
Econ 8105 MACROECONOMIC THEORY

DYNAMIC PROGRAMMING FOR MACRO

Prof. L. Jones

Fall 2010

These notes are a condensed treatment of the chapters in SLP that

deal with Deterministic Dynamic Programming used in conjunction with the

treatment of the single sector growth model and its generalizations. More or

less, this is Chapters 4-6 of the book along with some of the Mathematics

that is used in those sections.

Read S.L.P.

� Chapters 1 and 2 for background (skim 2.2)

� Skim Chapter 3 �Math.

� Wewill cover Chapter 4/parts of Chapter 5/parts of Chapter 6 in detail.
Reread Chapter 3 as needed as we go along.

Go for:

1. Simple version.

2. Time stationary rep.

3. Global Dynamics (special cases)

4. Numerical procedure.

1



From what we�ve seen so far, an ADE allocation can be found as the solution

to the maximization problem of the form:

P (bk) : max
(ec;ex;ek;è;en) u(ec; è)
s:t: ct + xt � Ft(kt; nt)

kt+1 � (1� �)kt + xt
nt + `t � nt
k0 = bk �xed
non-negativity.

Assume that nt is independent of t and Ft is independent of t.

e.g., nt � n � 1, Ft(k; n) = Ak�n1��

Let:

�(bk; n; F ) denote the set of feasible sequences for (~c; ex;ek; en; è) given n; F andbk: That is,
(~c; ex;ek; en; è) 2 �(k;n; F ) ()

ct + xt � F (kt; nt) 8t
kt+1 � (1� �)kt + xt 8t

nt + `t � n 8t
k0 = bk

and write

(~c; ex;ek; en; è) = (c0;x0;k0;n0;`0; ec1; ex1; : : : ; è1)
in period 0, and period 1,2. . . decisions, respectively.
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NOTICE:

(~c; ex;ek; en; è) 2 �(bk;n; t)
, c0 + x0 � F (k0; n0)

k1 � (1� �)k0 + x0
n0 + `0 � n

and k0 = bk
AND (ec1; ex1; : : : ; è1) 2 �(k1;n; F ):
That is,

The constraint set for P (bk;n; F ) has a RECURSIVE structure �There is
a �t = 0 component�and a �continuation component�and, moreover, the

�continuation component�looks �just like�the original set!

Problem: Give a Max Problem where this isn�t true!

Note: This requires in�nite horizon for it to be true!

Indeed, note that �(k;n; F ) is of the form

n
(~c; ex;ek; en; è) j (ct;xt; kt; `t;nt) 2 b�(kt�1)o
where

b�(k) =
8>>><>>>:
(c; x; k0; `; n) j c+ x � F (k; n)

k0 � (1� �)k + x
c+ n � n

non-negativity

9>>>=>>>;
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i.e., constraint set is a time stationary function of the �state variable�kt:

Other Problems Like This

If don�t cut the tree at period t, then (Tree�height at t)=(1 + height at

t� 1), i.e., kt = 1+ kt�1. Consider also kt = 0 forever if you do cut the tree.

If you cut it at height kt you get payo¤ �
tu(kt).

Let xt =

(
0 if don�t cut

1 if cut

)

Then the problem can be written as:

max
X

�tu(xt; kt)

xt 2 f0; 1g
kt+1 = (1� xt)(kt + 1)(1� �(kt=0))

1 Outline/Strategy for Tackling These Prob-

lems

Our strategy for solving problems like this is to use a simple fact about

maximization problems over two variables (even if the second variable for

us is an in�nite history of all relevant variables). This property is easily

described via the following.

Suppose we have an indexed family of maximization problems, one for

each x 2 X, P (x). In each of these you have to pick a y = (y1; y2) 2 Y1�Y2.
So, P (x) is given by:
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P (x) : max
(y1;y2)

u(x; y1; y2)

s.t (x; y1; y2) 2 �(x); x given.

