
Econ 8105 MACROECONOMIC THEORY

DYNAMIC PROGRAMMING FOR MACRO

Prof. L. Jones/Anderson Schneider

Fall 2006

These notes are a condensed treatment of the chapters in SLP that

deal with Deterministic Dynamic Programming used in conjunction with the

treatment of the single sector growth model and its generalizations. More or

less, this is Chapters 4-6 of the book along with some of the Mathematics

that is used in those sections.

Anderson Schneider will be teaching during the first two weeks of classes

and he will base his lectures on the material of this notes. A final version of

this file will be posted by the beginning of the third week of classes.

Read S.L.P.

• Chapters 1 and 2 for background (skim 2.2)

• Skim Chapter 3 — Math.

• Wewill cover Chapter 4/parts of Chapter 5/parts of Chapter 6 in detail.
Reread Chapter 3 as needed as we go along.

Go for:

1. Simple version.

2. Time stationary rep.
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3. Global Dynamics (special cases)

4. Numerical procedure.

From what we’ve seen so far, an ADE allocation can be found as the solution

to the maximization problem of the form:

P (bk) : max
(ec,ex,ek,ec,en) u(ec, ec)
s.t. ct + xt ≤ Ft(kt, nt)

kt+1 ≤ (1− δ)kt + xt

nt + ct ≤ nt

k0 = bk fixed
non-negativity.

Assume that nt is independent of t and Ft is independent of t.

e.g., nt ≡ n ≡ 1, Ft(k, n) = Akαn1−α

Let:

Γ(bk; n, F ) denote the set of feasible sequences for (c̃, ex,ek, en, ec) given n, F andbk. That is,
(c̃, ex,ek, en, ec) ∈ Γ(bk;n, F ) ⇐⇒

ct + xt ≤ F (kt, nt) ∀t
kt+1 ≤ (1− δ)kt + xt ∀t

nt + ct ≤ n ∀t
k0 = bk

and write
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(c̃, ex,ek, en, ec) = (c0,x0,k0,n0,c0; ec1, ex1, . . . , ec1)
in period 0, and period 1,2. . . decisions, respectively.

NOTICE:

(c̃, ex,ek, en, ec) ∈ Γ(bk;n, t)
⇔ c0 + x0 ≤ F (k0, n0)

k1 ≤ (1− δ)k0 + x0

n0 + c0 ≤ n

and k0 = bk
AND (ec1, ex1, . . . , ec1) ∈ Γ(k1;n, F ).

That is,

The constraint set for P (bk;n, F ) has a RECURSIVE structure — There is
a ”t = 0 component” and a ”continuation component” and, moreover, the

”continuation component” looks ”just like” the original set!

Problem: Give a Max Problem where this isn’t true!

Note: This requires infinite horizon for it to be true!

Indeed, note that Γ(k;n, F ) is of the form
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n
(c̃, ex,ek, en, ec) | (ct,xt, kt, ct,nt) ∈ bΓ(kt−1)o
where

bΓ(k) =

(c, x, k0, c, n) | c+ x ≤ F (k, n)

k0 ≤ (1− δ)k + x

l + n ≤ n

non-negativity


i.e., constraint set is a time stationary function of the “state variable” kt.

Other Problems Like This

If don’t cut the tree at period t, then (Tree—height at t)=(1 + height at

t− 1), i.e., kt = 1+ kt−1. Consider also kt = 0 forever if you do cut the tree.

If you cut it at height kt you get payoff βtu(kt).

Let xt =

(
0 if don’t cut

1 if cut

)

Then the problem can be written as:

max
X

βtu(xt, kt)

xt ∈ {0, 1}
kt+1 = (1− xt)(kt + 1)(1− χ(kt=0))
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1 Outline/Strategy for Tackling These Prob-

lems

Our strategy for solving problems like this is to use a simple fact about

maximization problems over two variables (even if the second variable for

us is an infinite history of all relevant variables). This property is easily

described via the following.

Suppose we have an indexed family of maximization problems, one for

each x ∈ X, P (x). In each of these you have to pick a y = (y1, y2) ∈ Y1×Y2.

So, P (x) is given by:

P (x) : max
(y1,y2)

u(x, y1, y2)

s.t (x, y1, y2) ∈ Λ(x), x given.

Here, Λ(x) ⊂ Y1× Y2 is the constraint set for the problem P (x). Assume

that there is a solution for this problem for each x ∈ X given by (y∗1(x), y
∗
2(x))

and define V ∗(x) to be the value of utility at the solution:
V ∗(x) = u(x, y∗1(x), y

∗
2(x)).

This is the description of the problem in its ’raw’ or sequential form.

Alternatively, for each x ∈ X, define

Λ1(x) = {y1 ∈ Y1|∃y2 ∈ Y2, s.t., (x, y1, y2) ∈ Λ}
and for each y1 ∈ Λ1(x) define

Λ2(x, y1) = {y2 ∈ Y2|(x, y1, y2) ∈ Λ}.
Next, consider the following Two Step Procedure for solving P (x) :

Step 1: For each (x, y1) such that y1 ∈ Λ1(x), solve the maximization

problem P 2(x, y1) given by:
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P 2(x, y1) max
y2

u(x, y1, y2)

s.t. y2 ∈ Λ2(x, y1)

(x, y1) fixed

Assuming a solution exists for each choice of (x, y1), this defines a function

(or correspondence if there are multiple solutions), y2(y1, x). Define U2(x, y1)

by:

U2(x, y1) = u (x, y1, y2(x, y1))

Step 2: For each x ∈ X define the maximization problem P 1(x) by:

P 1(x) max
y1

U2(x, y1)

s.t. y1 ∈ Λ1(x)

Assuming a solution exists for each choice of x, this defines a function (or

correspondence if there are multiple solutions), y1(x). Define U1(x) by:

U1(x) = U2(x, y1(x)) = u (x, y1(x), y2(x, y1(x))) .

Then, you can show that:

1. V ∗(x) = U1(x) = U2(x, y1(x)) = u (x, y1(x), y2(x, y1(x))) for all x ∈ X.

2. (y∗1(x), y
∗
2(x)) = (y1(x), y2(y1(x)) for all x ∈ X assuming unique solu-

tions.

3. V ∗(x) = U1(x) for all x ∈ X even if max is replaced by sup and no

solution need exist.

4. Something like 2) holds even if the solution is NOT unique.

Adding More Structure

Suppose in addition that the continuation problems are also like the orig-

inal problems, i.e., if each P 1 is in the class P , and that the some additional

structure is placed on both the OBJ and Constraint Sets:
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1. Assume that Y1 = X and Y2 = X ×X × ..... so that y1 is an x and y2

is an infinite string of x0s.

2. Assume that u(x, y1, y2) = h(x, y1) + βu(y1, y2) for some function h.

3. Assume that there is some Γ(x) such that (x, y1, y2) ∈ Λ(x) if and only

if y1 ∈ Γ(x) and y2 ∈ Γ(y1).

Then, under these conditions, the problem from time 1 on, i.e., the prob-

lem that we called P 2(x, y1) above

1. does not depend on x: x enters the problem only as a constant added

to the objective function and hence can be dropped (indeed the term

h(x, y1) can be dropped), and

2. is equivalent to the problem P (y1).

Because of this, we can rewrite the ’result’

V ∗(x) = U1(x) = U2(x, y1(x)) = u (x, y1(x), y2(x, y1(x)))

as

V ∗(x) = h (x, y1(x)) + βu(y1, y2(y1)) = h (x, y1(x)) + βV ∗(y1)

Note that our Growth Model IS of this form:

Constraint problem is already this way., i.e., Γ(k1) = Γ(bk).
Something we can do to u(ec, ec) to make this happen?

P (ek) : max
{(ct,xt,kt,nt,ct)}

∞X
0

βtu(ct, ct)

ct + xt ≤ F (kt, nt) t = 0, . . .

kt+1 ≤ (1− δ)kt + xt t = 0, . . .

nt + ct ≤ n t = 0, . . .

k0 = bk.
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0 < β < 1, u increasing, concave, etc.

P (bk; bx0,bk0,bn0, bc0,bk0) : max
c1,...,c1

X
βtu(ct, ct)

s.t. ct + xt ≤ F (kt, ct) t = 1, . . .

kt+1 ≤ (1− δ)kt + xt t = 1, . . .

nt + ct ≤ n t = 1, . . .

k1 = bk1 = (1− δ)bk0 + bx0
1. For any choice of (bc0, bx0,bk0, bn0, bc0) This gives a new max problem.
2. Can drop β0u(c0, c0) from OBJ and factor out β from remaining.

3. New max problem depends only on bk1.
This problem is identical to P (bk1)!

It is a time stationary-recursive Max problem!

