2) =

Z 3

2

u1 (x1(t)) dt+ u2

µZ 3

2

x2(t) dt

¶
(4)

where u1 is strictly increasing, continuous and strictly concave. Assume that
the budget constraint is given byZ 3

2

(x1(t) + px2(t)) dt ≤ m, p > 0.
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Let V ∗(m) be the utility at the maximizing value in this problem as it depends
on m. It can be shown that a solution to this problem always exists. We have:

Proposition 3 V ∗(m) is strictly concave.

The proof is immediate.

Notes

1. It follows immediately that although the agent will buy insurance against
fluctuations in his initial income, he will not gamble.

2. The assumptions we have made are indeed very special. There is no dis-
counting, preferences are separable between the indivisible good and the
numeraire, prices are constant across time, and so on. It is clear that
the crucial assumption is the form of utility in the indivisible good how-
ever. Given our formulation, the agent does not care when he consumes
the good, just how often. This allows us to transform (4) into a choice

problem between x1(t) and T =
R 3
2
x2(t) dt.

This problem is

max
xt,T

Z
u1 (x1(t)) dt+u2(T ) (5)

s.t. pT +

Z
x1(t) dt ≤ m and 0 ≤ T ≤ 1.

Since this new problem is concave, Proposition 3 follows immediately.
Thus, the intertemporal substitutability in consumption of the second
good “undoes” the effect of the indivisibility by substituting percentages
in time for probabilities.

Given this one might think that considering utility functions of the form:

U (x1, x2) =

Z 3

2

u1 (x1(t)) dt+

Z 3

2

u2 (x2(t)) dt

will introduce a noncavity in V ∗. This is not the case however. Let

π =
R 3
2
x2(t) dt and assume that u2(0) = 0. π then is the percent of time

utility is spent at u2(1). We can then rewrite (4) as

max
x1,π

Z 3

2

u1 (x1(t)) dt+ πu2(1) (6)

s.t.

Z 3

2

x1(t) dt+ πp ≤ m
and 0 ≤ π ≤ 1.

Again, this problem is concave and Proposition 3 follows. If there is
discounting and/or p is not constant things are obviously trickier.
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3. The essence of the argument presented here is that the form of the util-
ity functions and/or other features of the consumption set can greatly
diminish the importance of the presence of obvious nonconvexities. This
criticism applies equally well to both the model in Rogerson and that
presented in earlier sections. Of course, the extent to which this occurs
depends on other features of the consumption set–one must fly to Hawaii
and the cost of this in both time and money is independent of the amount
of time spent there, one must travel to work each day, and so on. It is the
presence of these other noncenvexities which is probably most important
in practice.

4. The result in Proposition 3 should not be surprising. After all, time shar-
ing and rental arrangements are a big industry. (Alternatively, lottery
winners could be given sole ownership.)

5.3 Final Added Note

This last result — the fact that lotteries are unnecessary in a continuous time
model — has attracted some attention of late (see Ljungqvist and Sargent (2006)
and Prescott (2006)) and has also been studied in Mulligan (2001). So it is
worthwhile noting that it can be extended beyond what is done here. In par-
ticular it is interesting to study the role played by the assumption that there
is no discounting. In this section we give one set of sufficient conditions under
which V ∗ is concave (and hence there is no social value to lotteries) even with
discounting.
Consider the following household optimization problem:

max
x1,x2

U (x1, x2) =

Z 3

2

e−ρt [u1 (x1(t); t) + u2 (x2(t); t) ] dt (7)

s.t.

Z 3

2

p1(t)x1(t) dt+

Z 3

2

p2(t)x2(t) dt ≤ m
and x2(t) ∈ {0, 1}∀t.

Let V ∗(m) denote the value of utility at the solution to this problem.
Note that for any feasible choice of x2:R

e−ρtx2(t) [u2 (1; t)− u2(0; t)] dt

=
R
{x2=1} e

−ρt [u2 (1; t)− u2(0; t)] dt

=
R
{x2=1} e

−ρtu2 (1; t) dt−
R
{x2=1} e

−ρtu2(0; t)dt

=
R
{x2=1} e

−ρtu2 (x2(t); t) dt−
R
{x2=1} e

−ρtu2(0; t)dt
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=
R
{x2=1} e

−ρtu2 (x2(t); t) dt−
R
{x2=1} e

−ρtu2(0; t)dt

+
R
{x2=0} e

−ρtu2(0; t)dt−
R
{x2=0} e

−ρtu2(0; t)dt

=
R
e−ρtu2 (x2(t); t) dt−

R
e−ρtu2(0; t)dt.

That is,R
e−ρtu2 (x2(t); t) dt =

R
e−ρtx2(t) [u2 (1; t)− u2(0; t)] dt+D

where D =
R
e−ρtu2(0; t)dt is a constant.

Based on this, consider the following, alternative, maximization problem:

max
x1,x2

Z 3

2

e−ρtu1 (x1(t); t) dt+
Z 3

2

e−ρtx2(t) [u2(1; t)− u2(0; t)] dt (8)

s.t.

Z 3

2

p1(t)x1(t) dt+

Z 3

2

p2(t)x2(t) dt ≤ m
and 0 ≤ x2(t) ≤ 1,∀t.

That is, we relax the assumption that x2(t) ∈ {0, 1} to 0 ≤ x2(t) ≤ 1.
Let V ∗∗(m) denote the value of the solution to this problem. It is straight-

forward to show that V ∗∗ is concave since the first term in the objective function
is concave and the second is linear.
The only thing left to be shown is that there is a solution to the new problem

that is also feasible for the original problem. That this is true follows from the

fact that
R 3
2
e−ρtx2(t) [u2(1; t)− u2(0; t)] is linear in each x2(t). Because of this

a solution can be found for the problem for which x2 is bang/bang — it is either
0 or 1.
Hence, V ∗(m) = V ∗∗(m) for all m. Because of this it follows that lotteries

are not of any value.
As a final note on this problem, it can be seen that the solution to the house-

hold’s problem has the form that x2(t) = 1 exactly when e
−ρt [u2(1; t)− u2(0; t)] /p2(t)

is maximal — if x2(t) = 1 for some t, it is also 1 for any τ such that:

e−ρτ [u2(1; τ)− u2(0; τ)] /p2(τ) > e−ρt [u2(1; t)− u2(0; t)] /p2(t).
Because the solution takes this form, it is not necessarily true that the only

thing that matters is fraction of the time that x2 is 1. There is, however, one
special case when this is true. This is when u2(x; t) is independent of t and
e−ρt/p2(t) is a constant — basically with constant interest rates given by the
rate of time preference, ρ.2

2Even if u2(.; t) does depend on t, this result will still hold as long as
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6 Conclusion

The aim of this note was to provide an alternative motivation for “effective”
nonconcavities in the indirect utility function for money. This leads directly to
a justification for gambling even in the presence of diminishing marginal utility
(as much as this makes sense).
We also have argued that certain other natural properties (quality gradation

and/or timing decisions) may lessen the practical importance of the essential
nonconvexities.
One could plausibly argue that the existence of such mechanisms as lotteries

in reality shows that these problems do exist.
Throughout this note we have assumed that gambling does not directly give

rise to utility. Alternatively, one might suppose the opposite and base a theory
of the existence of lotteries in this way. This is, of course, perfectly valid. Note
however that generally we would expect that the rich people would gamble more
(if gambling is a normal good) while in the theory presented here the opposite
would hold.
We have ignored the possibility of private information and the problems

that it would cause in providing complete insurance. Although important, these
issues did not seem of sufficient magnitude to justify complicating the model
through inclusion.
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