Here, �(x) � Y1� Y2 is the constraint set for the problem P (x). Assume
that there is a solution for this problem for each x 2 X given by (y�1(x); y

�
2(x))

and de�ne V �(x) to be the value of utility at the solution:

V �(x) = u(x; y�1(x); y
�
2(x)):

This is the description of the problem in its �raw�or sequential form.

Alternatively, for each x 2 X, de�ne
�1(x) = fy1 2 Y1j9y2 2 Y2; s:t:; (x; y1; y2) 2 �g

and for each y1 2 �1(x) de�ne
�2(x; y1) = fy2 2 Y2j(x; y1; y2) 2 �g:

Next, consider the following Two Step Procedure for solving P (x) :

Step 1: For each (x; y1) such that y1 2 �1(x), solve the maximization
problem P 2(x; y1) given by:

P 2(x; y1) max
y2

u(x; y1; y2)

s.t. y2 2 �2(x; y1)
(x; y1) �xed

Assuming a solution exists for each choice of (x; y1), this de�nes a function

(or correspondence if there are multiple solutions), y2(y1; x). De�ne U2(x; y1)

by:

U2(x; y1) = u (x; y1; y2(x; y1))

Step 2: For each x 2 X de�ne the maximization problem P 1(x) by:

P 1(x) max
y1

U2(x; y1)

s.t. y1 2 �1(x)
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Assuming a solution exists for each choice of x, this de�nes a function (or

correspondence if there are multiple solutions), y1(x). De�ne U1(x) by:

U1(x) = U2(x; y1(x)) = u (x; y1(x); y2(x; y1(x))) :

Then, you can show that:

1. V �(x) = U1(x) = U2(x; y1(x)) = u (x; y1(x); y2(x; y1(x))) for all x 2 X.

2. (y�1(x); y
�
2(x)) = (y1(x); y2(y1(x)) for all x 2 X assuming unique solu-

tions.

3. V �(x) = U1(x) for all x 2 X even if max is replaced by sup and no

solution need exist.

4. Something like 2) holds even if the solution is NOT unique.

Adding More Structure

Suppose in addition that the continuation problems are also like the orig-

inal problems, i.e., if each P 1 is in the class P , and that the some additional

structure is placed on both the OBJ and Constraint Sets:

1. Assume that Y1 = X and Y2 = X �X � ::::: so that y1 is an x and y2
is an in�nite string of x0s.

2. Assume that u(x; y1; y2) = h(x; y1) + �u(y1; y2) for some function h.

3. Assume that there is some �(x) such that (x; y1; y2) 2 �(x) if and only
if y1 2 �(x) and y2 2 �(y1).

Then, under these conditions, the problem from time 1 on, i.e., the prob-

lem that we called P 2(x; y1) above
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1. does not depend on x: x enters the problem only as a constant added

to the objective function and hence can be dropped (indeed the term

h(x; y1) can be dropped), and

2. is equivalent to the problem P (y1).

Because of this, we can rewrite the �result�

V �(x) = U1(x) = U2(x; y1(x)) = u (x; y1(x); y2(x; y1(x)))

as

V �(x) = h (x; y1(x)) + �u(y1; y2(y1)) = h (x; y1(x)) + �V
�(y1)

Note that our Growth Model IS of this form:

Constraint problem is already this way., i.e., �(k1) = �(bk):
Something we can do to u(ec; è) to make this happen?

P (ek) : max
f(ct;xt;kt;nt;`t)g

1X
0

�tu(ct; `t)

ct + xt � F (kt; nt) t = 0; : : :

kt+1 � (1� �)kt + xt t = 0; : : :

nt + `t � n t = 0; : : :

k0 = bk:
0 < � < 1; u increasing, concave, etc.

P (bk; bx0;bk0;bn0; b̀0;bk0) : max
c1;:::;`1

X
�tu(ct; `t)

s.t. ct + xt � F (kt; `t) t = 1; : : :

kt+1 � (1� �)kt + xt t = 1; : : :

nt + `t � n t = 1; : : :

k1 = bk1 = (1� �)bk0 + bx0
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1. For any choice of (bc0; bx0;bk0; bn0; b̀0) This gives a new max problem.
2. Can drop �0u(c0; `0) from OBJ and factor out � from remaining.