Let g(bk) →new k, i.e., the k1 from the solution to P (bk). Then solution to
overall problem SHOULD be k0 = bk, k1 = g(bk), k2 = g(k1) = g

³
g(bk)´ etc.

That is, the optimal solution SHOULD have the form if (bk, k1, k2 . . .), is the
solution for the problem starting from k0 = bk, then (k1, k2 . . .) is the optimal
solution for the problem starting from k0 = k1.

What does this say about V (bk) = supPβtu( ) . . .? It follows that:

V (bk) = supu(c0, c0) + βV (k0)

c0 + x ≤ F (bk, δ)
k0 ≤ (1− δ)bk + x0

n0 + c0 ≤ n
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In words, the last term on the RHS of the OBJ is what you get from t = 1

on if you have to have optimality from t = 1 and given that you start at k0.

2 The Canonical Form

Given the discussion above, we will examine indexed families of optimization

problems of the form:

(SP ) or (SP (x0)) sup
{xt+1}∞t=0

∞X
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt)

x0 ∈ X given.

Γ ⊂ X.

Γ(x) : X =⇒ X

F = return function

Γ = Feasibility correspondence.. What is possible for xt+1 given that the

state at t is xt?

Let V (x0) denote this sup (possibly+∞,−∞), (by convention, supx∈∅H(x) =
−∞).

Example:
1-sector growth model, inelastic labor supply.

P (k0) max
X

βtu(ct)
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s.t.


ct + xt ≤ F (kt, n)

kt+1 ≤ (1− δ)kt + xt.

k0 fixed

What is F here?

ct = F (kt, n)− xt

= F (kt, n)− (kt+1 − (1− δ)kt)

= F (kt, n) + (1− δ)kt − kt+1

≡ G(kt, kt+1). G1 > 0, G2 < 0.

What is Γ here?

kt+1 ≤ F (kt, n) + (1− δ)kt

For this choice of F and Γ we can rewrite the 1-sector growth model in

canonical form:

max
X

βtu (G(kt, kt+1))

if kt+1 ∈ Γ(kt) = {kt+1 | kt+1 ≤ F (kt, n) + (1− δ)kt}

Example:
Tree Cutting Problem - P (k0).

Problem - Rewrite TCP in this form.
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Example

1 sector growth model, elastic labor supply.

P (k0) max
X

βtu(ct, ct)

s.t.


ct + xt ≤ F (kt, nt)

kt+1 ≤ (1− δ)kt + xt

nt + ct ≤ n

k0 fixed.

Problem: rewrite this as SP in canonical form.

Example: 1 sector Growth Model, Multiple Capital Goods, inelastic labor
supply.

P (k0) max
X

βtu(ct)

s.t.


ct + x1t + · · ·+ xJt ≤ F (k1t, · · · , kJt, nt)
kjt+1 ≤ (1− δj)kjt + xjt

nt + ct ≤ n.

k01, . . . , k0J given

Problem: Rewrite this as SP in canonical form.

Example: Same as above, but u(ct, ct).
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Example: Two sector neo-classical growth model, inelastic labor supply

max
X

βtu(ct)

s.t.



ct ≤ F c(kct, nct)

xt ≤ F x(kxt, nxt).

kt+1 ≤ (1− δ)kt + xt

kct + kxt ≤ kt

nct + nxt ≤ n

k0 fixed

Problem: Rewrite in Canonical Form.

Problem: Add elastic labor supply.

Problem: Add multiple k’s, one sector each.

Can’t move x across sectors?
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Example: 1-sector Model, adjustment costs in k, inelastic labor supply

max
X

βtu(ct)

s.t. ct + xt ≤ F (kt, n)

kt+1 ≤ (1− δ)kt + g(xt)

k0 fixed.

g(0) = 0, increasing and strictly concave.

INSERT FIGURE HERE

In this example, if you try to make too big a change in k, you lose efficiency.

Problem: Write in CF.

Problem: Add, elastic c, multiple sectors.

Problem: Other forms? Adjustment on n?

F (kt, nt)− g(nt − nt−1) .

kt+1 = (1− δ)kt + g

µ
xt
kt

¶
?
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Example:

(k, h)—model, inelastic c??

max
X

βtu(ct)

s.t.



ct ≤ F c(kct, hct, nct)

xkt ≤ F k(kkt, hkt, nkt)

xht ≤ F h(kht, hht, nht)

kt+1 ≤ (1− δk)kt + xkt

ht+1 ≤ (1− δh)ht + xht

h0, k0 fixed.

nct + nht + nkt ≤ n

kct + kkt + kht ≤ kt

hct + hkt + hht ≤ ht

Here, h is interpreted as ’knowledge’ of the individual.

Problem: Write in CF

Example:

max
X

βtu(ct, ct)

s.t. ct ≤ F c(kct, zct)

xkt ≤ F k(kkt, zkt)

xht ≤ F h(kht, zht)

kt+1 ≤ (1− δk)kt + xkt

ht+1 ≤ (1− δh)ht + xht
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Effective Labor supplies:

Zct ≤ M c(nct, ht)

Zct ≤ Mx(nxt, ht)

Zht ≤ Mh(nht, ht)

kct + kxt + kht ≤ kt

nct + nxt + nk+1 + ct ≤ n

15



Example: Family Labor Supply

X
βt
£
λf u

f(cft, cft) + λmu
m(cmt, cmt)

¤
cft + cmt + xt ≤ F (kt, nft + nmt)

kt+1 ≤ (1− δ)kt + xt

nft + cft ≤ nf

nmt + cft ≤ nm

k0 fixed.

Add home good?

Example: Fertility

X
βtu(Nt, ct/Nt)

s.t. ct +Xt + θNt+1 ≤ NtF (Kt/Nt, n)

Kt+1 ≤ (1− δ)Kt +Xt

K0 fixed.

ETC.
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Motivation for the Functional Equation Problem

Suppose that the problem bellow (SP (k0)) is well defined:

V (k0) ≡ max
c,x,l,k,n

©
u(c0, l0) + βu(c1, l1) + β2u(c2, l2) + ...

ª
s.t.

(
(c0, x0, k1, n0, l0) ∈ Γ(k0)

(ct, xt, kt+1, nt, lt) ∈ Γ(kt) ∀ t ≥ 1

Suppose that a solution exists: {c∗0, x∗0, l∗0, k∗0, n∗0, c∗1, k∗1, ...}.

Now define

V (k∗1) ≡ max
c,x,l,k,n

©
u(c1, l1) + βu(c2, l2) + β2u(c3, l3) + ...

ª
s.t.

(
(c1, x1, k2, n1, l1) ∈ Γ(k∗1)
(ct, xt, kt+1, nt, lt) ∈ Γ(kt) ∀ t ≥ 2

One should expect that {c∗1, x∗1, l∗1, k∗2, n∗1, c∗2, x∗2, ...} being a solution to the
problem above. Why??

If the guess is wrong, then ∃ {c1, x1, l1, n1, k2, c2, x2, ...} feasible starting
from k∗1 s.th:

∞X
t=1

βt−1u(ct, lt) >
∞X
t=1

βt−1u(c∗t , l
∗
t ) (∗ ∗ ∗)

Also {c1, x1, l1, n1, k2, c2, x2, ...} could have been chosen starting from t =

1 in the the first problem above.

That means {c∗0, x∗0, l∗0, k∗1, n∗0, c1, x1, l1, n1, k2, c2, x2, ...}is feasible in the
first problem.
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But from (***),

u(c∗0, l
∗
0) + β

" ∞X
t=1

βt−1u(ct, lt)

#
> u(c∗0, l

∗
0) + β

" ∞X
t=1

βt−1u(c∗t , l
∗
t )

#

But this is a contradiction...

Therefore one may think that the following is true:

V (k0) = u(c∗0, l
∗
0) + βV (k∗1)

The previous reasoning give us a heuristic justification for the following

functional equation problem (FEP):

v(k) = sup
k0,l,c,n,k

[u(c, l) + βv(k0)]

s.t.


c+ x ≤ F (k, n)

n+ l ≤ 1
k0 ≤ (1− δ)k + x

nonnegativity

Back To General Development

Sequence Problem for the Initial Condition x — SP (x)

Find V (x) which is defined by:

V (x) = sup
(x0,...)

∞X
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt).∀ t
x0 = x fixed.
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Functional Equation Problem:

Find a function v(x) satisfying:

v(x) ≡ supy∈Γ(x) [F (x, y) + βv(y)]

That is, this is an identity in x!

Fundamental Theorem of Dynamic Programming (More or less):

(a) If V (x) solves SP (x) ∀x, then V (x) satisfies FEP.

(b) If v(X) satisfies FEP then v(x) solves SP (x) ∀x.

N. B. This can’t be quite true as stated because:
v(x) ≡ −∞
v(x) ≡ +∞

always solve FEP., but won’t necessarily solve SP. So, some conditions

have to be added to (b).

3 The Details

Let A = {(x, y) ∈ X ×X | y ∈ Γ(x)}

This is the graph of Γ.
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Example of the graph of Γ

Let

π(x) = {(x0, . . . , ) ∈ X∞ | xt+1 ∈ Γ(xt) ∀t ≥ 0, x0 = x} .

π(x0) is the feasible set for SP (x0).

Assumption 4.1 Γ(x) 6= φ, ∀x ∈ X.

Problem: Show that Assumption 4.1 =⇒ π(x0) 6= φ ∀x ∈ X.

Assumption 4.2 ∀x0 ∈ X and all x̃ ∈ π(x0),

lim
n→∞

Pn
t=0 β

tF (xt, xt+1) exists.

N.B. We allow +∞,−∞ as possible limits, i.e., ∃ a ∈ R̄ ≡ R∪ {−∞,+∞},
such that

lim
n→∞

P
t=0

βtF (xt, xt+1)→ a.
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INSERT GRAPH HERE.

Sufficient conditions for Assumption 4.2

SC1A4.2 |F (x, y)| ≤M, ∀(x, y) and 0 < β < 1.

Problem: Prove SC1A4.2 =⇒ A4.2 holds.

SC2A4.2 ∀x0 ∈ X,∃ θ, c, 0 < c <∞, 0 < θ < 1/β such that

x̃ ∈ π(x0) =⇒ F (xt, xt+1) ≤ c θt.

Problem: Prove SC2A4.2 =⇒ A4.2

For each n, define un : π(x0)→ R by

un(ex) = nP
t=0

βtF (xt, xt+1).

i.e., the partial sum.

And define u(ex) = lim
n→∞

un(x).

By A.4.2, u : π(x0)→ R̄.

Finally, define V ∗ : X → R̄ by:

V ∗(x) = sup
x∈π(x0)

u(x).

What it means for V ∗ to solve SP:
Then V ∗ is a well-defined function satisfying:

a. If |V ∗ (x0)| <∞ then

V ∗ (x0) ≥ u (x̃) ∀x̃ ∈ π (x0) (2)
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and

∀ε > 0, ∃x̃ ∈ π (x0) =⇒ (1)

u (x̃) ≥ V ∗ (x0)− �.

b. If

V ∗ (x0) = +∞, ∃ x̃k ∈ π (x0)⇒
u
¡
x̃k
¢ → ∞.

c. If V ∗ (x0) = −∞ then u (x̃) = −∞ ∀x̃ ∈ π (x0).

That is V ∗ divides X into 3 mutually exclusive and exhaustive subsets.

X = A ∪B ∪ C
|V ∗ (x)| < ∞→ x ∈ A

V ∗ (x) = +∞→ x ∈ B

V ∗ (x) = −∞→ x ∈ C

What it means for v∗ to solve FE.

a. If |v∗ (x0)| <∞ then

v∗ (x0) ≥ F (x0, y) + βv∗ (y) ∀ y Γ(x0) (4)

and ∀ε > 0, ∃ y ∈ Γ (x0) such that

v∗ (x0) ≤ F (x0, y) + βv∗(y) + ε. (5)

b. If x∗ (x0) = +∞, ∃ yk ∈ Γ (x0) such that

lim
k→∞

{F ¡x0, yk¢+ βv∗
¡
yk
¢} =∞. (6)

c. If v∗ (x0) = −∞ then F (x0, y) + βv∗ (y) = −∞, ∀y ∈ Γ (x0).
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Thus, as above, if v∗ is a solution to FE it divides X = Â∪ B̂ ∪ Ĉ such that:

|v∗(x)| < ∞→ x ∈ Â

v∗(x) = +∞→ x ∈ B̂

v∗(x) = −∞→ x ∈ Ĉ.

Goal

Theorem A. If V ∗ solves SP then V ∗ solves FE.

Theorem B. If v∗ solves FE then v∗ solves SP.

That is — A = Â, B = B̂ and C = Ĉ.

Most of the difficulties are with sup instead of max, and the possibility that

V ∗ and/or v∗ = ±∞ for some/all x0’s.

Lemma 4.1 Suppose A4.2. Then ∀x0 ∈ X and ∀x̃ ∈ π (x0)

u (x̃) = F (x0, x1) + βu
¡
x̃1
¢

where x1 = (x1, . . .).

Proof. Under 4.2. ∀x0 ∈ X, ∀x̃ ∈ π (x0),

u (x̃) = lim
n→∞

nX
0

βtF (xt, xt+1) ,

= lim
n→∞

F (x0, x1) + β lim
n→∞

nX
t=0

βtF (xt+1, xt+2)

= F (x0, x1) + β · u ¡x̃1¢ .

Where the last equality comes from the definition of u (x̃1) .

Theorem 4.2 Under A.4.1, and A.4.2 if V ∗ solves SP then V ∗ solves FE.
That is:
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∀x ∈ X, V ∗ (x) = sup
y∈Γ(x)

F (x, y) + βV ∗ (y) .

Intuition/Discussion of Proof:

First, for this first part it’s useful to do an intuitive version of the proof

and then go through the technical details. YOU SHOULD DO THIS YOUR-

SELF FOR THE OTHER PARTS OF THE PROOF!

To start, suppose |V ∗ (x)| <∞ for a particular x. For example, V ∗ (x) =
7.218. And what we want to show is — at this same x, the valued 7.218 solves

the FE. In other words,

7.218 = supy∈Γ(x) F (x, y) + βV ∗ (y) .

What would it mean to show this? First, it means that 7.218 is an upper

bound for the RHS of this equation. Second it means that there is no other,

smaller upper bound for the RHS.

To see that 7.218 is an upper bound for the RHS, proceed by contradic-

tion. That is, there is some y∗ ∈ Γ(x) with:

F (x, y∗) + V ∗(y∗) > 7.218.
From here, we proceed to construct a feasible plan beginning from x, x̃,

for which u (x̃) > 7.218. To do this, first construct a plan from y∗, ỹ which is
feasible (ỹ ∈ π(y∗)) and gets really close to V ∗(y∗). Then, it can be checked
that x̃ = (x, y∗, ỹ) ∈ π(x) and by construction

u(x, y∗, ỹ) = u(x̃) is really really close to F (x, y∗) + V ∗(y∗) > 7.218.

But this is a contradiction that 7.218 is an upper bound for the problem

SP (x).

The rest of the proofs are similar intuitively. And all that is left is to fill

in the ε0s and δ0s.
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Back to proof:

Suppose |V ∗ (x)| <∞ for a particular x.

Need to show

V ∗ (x) = sup
y∈Γ(x)

F (x, y) + βV ∗ (y)

since V ∗ (x) <∞. This is the same as showing

V ∗ (x) ≥ F (x, y) + βV ∗ (y) ∀y ∈ Γ (x) (4A)

and ∀ε > 0, ∃y ∈ Γ (x)⇒

V ∗ (x)− ε < F (x, y) + βV ∗ (y) (5A)

To show (4A):

Let x1 ∈ Γ (x) and choose ε > 0. By the definition of V ∗ (x1), ∃x̃1 =
(x1, . . .) ∈ π (x1) such that

u (x̃1) ≥ V ∗ (x1)− ε.

Since x1 ∈ Γ (x) and x̃1 ∈ π (x1), it follows that (x1, x̃1) ∈ π (x). Thus,

from (2) and Lemma 4.1

V ∗ (x) ≥ u
¡
x1, x̃

1
¢
= F (x, x1) + βu

¡
x̃1
¢

≥ F (x, x1) + βV ∗ (x1)− βε.

Since ε was arbitrary,

V ∗ (x) ≥ F (x, x1) + βV ∗ (x1) ∀x1 ∈ Γ (x)

follows.

Note–implicit: If |V ∗ (x)| < ∞ and y ∈ Γ (x) then |V ∗ (y)| < ∞–show
this.
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To show that (5A) holds at x, choose ε > 0. From (3) ∃x̃ ∈ π (x), x̃ =

(x, x1,...) such that

V ∗ (x) ≤ u (x̃) + ε

= F (x, x1) + βu
¡
x̃1
¢
+ ε

where x̃1 = (x1, . . .). The equality comes from Lemma 4.1.

But x̃ ∈ π (x) ⇒ x1 ∈ Γ (x) and by the definition of V ∗ (x1), it follows
that

V ∗ (x) ≤ F (x, x1) + βu
¡
x̃1
¢
+ ε

≤ F (x, x1) + βV ∗ (x1) + ε

That is x1 ∈ Γ (x) is a choice of y that will work in (5A).