3. New max problem depends only on bk1.
This problem is identical to P (bk1)!

It is a time stationary-recursive Max problem!

Let g(bk) !new k, i.e., the k1 from the solution to P (bk). Then solution to
overall problem SHOULD be k0 = bk, k1 = g(bk), k2 = g(k1) = g �g(bk)� etc.
That is, the optimal solution SHOULD have the form if (bk; k1; k2 : : :), is the
solution for the problem starting from k0 = bk, then (k1; k2 : : :) is the optimal
solution for the problem starting from k0 = k1.

What does this say about V (bk) = supP �tu( ) : : :? It follows that:

V (bk) = supu(c0; `0) + �V (k
0)

c0 + x � F (bk; �)
k0 � (1� �)bk + x0

n0 + `0 � n

In words, the last term on the RHS of the OBJ is what you get from t = 1

on if you have to have optimality from t = 1 and given that you start at k0:
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2 The Canonical Form

Given the discussion above, we will examine indexed families of optimization

problems of the form:

(SP ) or (SP (x0)) sup
fxt+1g1t=0

1X
t=0

�tF (xt; xt+1)

s.t. xt+1 2 �(xt)
x0 2 X given.

� � X:
�(x) : X =) X

F = return function

� = Feasibility correspondence.. What is possible for xt+1 given that the

state at t is xt?

Let V (x0) denote this sup (possibly+1;�1), (by convention, supx2;H(x) =
�1).

Example:
1-sector growth model, inelastic labor supply.

P (k0) max
X

�tu(ct)

s.t.

8>>><>>>:
ct + xt � F (kt; n)
kt+1 � (1� �)kt + xt:
k0 �xed

What is F here?
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ct = F (kt; n)� xt
= F (kt; n)� (kt+1 � (1� �)kt)
= F (kt; n) + (1� �)kt � kt+1
� G(kt; kt+1): G1 > 0; G2 < 0:

What is � here?

kt+1 � F (kt; n) + (1� �)kt

For this choice of F and � we can rewrite the 1-sector growth model in

canonical form:

max
X

�tu (G(kt; kt+1))

if kt+1 2 �(kt) = fkt+1 j kt+1 � F (kt; n) + (1� �)ktg

Example:
Tree Cutting Problem - P (k0):

Problem - Rewrite TCP in this form.

Example

1 sector growth model, elastic labor supply.
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P (k0) max
X

�tu(ct; `t)

s.t.

8>>>>><>>>>>:
ct + xt � F (kt; nt)
kt+1 � (1� �)kt + xt
nt + `t � n
k0 �xed.

Problem: rewrite this as SP in canonical form.

Example: 1 sector Growth Model, Multiple Capital Goods, inelastic labor
supply.

P (k0) max
X

�tu(ct)

s.t.

8>>>>><>>>>>:
ct + x1t + � � �+ xJt � F (k1t; � � � ; kJt; nt)
kjt+1 � (1� �j)kjt + xjt
nt + `t � n:
k01; : : : ; k0J given

Problem: Rewrite this as SP in canonical form.

Example: Same as above, but u(ct; `t):
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Example: Two sector neo-classical growth model, inelastic labor supply

max
X

�tu(ct)

s.t.

8>>>>>>>>>>><>>>>>>>>>>>:

ct � F c(kct; nct)
xt � F x(kxt; nxt):
kt+1 � (1� �)kt + xt
kct + kxt � kt
nct + nxt � n
k0 �xed

Problem: Rewrite in Canonical Form.

Problem: Add elastic labor supply.

Problem: Add multiple k�s, one sector each.

Can�t move x across sectors?
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Example: 1-sector Model, adjustment costs in k, inelastic labor supply

max
X

�tu(ct)

s.t. ct + xt � F (kt; n)

kt+1 � (1� �)kt + g(xt)
k0 �xed.

g(0) = 0; increasing and strictly concave.