If V ∗ (x0) =∞ then

∃x̃k ∈ π (x0) such that u
¡
x̃k
¢→∞. Since xk1 ∈ Γ (x0) ,∀k, and u

¡
x̃k
¢→

∞,

u
¡
x̃k
¢
= F

¡
x0, x

k
1

¢
+ βu

¡
x̃k
¢ ≤ F

¡
x0, x

k
1

¢
+ βV ∗

¡
xk1
¢
.

It follows that (6) holds for the sequence yk = xk1, and xk1 ∈ Γ (x0) ,∀k.
If V ∗ (x0) = −∞ then

(7) u (x̃) = F (x0,x1) + βu (x̃1) = −∞ ,∀x̃ ∈ π (x0).

Since F (x, y) ∈ R, ∀ (x, y), it follows that u (x̃1) = −∞, ∀x1 ∈ Γ (x0),

∀x̃1 ∈ π (x0).

Hence, V ∗ (x1) = −∞ ∀x1 ∈ Γ (x0).

But, since F is real valued and β > 0, (7) follows from this. This com-

pletes the proof.

Theorem 4.3 (Theorem B) Suppose A.4.1, A.4.2 hold. If v∗ is a solution
to FE

AND

(8) limn→∞ βnv (xn) = 0 ∀x̃ ∈ π (x0) ∀x0 ∈ X.
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Then v∗ = V ∗.

What does it mean to show this?

Proof.

1. If v∗ (x0) < ∞, then (4) and (5) hold. It’s enough to show that (2)

and (3) hold.

First (2):

x̃ ∈ π (x0) =⇒ x1 ∈ Γ (x0) so (4) =⇒ ∀x ∈ π (x0),

v∗ (x0) ≥ F (x0, x1) + βv∗ (x1)

≥ F (x0, x1) + βF (x1, x2) + β2v∗ (x2)
...

≥ un (x̃) + βn+1v∗ (xn+1)

so

v∗ (x0) ≥ limun (x̃) + limβn+1v∗ (xn+1) .

So from (8),

v∗ (x0) ≥ u (x̃) ,∀x̃ ∈ π (x0),

i.e. (2) holds.

To see that (3) holds, fix ε > 0. We want to find an x̃ ∈ π (x0) such that

u (x) ≥ V ∗ (x)− ε.

Choose δt ∈ R such that
P∞

t=1 β
t−1δt ≤ ε/2.

Since (5) holds (at all x?), [show if it holds at x0, it must hold at x1?],

we can find x1 ∈ Γ (x0), x2 ∈ Γ (x1) , . . . so that v∗ (xt) ≤ F (xt, xt+1) +

βv∗ (xt+1) + δt+1. Then, (x0, x1, . . .) ∈ π (x0) by construction, and

v∗ (x0) ≤
nX
t=0

βtF (xt, xt+1) + βn+1v∗ (xn+1) + (δ1 + · · ·+ βnδn+1)

≤ un (x) + βn+1v∗ (xn+1) + ε/2.
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Thus, using (8),

v∗ (x0) ≤ un (x̃) + ε

for all n sufficiently large (large enough so that βn+1v∗ (xn+1) < ε/2).

Taking limits gives

v∗ (x0) ≤ u (x̃) + ε,

i.e. (3) holds for this x̃.

v∗ (x0) = −∞ case, not possible by (7) and (8). Why?

If v∗(x0) = ∞, i.e. (6) holds, want to show ∃xk ∈ π (x1) such that

u
¡
x̃k
¢→∞.
As a first step, we establish the following Claim:

Claim. There exists a n, ∞ > n ≥ 0, and (x0, . . . , xn) such that:

i. xt ∈ Γ (xt−1) , ∀t = 1, . . . , n

ii. v∗ (xt) =∞, ∀t = 0, . . . n

iii. v∗ (xn+1) <∞, ∀xn+1 ∈ Γ (xn)

Proof. Suppose not. I.e., suppose that for ∀n, and ∀(x0, xn1 , . . . , xnn) such
that xnt ∈ Γ

¡
xnt+1

¢∀t, ∃xnn+1 ∈ Γ (xnn) with v∗
¡
xnn+1

¢
= ∞. Then consider

the sequence x̃ = (x0, x01, x
1
2, . . .). By construction, x

n
n+1 ∈ Γ (xn−1n ) , ∀n and

v∗
¡
xnn+1

¢
=∞, ∀n. But then βnv∗

¡
xnn+1

¢
9 0. Contradicting (8).

So, choose such an n and such a sequence xn ∈ Γ (xn−1). Fix an A > 0.

Since v∗ (xn) =∞, by (6) we can choose xAn+1 ∈ Γ (xn) such that

F
¡
xn, x

A
n+1

¢
+ βv∗

¡
xAn+1

¢ ≥ β−n
"
A+ 1−

n−1X
t=0

βtF (xt, xt+1)

#
. (*)

Also, since v∗
¡
xAn+1

¢
<∞, we can find x̃An+1 such that

i.

x̃An+1 ∈ π
¡
xAn+1

¢
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ii.

u
¡
x̃An+1

¢ ≥ v∗
¡
xAn+1

¢− β−(n+1). (**)

Then, by construction, x̃A ≡ ¡x0, . . . , xn, x̃An+1¢ ∈ π (x0), and

u
¡
x̃A
¢
=

n−1X
t=0

βtF (xt, xt+1) + βnF
¡
xn, x

A
n+1

¢
+ βn+1u

¡
x̃An+1

¢
≥

n−1X
t=0

βtF (xt, xt+1) + βnβ−n
"
A+ 1−

n−1X
t=0

βtF (xt, xt+1)

#
.

From * and **

βn+1v∗
¡
xAn+1

¢
+ βn+1

h
v∗
¡
xAn+1

¢− β−(n+1)
i
= A.

Thus V ∗ (x0) ≥ u
¡
x̃A
¢ ≥ A ,∀A⇒ V ∗ (x0) =∞.

This completes the proof of the Theorem.

It follows that there can be AT MOST one solution to FE satisfying (7) since

by Theorem 4.3, every solution satisfying (7), v∗ satisfies v∗ (x) = V ∗ (x).

FE is called Bellman’s Equation. Theorems 4.2 and 4.3 ↔ “Principle of

Optimality”.

Problem. Show (8) is necessary.

Problem. Suppose that

1. ∀x ∈ X, ∃x∗ (x) such that V ∗ (x) = u (x∗ (x)) < ∞, i.e., there is a
solution and u is finite at the solution–max = sup.

2. ∀x ∈ X ,∃y∗ (x) solving maxy∈Γ(x) [F (x, y) + βV ∗ (x)].

Prove Theorem 4.2 in this case.

Problem. Suppose that v∗ satisfies FE, that (1) holds, (2) holds for v∗ and
(3) v∗ is bounded. Prove Theorem 4.3 in this case.
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Problem. Suppose T <∞.

(SP) max
TX
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ (xt) t = 0, . . . (xt+1 = “final rate”) .

Define V ∗ = sup as before. And define the FE as before–Are Theorems

(4.2), (4.3) satisfied? If yes prove it, if no show where proofs go wrong.

Plans, Optimal Plans, Policy Rules and Policy Functions.
x̃ ∈ π (x0) is a Feasible Plan (from x0).

x̃∗ ∈ π (x0) is an Optimal Plan (from x0) if and only if V ∗ (x0) = u (x̃∗).
That is, the sup is attained at the plan x∗.
Note: There may be more than 1 given our assumptions so far.

Problem. Give an example with multiple optimal plans.

Optimal plans satisfy BE.

Theorem 4.4. Under A.4.1, A.4.2, if x̃∗ ∈ π (x0) is an OP, x∗ = (x∗0, x
∗
1, . . .).

Then

1.

V ∗ (x∗t ) = F
¡
x∗t , x

∗
t+1

¢
+ βV ∗

¡
x∗t+1

¢
t = 0, . . . (9)

2.
¡
x∗t+1, . . .

¢
is an OP from x∗t .

Proof. Since x∗ is an OP, x∗1 ∈ Γ (x0) and

V ∗ (x0) = u (x̃∗) = F (x0, x
∗) + βu (x̃∗0) (2)

≥ u (x̃) = F (x0, x1) + βu (x̃0) ∀x ∈ π (x0) .

In particular, this holds for all feasible plans with x1 = x∗1. Now, (x∗1, x2, . . .) ∈
π (x∗1)⇒ (x0, x

∗
1, . . .) ∈ π (x0)
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(since x∗1 ∈ Γ (x0)).

Thus, from (10), ∀ (x∗1, x2, . . .) ∈ π (x∗1),
F (x0, x

∗
1) + βu (x̃∗0) ≥ F (x0, x

∗
1) + βu (x∗1, x2, . . .)

so

u (x̃∗0) ≥ u (x∗1, x2, . . .) ∀ (x∗1, x2, . . .) ∈ π (x0).

Thus, u (x̃∗1) = V ∗ (x∗1) and (x
∗
1, x

∗
2, . . .) is an OP from x∗1 (since we just

showed that it attains the sup.

This proves (1) and (2) for t = 0. Now proceed exactly the same using

induction.

Converse

Theorem 4.5. Under A.4.1, A.4.2. If x∗ ∈ π (x0) and

lim sup
t→∞

βtV ∗ (x∗t ) ≤ 0 (11)

and (9) holds at this x̃∗. Then V ∗ (x0) = u (x̃∗) i.e., x∗ attains the sup.

Proof. Suppose x̃∗ satisfies (9) and (11). Then,

V ∗ (x0) = F (x0, x
∗
1) + βV ∗ (x∗1)

= F (x0, x
∗
1) + β [F (x∗1, x

∗
2) + βV ∗ (x∗2)]

= u1 (x̃
∗) + β∗V ∗ (x∗2)

...

= un (x̃
∗) + βn+1V ∗

¡
x∗n+1

¢
.

Taking limits then and using (11) we get

V ∗ (x0) = limun (x̃
∗) = u (x̃∗)

i.e. x∗ attains the sup so x∗ is an OP.

Let G : X =⇒ X satisfy G (x) ⊂ Γ (x) ,∀x.
G is called a “policy correspondence”. It is a subset of feasible actions at x.
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g : X → X

is a ”policy function” if g is a ”policy correspondence” AND g (x) is a

single point for all x ∈ X.

IF x̃ = (x0, . . .) satisfies xt+1 ∈ G (xt) ,∀t , then x̃ is said to be generated

from x0 by G. It’s a possible path if you always follow the “policy” G.

Finally, G∗ = optimal policy correspondence:
G∗(x) = {y ∈ Γ (x)V ∗ (x) = F (x, y) + βV ∗ (y)} .

Then from Theorem 4.2 and Theorem 4.4:

If x∗ is an OP from x0, then x∗t+1 ∈ G∗ (x∗t ) ∀t.
Conversely
If

x̃∗ ∈ π (x0) AND

x∗t+1 ∈ G (x∗t ) ∀t AND
(11),

then x̃∗ is an OP from x0.

So find G∗, then x∗t+1 ∈ G∗ (x∗t ) defines the time series of the solution.

Thus, to solve the SP we have the following outline:

1. Find V ∗.

2. Given V ∗, find G∗

3. Check that (11) is satisfied.

This shows that G∗ = OP.

In principle one could do this using either SP or FE for (1). But, in practice

it’s easier to do it using FE and this solves (2) at the same time.

Algorithm:

1. Guess V 0 (x).
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2. Solve supy∈Γ(x) F (x, y) + βV 0 (y).

3. For ∀x, define G0 (x) = argmax {y ∈ Γ (x) |F (x, y) + βV 0 (y)}

4. For all x, define V 1 by V 1 (x) = F (x,G0 (x)) + βV 0 (G0 (x)).

5. Put V 1 into step (1) and iterate. → G1, V 2, . . .

Suppose for some V 0 and some T we find

V T+1 (x) ≡ F
¡
x,GT (x)

¢
+ βV T (G (x)) ≡ V T (x) .

Then, we see that V T solves FE, i.e., V T = V ∗! (And GT = G∗ as well).

Questions.
What if V T → V ? Will it still work? (yes)

When will V T converge at all? Does it depend on V0? (under Blackwell’s

sufficient condition, V T → V ∗ independent of starting place).

Next order of business:

1. Make sure this procedure works.

2. Get some properties of V ∗, G∗ going for us.

A.4.3. X ⊂ Rc is convex. Γ non-empty, compact valued and continuous.

Γ is l.h.c. if ∀x∗,∀y∗ ∈ Γ (x∗) ,∀xn → x∗,∃yn ∈ Γ (xn) such that yn → y∗.
Γ is u.h.c. if ∀xn,∀yn such that yn ∈ Γ (xn) and (xn, yn) → (x∗, y∗) then
y∗ ∈ Γ (x∗).
Γ is continuous if both of these hold.

Examples: Enter Graphs Here.

A.4.4. F is bounded and continuous, 0 < β < 1.

Problem. Show that if A.4.3 and A.4.4 then A.4.1 and A.4.2.
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1. So SP is well defined.

2. Solutions (V ∗, G∗) of SP and FE are the same. (V ∗ is bounded.)

If |F (x, y)| ≤ B ∀ x, y ∈ A, then |V ∗(x)| ≤ B
1−β ∀x.

Let C(X) = {f : F =⇒ R, continuous, bounded}. Clearly, if V ∗ is contin-
uous, it is in C(X).

Consider:

[1] v(x) = max
y∈Γ(x)

F (x, y) + βv(y).

For any v ∈ C(X), the RHS of [1] has a solution (maximize a continuous

function on the compact set Γ(x)) and it this maximized value is continuous.

Accordingly define the function T : C(X)→ C(X)

by if f(x) ∈ C(X), then

(T (f)) (x) = max
y∈Γ(x)

F (x, y) + βv(y).

Thus [1] is T (v) ≡ v, i.e., v is a fixed point of T.

Let d(f, g) = sup
x
|f(x)− g(x)|.

It can be shown that under metric d, C is a complete metric space.

Theorem 4.6. If 4.3, and 4.4, then,

1. T has a unique fixed point (which must be V ∗).

2. And for all V0 ∈ C(X),

kTn(V0)− V ∗k ≤ βn kV0 − V ∗k (→ 0).

3. The opt. policy corres, G∗ ≡ argmaxy∈Γ(x) (F (x, y) + V ∗(y)) is non-
empty compact valued and u.h.c.
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3.1 Some Math We Need Before the Proof

Fixed Points
S a set, f : S → S a function. S∗ is called a fixed point for f if f(s∗) = s∗

i.e., f leaves s∗ ”fixed.” Some f 0s have fixed points and some f 0s don’t.

One fixed point No fixed point

Brouwer’s Theorem
Let S ⊂ Rm be the closed disk with interior, i.e. S = {x ∈ Rm | kxk ≤ 1}.
Then every continuous fct f : S → S has at least one fixed point.

Results like this are rare! Not true for C(X).

T : C → C · f → f + 1, i.e., Tf(x) = f(x) + 1 ∀x.
T is a very nice mapping but has NO fixed points.

To get a FP, in general you need strong assumptions.

35



Contractions and Contraction Mapping Theorem

Theorem 3.2 Contraction Mapping Theorem

If (S, ρ) is a complete metric space and T : S → S is a contraction of modulus

β, that is, ρ(T (x), T (y)) ≤ βρ(x, y)∀ x, y ∈ S,

Then,

1. T has exactly one fixed point, s∗.

2. ρ (Tn(x), s∗) ≤ βnρ(x, s∗). ∀ n, x ∈ S.

Note: T n defines a difference equation on S, i.e.,

s, T (s), T (T (s)) = T 2(s), s0, s1, s2, . . .

We are asking a hard question. When is it true that Tn(s0)→ s∗ ∀ s0?

Not a contraction Contraction
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Completeness
LetX ⊂ Rm, and defineC(X) = bounded continuous functions fromX → R.

Define kfk = sup
x∈X

|f(x)| .
This is known as the supnorm of f .

Define d(f, g) = kf − gk = sup
x∈X

|f(x)− g(x)| . It can be shown that d is
a metric — that is:

d ≥ 0

d(f, g) = d(g, f)

d(f, g) ≤ d(f, bf) + d( bf, g) ∀ f, g, bf

Theorem 3.1 (C(X), k·k) is a complete metric space.

Theorem 3.2 If (S, ρ) is complete and bS ⊂ S is closed, then (bS, ρ) is
complete also.

Blackwell’s Theorem

Theorem 3.3 Let x ⊂ Rc, B(x) be a space of bounded real valued functions

with:

d(f, g) ≡ sup
x∈X

|f(x)− g(x)| ≡ kf − gk

Let T : B → B satisfy:

(a) ∀ f, g ∈ B, such that f(x) ≤ g(x) ∀ x, then Tf(x) ≤ Tg(x) ∀x, and

(b) ∃ β ∈ (0, 1) such that, ∀ a ≥ 0, ∀ f ∈ B, (T (f + a)) (x) ≤ Tf(x) +

βa ∀x ∈ X.
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THEN, T is a contraction of modulus β.