INSERT FIGURE HERE

In this example, if you try to make too big a change in k, you lose e¢ ciency.

Problem: Write in CF.

Problem: Add, elastic `, multiple sectors.

Problem: Other forms? Adjustment on n?

F (kt; nt)� g(nt � nt�1) :

kt+1 = (1� �)kt + g
�
xt
kt

�
?
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Example:

(k; h)�model, inelastic `??

max
X

�tu(ct)

s.t.

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ct � F c(kct; hct; nct)
xkt � F k(kkt; hkt; nkt)
xht � F h(kht; hht; nht)
kt+1 � (1� �k)kt + xkt
ht+1 � (1� �h)ht + xht
h0; k0 �xed.

nct + nht + nkt � n
kct + kkt + kht � kt
hct + hkt + hht � ht

Here, h is interpreted as �knowledge�of the individual.

Problem: Write in CF

Example:

max
X

�tu(ct; `t)

s.t. ct � F c(kct; zct)

xkt � F k(kkt; zkt)

xht � F h(kht; zht)

kt+1 � (1� �k)kt + xkt
ht+1 � (1� �h)ht + xht
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E¤ective Labor supplies:

Zct � M c(nct; ht)

Zct � Mx(nxt; ht)

Zht � Mh(nht; ht)

kct + kxt + kht � kt

nct + nxt + nk+1 + `t � n
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Example: Family Labor Supply

X
�t
�
�f u

f (cft; `ft) + �mu
m(cmt; `mt)

�
cft + cmt + xt � F (kt; nft + nmt)

kt+1 � (1� �)kt + xt
nft + `ft � nf

nmt + `ft � nm

k0 �xed.

Add home good?

Example: Fertility

X
�tu(Nt; ct=Nt)

s.t. ct +Xt + �Nt+1 � NtF (Kt=Nt; n)

Kt+1 � (1� �)Kt +Xt

K0 �xed.

ETC.
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Back To General Development

Sequence Problem for the Initial Condition x �SP (x)

Find V (x) which is de�ned by:

V (x) = sup
(x0;:::)

1X
t=0

�tF (xt; xt+1)

s.t. xt+1 2 �(xt):8 t
x0 = x �xed.

Functional Equation Problem:

Find a function v(x) satisfying:

v(x) � supy2�(x) [F (x; y) + �v(y)]

That is, this is an identity in x!

Fundamental Theorem of Dynamic Programming (More or less):

(a) If V (x) solves SP (x) 8x; then V (x) satis�es FEP:

(b) If v(X) satis�es FEP then v(x) solves SP (x) 8x.

N. B. This can�t be quite true as stated because:
v(x) � �1
v(x) +1

always solve FEP., but won�t necessarily solve SP. So, some conditions

have to be added to (b).
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3 The Details

Let A = f(x; y) 2 X �X j y 2 �(x)g

This is the graph of �:

INSERT GRAPH HERE.

Let

�(x) = f(x0; : : : ; ) 2 X1 j xt+1 2 �(xt) 8t � 0; x0 = xg :

�(x0) is the feasible set for SP (x0).

Assumption 4.1 �(x) 6= �; 8x 2 X:

Problem: Show that Assumption 4.1 =) �(x0) 6= � 8x 2 X.
Assumption 4.2 8x0 2 X and all ~x 2 �(x0);

lim
n!1

Pn
t=0 �

tF (xt; xt+1) exists.

N.B. We allow +1;�1 as possible limits, i.e., 9 a 2 �R � R[ f�1;+1g;
such that

lim
n!1

P
t=0

�tF (xt; xt+1)! a:

INSERT GRAPH HERE.

Su¢ cient conditions for Assumption 4.2

SC1A4.2 jF (x; y)j �M; 8(x; y) and 0 < � < 1:

Problem: Prove SC2A4.2 =) A4.2 holds.