Theorem of the Maximum:

Theorem 3.6 Let x ⊂ Rc, y ⊂ Rm, f : X × Y → R is continuous and

Γ : X → Y is compact valued and continuous.

Then,

(a) h(x) = max
y∈Γ(x)

f(x, y) is continuous.

(b) G(x) = argmaxy∈Γ(x) f(x, y) is non-empty, compact valued and u.h.c.

3.2 Back to the Proof of the Theorem

Recall what we want to show:

Theorem 4.6. If 4.3, and 4.4, then,

1. T has a unique fixed point (which must be V ∗).

2. And for all V0 ∈ C(X),

kTn(V0)− V ∗k ≤ βn kV0 − V ∗k (→ 0).

3. The optimal policy correspondence,G∗ ≡ argmaxy∈Γ(x) (F (x, y) + V ∗(y))
is non-empty compact valued and u.h.c.

Proof: Given any V0 ∈ C it follows that

P (X) : max
y∈Γ(x)

F (x, y) + βV0(y)

has a continuous objective function and a compact feasible set. So,
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(a) GV0(x) = argmax( ) is non-empty and compact valued.

(b) GV0(x) is u.h.c. (Theorem of the Maximum).

(c) V (x) = F (x,GV0(x)) + βV0(GV0(x)) is bounded and continuous.

Thus, T : C → C from (c), and (3) follows from (a) and (b) at any fixed

point. Thus we need show (1) and (2). These will follow from the Contraction

Mapping Theorem once we show that Blackwell’s sufficient conditions are

satisfied by T .

If f(x) ≤ g(x) ∀ x, f, g ∈ C

T (f)(x) ≡ max
y∈Γ(x)

[F (x, y) + βf(y)]

≤ max
y∈Γ(x)

[F (x, y) + βg(y)]

≡ (Tg)(x).

(since it is true pointwise, and F is the same).

If f ∈ C, a ≥ 0, then
T (f)(x) ≡ max

y∈Γ(x)
[F (x, y) + β(f + a)(y)]

= max
y∈Γ(x)

[F (x, y) + βf(y) + βa]

≡ (Tf)(x) + βa.

i.e., BSC are satisfied so T is a contraction, so (1) and (2) hold.

Summary Then:

Theorems 4.3 and 4.6 ⇒ V ∗ is bounded and continuous.

Theorems 4.5 and 4.6⇒ ∃ at least one optimal plan...any plan generated by
G∗ (since G∗ 6= ∅)) implied.
Problem: Show that F bounded is necessary for this. How is this true?

39



4 Properties of V ∗, G∗

A4.5 ∀ y, F (x, y) is strictly increasing in x (but not necessarily in y.)

A4.6 x ≤ x0 (vector sense) ⇒ Γ(x) ⊆ Γ(x0).

Theorem 4.7 If A4.3—4.6 hold and V ∗ is unique solution to:

[1] v∗(x) ≡ max
y∈Γ(x)

[F (x, y) + βv∗(y)],

then, V ∗ is strictly increasing.

Proof: Let C 0(x) be the set bounded increasing functions and let C 00 be those
that are strictly increasing. C 00 is a closed subset of C and hence, it is also

complete under the sup norm. By A4.5 and A4.6, if v ∈ C 0(x) ⇒ T (v) ∈
C 00(x), i.e., T = C 0 → C 00. Thus, the unique F.P. of T is in C 00. To see this,
pick any V ∈ C 0, and consider T n(V ) ∈ C 00. From above, Tn(V )→ V ∗— the
F.P. of T. Thus, since C 0 is closed, V ∗ ∈ C 0. But V ∗ = T (V ∗) and hence,
V ∗ = T (V ∗) ∈ C 00 (since T (V ) ∈ C 00 ∀ V ∈ C 0).

A4.7 F is strictly concave.

F (θ(x, y) + (1− θ)(x0, y0)) ≥ θF (x, y) + (1− θ)F (x0, y0)

∀ (x, y), (x0, y0) ∈ A, ∀ θ ∈ (0, 1).

Moreover, the inequality is strict if x 6= x.

A4.8 Γ is convex—(really graph of Γ is convex).

∀ θ ∈ [0, 1], ∀ x, x0, y0, y0 3 y ∈ Γ(x), y0 ∈ Γ(x0)⇒
θy + (1− θ)y0 ∈ Γ (θx+ (1− θ)x0).
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Note: This rules out IRS across x. e.g., x ∈ R, Γ(x) = {y | 0 ≤ y ≤ f(x)}.
Γ(x) is convex ∀x, but A is not if f is IRS!

Correspondence convex-valued, but graph not convex

Theorem 4.8 If A4.3, A4.4, A4.7 and A4.8 are satisfied, then V ∗ is
strictly concave and G∗is a continuous function.

Proof : Let C 0 = bounded, continuous, weakly concave functions and let C 00

= those that are strictly concave. C 0 is closed inC. We will show T (C 0) ⊂ C 00.

Suppose V ∈ C 0 and x0 6= x, θ ∈ (0, 1), xθ = θx0 + (1− θ)x1.Let yi ∈ G(xi),

i = 0, 1, and define yθ = θy0 + (1− θ)y1.

Then by 4.8, yθ ∈ Γ(xθ) for all θ.

Thus,
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TV (xθ) ≥ F (xθ, yθ) + βV (yθ) (since yθ ∈ Γ(xθ))

> θ [F (x0, y0) + βV (y0)] + (1− θ) [F (x1, y1) + βV (y1)]

(strict concavity of F , A.4.7, weak concavity of V )

= θTV (x0) + (1− θ)TV (x1) as desired.

i.e., T (C 0) ⊂ C 00, since C 0 is closed, it follows that the unique FP of T ∈ C 00.
Since V ∗, F are strictly concave, it follows that ∀ x there is a unique solution
to:

max
y∈Γ(x)

F (x, y) + βV ∗(y)

that is, G∗(x) is a function. Since it is uhc, it is continuous.

4.1 Other Related Results

Convergence of Approximating Policy Functions:
Theorem 4.9 Suppose V0 is bounded continuous and concave. Define Vn
and gn by

Vn+1 = TVn

gn = arg max
y∈Γ(x)

F (x, y) + βVn(y)

Then,

1. gn(x)→ g(x) ∀x

2. if X is compact, kgn − gk→ 0.
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Differentiability of V ∗:

Theorem 4.11 A4.3—4.4, 4.7, 4.8 and F is C1 on int(A), if x0 ∈ int(X),

and g(x0) ∈ int(Γ(x0)), then V is continuously differentiable at x0, and

∂V

∂x0
|x0 =

∂F

∂xi
|(x0,g,(x0)).

Proof : Choose a neighborhood of x0, U , such that, g(x0) ∈ int(Γ(x)) for all
x ∈ U. Notice we can do this since g(x0) ∈ Γ(x0) and Γ(·) is continuous.
Define a function W on U :

W (x) = F (x, g(x0)) + βV (g(x0)) ∀ x ∈ U .

Then, we have the following subsidiary points:

1. W (x) ≤ V (x) ∀ x ∈ U .

2. W (x0) = V (x0).

3. W is concave and C1, since F is C1 and βV (g(x0)) is a constant.

The first property above follows from the fact that g(x0) ∈ Γ(x) for all

x ∈ U :

V (x) = F (x, g(x)) + βV (g(x)) = max
y∈Γ(x)

{F (x, y) + βV (y)}
≥ F (x, g(x0)) + βV (g(x0)) =W (x)

Next we need the following definition:

A supergradient q of a funtion H(·) : U → R at x0 satisfies H(x) ≤
H(x0) + q(x− x0) ∀ x ∈ U.

Notice that any concave function has at least one supergradient since its

hypograph is a convex set. Then the existence of such a q follows from the

separating hyperplane theorem.
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Using 2 and 3 above, it follows that for some supergradient q of v(·) we
have

W (x)−W (x0) ≤ V (x)− V (x0) ≤ q(x− x0) (3)

Then it follows that q is also a supergradient of W (·) at x0.

We also have the following result from Convex Analysis: W (·) differen-
tiable =⇒ q unique. Furthermore, any concave function (hence particularly

true forW (·)) with a unique supergradient at an interior point of its domain
is differentiable and DW (x0) = q.

Then using the inequality (3) above and a usual directional limit we get

that DW (x0) = DV (x0).

Thus V is differentiable at x0 and

∂V

∂xi

¯̄̄̄
x0

=
∂W

∂x0

¯̄̄̄
(x0)

=
∂F

∂xi

¯̄̄̄
(x0,g,(x0))
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5 Examples

Examples of closed form solutions are rare. (Well, there are 2 or 3).

Example 1 Full depreciation, Log/Cobb-Douglas.

u =
X

βt log ct

s.t. ct + kt+1 ≤ Akαt .

Then,

V ∗(k) =

logA

(1− β)(1− αβ)
+

1

1− β

·
log(1− αβ) +

αβ

(1− αβ)
log(αβ)

¸
+

α

(1− αβ)
log k

Proof Just show that V ∗ is an fixed point for T !

This does not give a lot of insight however.

Alternative:

Guess that k0 = gk(k) is given by k0 = ϕf(k), (constant, savings rate— you

might guess this because k ↑ r ↓, but under log, c/W independent of r for

some ϕ.)

If correct, this implies that

kt+1 = ϕf(kt) = ϕAkαt ∀t,
and
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ct = (1− ϕ)f(kt) = (1− ϕ)Akα.t .

Thus,

k1 = ϕAkα0 , k2 = ϕAk21 = ϕA(ϕAkα0 )
α = (ϕA)1+αkα

2

0

k3 = ϕ Akα2 = ϕA
h
(ϕA)1+αkα

2

0

iα
= (ϕA)1+α+α

2

kα
3

0

kt = (ϕA)1+α+...α
t−1

kα
t

0

Hence,

ct = (1− ϕ)Akαt = (1− ϕ)A
h
(ϕA)

1+α+...+αt−1
kα

t

0

iα
= (1− ϕ)A[ϕA]α+α

2+...αtkα
t+1

0

Thus,

u(ϕ) =
X

βt log ct =
X

βt
³
log
h
(1− ϕ)A · [ϕA]α+...+αtkαt+10

i´
=

X
βt
©
log [(1− ϕ)A] + (α+ . . .+ αt) log[ϕA] + αt+1 log(k0)

ª
=

log [(1− ϕ)A]

1− β
+ log[ϕA]

∞X
t=0

βt
tX

s=1

αs

+α log(k0)
∞X
t=0

(βα)t

This uses:

(α+ . . .+ αt)(1− α) = α+ . . .+ αt − α2 − α3 − . . .− αt+1

= α− αt+1 = α(1− αt) so

α+ α2 + . . .+ αt =
α(1− α)

(1− α)

Hence,
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u(ϕ) =
log(1− ϕ)

(1− β)
+

logA

(1− β)
+
log(ϕA)

(1− α)

∞tX
0

βtα(1− αt) +
α

1− αβ
log k0

=
log(1− ϕ)

(1− β)
+

logA

(1− β)
+

α

(1− α)
log(ϕA)

" ∞X
0

βt −
∞X
0

(βα)t

#
+

α

1− αβ
log k0

=
log(1− ϕ)

(1− β)
+

logA

(1− β)
+

αβ

(1− β)(1− αβ)
logϕ

+
αβ

(1− β)(1− αβ)
logA+

α

(1− αβ)
log k0

What is the optimal choice of ϕ?

max
ϕ∈(0,1)

u(ϕ)

⇔
max
ϕ
bu(ϕ) where bu(ϕ) = log(1− ϕ) +

αβ

(1− αβ)
logϕ

The rest is constants (Note, it had to end up independent of k0, if this guess is

correct otherwise the optimal ϕ would end up depending on k,⇒ constant ϕ

would have to be wrong!)
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FOC

1

1− ϕ
=

αβ

1− αβ

1

ϕ

1− ϕ =
1− αβ

αβ
· ϕ

1 = ϕ

·
1− αβ

αβ
+ 1

¸
= ϕ

·
1− αβ + αβ

αβ

¸
=

1

αβ
ϕ

That is

ϕ∗ = αβ.

So, if a policy of this firm is optional then ϕ = αβ.

To show that this is in fact optimal substitute ϕ∗ into u (ϕ) to get:

u (ϕ∗) =
log (1− αβ)

(1− β)
+

logA

(1− β)

·
1 +

αβ

1− αβ

¸
+

αβ

(1− β) (1− αβ)
log (αβ) +

α

1− αβ
log (k0) .

Thus, if our guess is correct,

V ∗ (k) =
logA

(1− β) (1− αβ)
+

1

(1− β)

·
log (1− αβ) +

αβ

1− αβ
log (αβ)

¸
+

α

1− αβ
log k

and g∗ (k) = αβAkα.

To show that this is correct, it is necessary and sufficient to verify that

V ∗ defined this way is an fixed point of T , i.e.

48



V ∗ (k) = [log ((1− αβ)Akα) + βV ∗ (αβAkα)]

or equivalently g (k) = αβAkα solves

max
0≤y≤Akα

[log (Akα − y) + βV ∗ (y)] .

Problem. Do this.

Alternative Guess and Verify Strategy:

1. Guess that V ∗ (k) = D0 +D1 log k for some choices of D0, D1.

2. For each D0, D1 find

gD0,D1 (k) = arg max
0≤y≤Akα

[log (Akα − y) + β [D0 +D1 log y]] .

3. Use (2) to find

VD0,D1 (k) ≡ log (Akα − gD0,D1 (k)) + β [D0 +D1 log (gD0,D1 (k))] .

4. Find D∗
0,D

∗
1 so that VD∗0 ,D∗1 (k) = D∗

0 +D∗
1 log k.

I.e., use this procedure to form an Educated Guess for V ∗.

5. Verify by showing that VD∗0 ,D∗1 is a FP of T .

Example 2:L-Q Problems

Example 3: Ak Models

Problems
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1.

max
X

βt log ct

s.t. ct + kt+1 ≤ Akαt + (1− δ) kt δ < 1.

Guess that V ∗ (k) = B0 + B1 log k for some B0, B1. What happens

when you “Smart Guess”?

2.

max
X

βt
c1−σt

1− σ
σ > 0, σ 6= 1

s.t. ct + kt+1 ≤ Akαt

as above.

3.

max
X

βt log ct

s.t. ct + kt+1 ≤ A [αkρt + (1− α) 1ρ]
1
ρ

ρ ≤ 1, ρ 6= 0.

(Note: this comes from n̄t = 1 ∀t, F (k, n) = u [αkρ, (1− α)nρ]
1
ρ ,

u (c, c) = log c+ 0 · log c.

6 Applying the Methods

Growth Model with Inelastic Labor Supply

max
X

βtu (ct) (SP)

s.t. ct + kt+1 ≤ F (kt, 1) + (1− δ) kt

xt ≥ 0 kt+1 ≥ (1− δ) kt ct ≥ 0.
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Assume that non-negativity is not binding and let:

f (kt) = F (kt, 1) + (1− δ) kt.

max
X

βtu (ct) (SP )

ct + kt+1 ≤ f (kt) .

So,

max
X

βtu (f (kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f (kt)

where

F = u (f (kt)− kt+1)

Γ (kt) = [0, f (kt)] .

States: What is x ? xt = kt or xt+1 = (kt+1, ct).

6.1 Assumptions

Utility

u1. 0 < β < 1;

u2. u is continuous;
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u3. u is strictly increasing;

u4. u is strictly concave;

u5. u is C1.

Technology

t1. f is continuous;

t2. f (0) = 0, ∃ k̄ > 0 such that

k̄ ≥ f (k) ≥ k ∀k ∈ £0, k̄¤ .
f (k) < k ∀k ∈ ¡k̄,∞¢ .

#
k̄ = max sustainable capital stock.

(Feasibility implies k must fail if k0 > k̄ under this condition.)

t3. f is strictly increasing;
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t4. f is weakly concave;

t5. f is C1.

FE

V ∗ (k) ≡ max
0≤y≤f(k)

[u (f (k)− y) + βV ∗ (y)] .

Let X =
£
0, k̄
¤
.

6.2 Results

Then the results from the general case imply under these assumptions: (Not

all assumptions are necessary for all parts).

a) SP ⇐⇒ FE.

b) There is a unique bounded continuous function solving FE, V ∗, and
G∗ is non-empty and u.h.c. Thus, ∀k0 ∈

£
0, k̄
¤
, ∃ (k∗0, k∗1, . . .) solving

(SP).

c) V ∗ is strictly increasing.

d) V ∗ is strictly concave, G∗ = g∗ is a function that is continuous.

e) If g∗ (k) ∈ (0, f (k)), then V ∗ is differentiable at k ∈ ¡0, k̄¢ and V ∗0 (k) =
U 0 (f (k)− g∗ (k)) f 0 (k).

f) If f 0 (0) = ∞, U 0 (0) = ∞, then 0 < g∗ (k) < f (k) ∀k ∈ £
0, k̄
¤
.

(Inada Conditions)

Characterizing g∗ :
Recall that g∗ solves
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max
0≤y≤f(k)

U (f (k)− y) + βV ∗ (y) .