SC2A4.2 8x0 2 X;9 �; c; 0 < c <1; 0 < � < 1=� such that
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~x 2 �(x0) =) F (xt; xt+1) � c �t:

Problem: Prove SC2A4.2 =) A4.2

For each n; de�ne un : �(x0)! R by

un(ex) = nP
t=0

�tF (xt; xt+1):

i.e., the partial sum.

And de�ne u(ex) = lim
n!1

un(x):

By A.4.2, u : �(x0)! �R:

Finally, de�ne V � : X ! �R by:

V �(x) = sup
x2�(x0)

u(x):

What it means for V � to solve SP:
Then V � is a well-de�ned function satisfying:

a. If jV � (x0)j <1 then

V � (x0) � u (~x) 8~x 2 � (x0) (2)

and

8" > 0; 9~x 2 � (x0) =) (3)

u (~x) � V � (x0)� �:

b. If

V � (x0) = +1; 9 ~xk 2 � (x0))
u
�
~xk
�
! 1:

c. If V � (x0) = �1 then u (~x) = �1 8~x 2 � (x0).
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That is V � divides X into 3 mutually exclusive and exhaustive subsets.

X = A [B [ C
jV � (x)j < 1! x 2 A
V � (x) = +1! x 2 B
V � (x) = �1! x 2 C

What it means for v� to solve FE.

a. If jv� (x0)j <1 then

v� (x0) � F (x0; y) + �v� (y) 8y 2 �x0 (4)

and 8" > 0; 9 y 2 � (x0) such that

v� (x0) � F (x0; y) + �v�(y) + ": (5)

b. If x� (x0) = +1; 9 yk 2 � (x0) such that

lim
k!1

fF
�
x0; y

k
�
+ �v�

�
yk
�
g =1: (6)

c. If v� (x0) = �1 then F (x0; y) + �v� (y) = �1; 8y 2 � (x0).

Thus, as above, if v� is a solution to FE it divides X = Â[ B̂ [ Ĉ such that:

jv�(x)j < 1! x 2 Â
v�(x) = +1! x 2 B̂
v�(x) = �1! x 2 Ĉ:

Goal
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Theorem A. If V � solves SP then v� solves FE.

Theorem B. If v� solves FE then v� solves SP.

That is �A = Â, B = B̂ and C = Ĉ:

Most of the di¢ culties are with sup instead of max, and the possibility that

V � and/or v� = �1 for some/all x0�s.

Lemma 4.1 Suppose A4.2. Then 8x0 2 X and 8~x 2 � (x0)

u (~x) = F (x0; x1) + �u
�
~x1
�

where x1 = (x1; : : :).

Proof. Under 4.2. 8x0 2 X, 8~x 2 � (x0),

u (~x) = lim
n!1

nX
0

�tF (xt; xt+1) ;

= lim
n!1

F (x0; x1) + � lim
n!1

nX
t=0

�tF (xt+1; xt+2)

= F (x0; x1) + � � u
�
~x1
�
:

Where the last equality comes from the de�nition of u (~x1) :

Theorem 4.2 Under A.4.1, and A.4.2 if V � solves SP then V � solves FE.

That is:

8x 2 X; V � (x) = sup
y2�(x)

F (x; y) + �V � (y) :

Intuition/Discussion of Proof:

First, for this �rst part it�s useful to do an intuitive version of the proof

and then go through the technical details. YOU SHOULD DO THIS YOUR-

SELF FOR THE OTHER PARTS OF THE PROOF!
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To start, suppose jV � (x)j <1 for a particular x. For example, V � (x) =

7:218: And what we want to show is �at this same x, the valued 7:218 solves

the FE. In other words,

7:218 = supy2�(x) F (x; y) + �V
� (y) :

What would it mean to show this? First, it means that 7:218 is an upper

bound for the RHS of this equation. Second it means that there is no other,

smaller upper bound for the RHS.

To see that 7:218 is an upper bound for the RHS, proceed by contradic-

tion. That is, there is some y� 2 �(x) with:
F (x; y�) + V �(y�) > 7:218:

From here, we proceed to construct a feasible plan beginning from x, ~x,

for which u (~x) > 7:218. To do this, �rst construct a plan from y�, ~y which is

feasible (~y 2 �(y�)) and gets really close to V �(y�). Then, it can be checked
that ~x = (x; y�; ~y) 2 �(x) and by construction

u(x; y�; ~y) = u(~x) is really really close to F (x; y�) + V �(y�) > 7:218.

But this is a contradiction that 7:218 is an upper bound for the problem

SP (x).

The rest of the proofs are similar intutitively. And all that is left is to �ll

in the "0s and �0s.

Back to proof:

Suppose jV � (x)j <1 for a particular x.

Need to show

V � (x) = sup
y2�(x)

F (x; y) + �V � (y)
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since V � (x) <1. This is the same as showing

V � (x) � F (x; y) + �V � (y) 8y 2 � (x) (4A)

and 8" > 0, 9y 2 � (x))

V � (x)� " < F (x; y) + �V � (y) (5A)

To show (4A):

Let x1 2 � (x) and choose " > 0. By the de�nition of V � (x1), 9~x1 =
(x1; : : :) 2 � (x1) such that

u (~x1) � V � (x1)� ".
Since x1 2 � (x) and ~x1 2 � (x1), it follows that (x1; ~x1) 2 � (x). Thus,

from (2) and Lemma 4.1

V � (x) � u
�
x1; ~x

1
�
= F (x; x1) + �u

�
~x1
�

� F (x; x1) + �V
� (x1)� �":

Since " was arbitrary,

V � (x) � F (x; x1) + �V � (x1) 8x1 2 � (x)

follows.

Note� implicit: If jV � (x)j < 1 and y 2 � (x) then jV � (y)j < 1� show
this.

To show that (5A) holds at x, choose " > 0. From (3) 9~x 2 � (x), ~x =
(x; x1;:::) such that

V � (x) � u (~x) + "

= F (x; x1) + �u
�
~x1
�
+ "

where ~x1 = (x1; : : :). The equality comes from Lemma 4.1.
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But ~x 2 � (x) ) x1 2 � (x) and by the de�nition of V � (x1), it follows
that

V � (x) � F (x; x1) + �u
�
~x1
�
+ "

� F (x; x1) + �V
� (x1) + "

That is x1 2 � (x) is a choice of y that will work in (5A).
If V � (x0) =1 then

9~xk 2 � (x0) such that u
�
~xk
�
!1. Since xk1 2 � (x0) ;8k, and u

�
~xk
�
!

1;
u
�
~xk
�
= F

�
x0; x

k
1

�
+ �u

�
~xk
�
� F

�
x0; x

k
1

�
+ �V �

�
xk1
�
.

It follows that (6) holds for the sequence yk = xk1, and x
k
1 2 � (x0) ;8k.

If V � (x0) = �1 then

(7) u (~x) = F (x0;x1) + �u (~x
1) = �1 ,8~x 2 � (x0).

Since F (x; y) 2 R; 8 (x; y), it follows that u (~x1) = �1; 8x1 2 � (x0),
8~x1 2 � (x0).
Hence, V � (x1) = �1 8x1 2 � (x0).
But, since F is real valued and � > 0, (7) follows from this. This com-

pletes the proof.

Theorem 4.3 (Theorem B) Suppose A.4.1, A.4.2 hold. If v� is a solution

to FE

AND

(8) limn!1 �
nv (xn) = 0 8~x 2 � (x0) 8x0 2 X:

Then v� = V �:

What does it mean to show this?

Proof.

1. If v� (x0) < 1, then (4) and (5) hold. It�s enough to show that (2)

and (3) hold.
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First (2):

~x 2 � (x0) =) x1 2 � (x0) so (4) =) 8x 2 � (x0),

v� (x0) � F (x0; x1) + �v
� (x1)

� F (x0; x1) + �F (x1; x2) + �
2v� (x2)

...

� un (~x) + �
n+1v� (xn+1)

so

v� (x0) � limun (~x) + lim �n+1v� (xn+1) :

So from (8),

v� (x0) � u (~x) ,8~x 2 � (x0),
i.e. (2) holds.