FOC and ENV are:

U 0 (f (k)− g∗ (k)) = βV ∗0 (g∗ (k)) . (FOC)

V ∗0 (k) = U 0 (f (k)− g∗ (k)) f 0 (k) . (Env)

g) From FOC suppose k is increased. k0 → k1 with k1 > k0. If g∗ (k1) ≤
g∗ (k0) then f (k0) − g∗ (k0) < f (k1)− g∗ (k1) (since f(k1) > f(k0)).

Thus, from the concavity of U :

U 0 (f (k0)− g∗ (k0)) > U 0 (f (k1)− g∗ (k1)) .

Thus, using the FOC

V ∗0 (g∗ (k0)) > V ∗0 (g∗ (k1)) .

Thus, since V ∗ strictly concave, g∗ (k0) < g∗ (k1) , contradiction. Thus,

g∗ is strictly increasing.

h) Since V ∗ concave,

k ↑ g∗ (k) ↑
⇒ V ∗0 (g∗ (k)) ↓
⇒ U 0 (f (k)− g∗ (k)) ↓
⇒ (f (k)− g∗ (k)) ↑ (U is concave),

i.e., c∗ (k) = f (k)− g∗ (k) is increasing in k too!
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This result is a bit of an oddity... this is just a 2 variable budget

problem, and we’ve just shown that both demand curves are increasing

in Wealth. Why can’t either c or k0 be an inferior good?

Steady States i.e. g (k∗) = k∗

i) g (0) = 0 – feasibility

j) If k∗ = g (k∗) use FOC and the ENV to get

U 0 (f (k∗)− k∗) = βU 0 (f (k∗)− k∗) f 0
¡
kt
¢

so
1

β
= f 0 (k∗) .

k) If f 0 (0) = ∞, f 0 (∞) < 1

β
(e.g. f 0 (∞) = 0). There is at least one

strictly positive solution to this. If f is strictly concave, there is exactly

one.
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l) If f 0 (k∗) =
1

β
then g (k∗) = k∗.

From Env:

V ∗0 (k∗) = U 0 (f (k∗)− g∗ (k∗)) f 0 (k∗)

i.e.

βV ∗
0
(k∗) = U 0 (f (k∗)− g∗ (k∗)) .

From FOC:

U 0 (f (k∗)− g∗ (k∗)) = βV ∗0 (g∗ (k)) .

Thus

βV ∗0 (k∗) = βV ∗0 (g∗ (k∗))

⇒ k∗ = g∗ (k∗)

since V ∗ is strictly increasing.

Global Dynamics:

First a little Math Result:

IfW (z) is strictly concave and differentiable then (W 0 (z)−W 0 (ẑ)) (z − ẑ) ≤
0 with equality ⇔ z = ẑ.

Proof.

z < ẑ ⇒ (W 0 (z)−W 0 (ẑ)) > 0, (z − ẑ) < 0.

z > ẑ ⇒ (W 0 (z)−W 0 (ẑ)) < 0, (z − ẑ) > 0.

z = ẑ → 0.

Thus, since V ∗ is strictly concave and differentiable on
¡
0, k̄
¤
, z = k, ẑ = g (k)

gives

[V ∗0 (k)− V ∗0 (g∗ (k))] [k − g∗ (k)] ≤ 0 ∀k ∈
³
0, k̂
i

(*)
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with equality iff k = g (k).

From ENV

V ∗0 (k) = U 0 (f (k)− g∗ (k)) f 0 (u) .

From FOC

V ∗0 (g (k)) =
1

β
U 0 (f (k)− g∗ (k)) .

Thus * is·
U 0 (f (k)− g∗ (k)) f 0 (k)− 1

β
U 0 (f(k)− g∗ (k)

¸
[k − g∗ (k)] ≤ 0

equality ⇔ k = g (k) .

or ·
f 0 (k)− 1

β

¸
[k − g∗ (k)] ≤ 0

equality ⇔ k = g (k) .

Thus, since f 0 (k∗) =
1

β
⇒ k∗ = g (k∗) as desired. But we already showed

that ∃! positive stationary point so that k 6= g (k) for k 6= k∗, k > 0. Thus

·
f 0 (k)− 1

β

¸
[k − g∗ (k)] < 0

if k 6= k∗.

1. If k < k∗ ⇒ f 0 (k) >
1

β
⇒
·
f 0 (k)− 1

β

¸
> 0 ⇒ (k − g∗ (k)) < 0 ⇒

k < g∗ (k), and since g is monotone, k < k∗ ⇒ k < g (k) < g (k∗) = k,

g (k) ∈ (k, k∗).
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2. If k > k∗ ⇒ f 0 (k) <
1

β
⇒
·
f 0 (k)− 1

β

¸
< 0 ⇒ (k − g∗ (k)) > 0 ⇒

k > g∗ (k), and since g is monotone k > k∗, k > g (k) > g (k∗) = k∗,
g (k) ∈ (k∗, k).

Proposition. In the growth model, there are 2 steady states k = 0, k = k∗µ
f (k∗) =

1

β

¶
. If k0 > 0, k0 < k∗, k∗t+1 > k∗t ∀t and k∗t → k∗. If k∗ < k0 <

k̄.... k∗t+1 < k∗t and k∗t → k∗.
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Does it always work this nice? NO!

Theorem 6.1 (Boldrin & Montrucchio) Let X ⊂ R be compact, g : X →
X, C2. Then ∃F, β, and Γ such that g∗ = g (and Γ (x) ≡ X).

An application of Theorems 4.9 and 4.11:
We can think the FEP as a function of the parameter β: different prob-

lems using different β0s potentially may yield different fixed points v’s and
different policy functions.

The idea here is to show that g∗(k;β) is increasing in β.

More precisely, let C 0(X) be the set of concave, bounded and continuous
functions h : X → R.
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Fix β0 > β. Let T be the operator using β and consider the operator

T 0 : C 0(X)→ C 0(X) be the operator using β0:

T 0(h)(k) = max
k0∈Γ(k)

{u(f(k)− k0) + β0h(k0)} for anyh ∈ C 0(X)

Let vk(·;β0) be the kth iteration using the operator T’ and gk(·;β0) be the
corresponding policy function.

By the contraction mapping Theorem, a fixed point for operator T’ will

exist and it can be found starting from any initial guess v0(·;β0) ∈ C 0(X).

Next use v∗(·;β) as the initial guess for the operator T’, where v∗(·;β) is
the fixed point for the operator T:

v∗(k;β) = max
k0∈Γ(k)

{u(f(k)− k0) + βv∗(k0;β)}

Applying T’ to v∗(k;β) we get v1(k;β
0) and g1(k;β

0). The function

g1(k;β
0) satisfies:

u0 [f(k)− g1(k;β
0)] = β0v∗

0
(g1(k;β

0);β)

Now compare the expression above with

u0 [f(k)− g∗(k;β)] = βv∗
0
(g∗(k;β);β)

Claim 1:g1(k;β0) > g∗(k;β).

Proof:

Suppose not.

Case 1: If g1(k;β0) = g∗(k;β), then from β0 > β we get β0v∗
0
(g1(k;β

0);β) >
βv∗

0
(g∗(k;β);β). But it contradicts u0 [f(k)− g∗(k;β)] = u0 [f(k)− g1(k;β

0)].

Case 2: If g1(k;β0) < g∗(k;β), then by concavity of v∗ we have that

β0v∗
0
(g1(k;β

0);β) > βv∗
0
(g∗(k;β);β).
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But then by concavity of u(·):

[u0 [f(k)− g∗(k;β)] > [u0 [f(k)− g1(k;β
0)]

and therefore β0v∗
0
(g1(k;β

0)) < βv∗
0
(g∗(k;β);β), a contradiction.

Claim 2:v01(k;β
0) > v∗

0
(k;β) for all k ∈ X.

Proof:

Use Th. 4.11 for the first iteration of T’. Then:

v
0
1(k;β

0) = u0[f(k)− g1(k;β
0)]f(k0) > u0[f(k)− g∗(k;β)]f(k0) = v∗

0
(k;β)

since g1 > g∗.
Now the reasoning goes by induction: we have proved that v

0
1(k;β

0) >
v∗

0
(k;β) = v

0
0(k;β

0); therefore suppose v
0
n(k;β

0) > v
0
n−1(k;β

0).

Claim 3: v0n+1(k;β
0) > v

0
n(k;β

0) and gn+1(k;β
0) > gn(k;β

0)
The proof for this claim is extremely similar to the proof for claim 1 and

2, and we left it as an exercise.

Therefore we have shown that gn(k;β
0) is increasing in n and that

gn(k;β
0) > g∗(k;β) ∀ n

Therefore it follows from Th. 4.9 that g∗(k;β0) > g∗(k;β).
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