To see that (3) holds, �x " > 0: We want to �nd an ~x 2 � (x0) such that
u (x) � V � (x)� ".

Choose �t 2 R such that
P1

t=1 �
t�1�t � "=2.

Since (5) holds (at all x?), [show if it holds at x0, it must hold at x1?],

we can �nd x1 2 � (x0), x2 2 � (x1) ; : : : so that v� (xt) � F (xt; xt+1) +

�v� (xt+1) + �t+1. Then, (x0; x1; : : :) 2 � (x0) by construction, and

v� (x0) �
nX
t=0

�tF (xt; xt+1) + �
n+1v� (xn+1) + (�1 + � � �+ �n�n+1)

� un (x) + �
n+1v� (xn+1) + "=2:

Thus, using (8),

v� (x0) � un (~x) + "
for all n su¢ ciently large (large enough so that �n+1v� (xn+1) < "=2).

Taking limits gives

v� (x0) � u (~x) + ",
i.e. (3) holds for this ~x.

v� (x0) = �1 case, not possible by (7) and (8). Why?
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If v�(x0) = 1; i.e. (6) holds, want to show 9xk 2 � (x1) such that

u
�
~xk
�
!1.

As a �rst step, we establish the following Claim:

Claim. There exists an n; 1 > n � 0, and (x0; : : : ; xn) such that:

i. xt 2 � (xt�1) ; 8t = 1; : : : ; n

ii. v� (xt) =1; 8t = 0; : : : n

iii. v� (xn+1) <1; 8xn+1 2 � (xn)

Proof. Suppose not. I.e., suppose that for 8n; and 8(x0; xn1 ; : : : ; xnn) such
that xnt 2 �

�
xnt+1

�
8t; 9xnn+1 2 � (xnn) with v�

�
xnn+1

�
= 1. Then consider

the sequence ~x = (x0; x01; x
1
2; : : :). By construction, x

n
n+1 2 � (xn�1n ) ; 8n and

v�
�
xnn+1

�
=1; 8n. But then �nv�

�
xnn+1

�
9 0. Contradicting (8).

So, choose such an n and such a sequence xn 2 � (xn�1). Fix an A > 0:

Since v� (xn) =1, by (6) we can choose xAn+1 2 � (xn) such that

F
�
xn; x

A
n+1

�
+ �v�

�
xAn+1

�
� ��n

"
A+ 1�

n�1X
t=0

�tF (xt; xt+1)

#
: (*)

Also, since v�
�
xAn+1

�
<1, we can �nd ~xAn+1 such that

i.

~xAn+1 2 �
�
xAn+1

�
ii.

u
�
~xAn+1

�
� v�

�
xAn+1

�
� ��(n+1): (**)

Then, by construction, ~xA �
�
x0; : : : ; xn; ~x

A
n+1

�
2 � (x0), and

u
�
~xA
�
=

n�1X
t=0

�tF (xt; xt+1) + �
nF
�
xn; x

A
n+1

�
+ �n+1u

�
~xAn+1

�
�

n�1X
t=0

�tF (xt; xt+1) + �
n��n

"
A+ 1�

n�1X
t=0

�tF (xt; xt+1)

#
:
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From * and **

�n+1v�
�
xAn+1

�
+ �n+1

h
v�
�
xAn+1

�
� ��(n+1)

i
= A:

Thus V � (x0) � u
�
~xA
�
� A ,8A) V � (x0) =1.

This completes the proof of the Theorem.

It follows that there can be AT MOST one solution to FE satisfying (7) since

by Theorem 4.3, every solution satisfying (7), v� satis�es v� (x) = V � (x).

FE is called Bellman�s Equation. Theorems 4.2 and 4.3 $ �Principle of

Optimality�.

Problem. Show (8) is necessary.

Problem. Suppose that

1. 8x 2 X, 9x� (x) such that V � (x) = u (x� (x)) < 1, i.e., there is a
solution and u is �nite at the solution�max = sup.

2. 8x 2 X ,9y� (x) solving maxy2�(x) [F (x; y) + �V � (x)].

Prove Theorem 4.2 in this case.

Problem. Suppose that v� satis�es FE, that (1) holds, (2) holds for v� and
(3) v� is bounded. Prove Theorem 4.3 in this case.

Problem. Suppose T <1.

(SP) max
TX
t=0

�tF (xt; xt+1)

s.t. xt+1 2 � (xt) t = 0; : : : (xt+1 = ��nal rate�) :

De�ne V � = sup as before. And de�ne the FE as before� Are Theorems

(4.2), (4.3) satis�ed? If yes prove it, if no show where proofs go wrong.

Plans, Optimal Plans, Policy Rules and Policy Functions.
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~x 2 � (x0) is a Feasible Plan (from x0).

~x� 2 � (x0) is an Optimal Plan (from x0) if and only if V � (x0) = u (~x�).

That is, the sup is attained at the plan x�.

Note: There may be more than 1 given our assumptions so far.

Problem. Give an example with multiple optimal plans.

Optimal plans satisfy BE.

Theorem 4.4. Under A.4.1, A.4.2, if ~x� 2 � (x0) is an OP, x� = (x�0; x�1; : : :).
Then

1.

V � (x�t ) = F
�
x�t ; x

�
t+1

�
+ �V �

�
x�t+1

�
t = 0; : : : (9)

2.
�
x�t+1; : : :

�
is an OP from x�t .

Proof. Since x� is an OP, x�1 2 � (x0) and

V � (x0) = u (~x�) = F (x0; x
�) + �u (~x�0) (10)

� u (~x) = F (x0; x1) + �u (~x
0) 8x 2 � (x0) :

In particular, this holds for all feasible plans with x1 = x�1. Now, (x�1; x2; : : :) 2
� (x�1)) (x0; x

�
1; : : :) 2 � (x0)

(since x�1 2 � (x0)).
Thus, from (10), 8 (x�1; x2; : : :) 2 � (x�1),

F (x0; x
�
1) + �u (~x

�0) � F (x0; x�1) + �u (x�1; x2; : : :)
so

u (~x�0) � u (x�1; x2; : : :) 8 (x�1; x2; : : :) 2 � (x0).
Thus, u (~x�1) = V � (x�1) and (x

�
1; x

�
2; : : :) is an OP from x�1 (since we just

showed that it attains the sup.

This proves (1) and (2) for t = 0. Now proceed exactly the same using

induction.
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Converse

Theorem 4.5. Under A.4.1, A.4.2. If x� 2 � (x0) and

lim sup
t!1

�tV � (x�t ) � 0 (11)

and (9) holds at this ~x�. Then V � (x0) = u (~x�) i.e., x� attains the sup.

Proof. Suppose ~x� satis�es (9) and (11). Then,

V � (x0) = F (x0; x
�
1) + �V

� (x�1)

= F (x0; x
�
1) + � [F (x

�
1; x

�
2) + �V

� (x�2)]

= u1 (~x
�) + ��V � (x�2)

...

= un (~x
�) + �n+1V �

�
x�n+1

�
:

Taking limits then and using (11) we get

V � (x0) = limun (~x
�) = u (~x�)

i.e. x� attains the sup so x� is an OP.

Let G : X =) X satisfy G (x) � � (x) ,8x.
G is called a �policy correspondence�. It is a subset of feasible actions at x.

g : X ! X

is a �policy function� if g is a �policy correspondence�AND g (x) is a

single point for all x 2 X.
IF ~x = (x0; : : :) satis�es xt+1 2 G (xt) ,8t , then ~x is said to be generated
from x0 by G. It�s a possible path if you always follow the �policy�G.

Finally, G� = optimal policy correspondence:

G� = fy 2 � (x) jV � (x) = F (x; y) + �V � (y)g :

Then from Theorem 4.2 and Theorem 4.4:

If x� is an OP from x0, then x�t+1 2 G� (x�t ) 8t.
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Conversely
If

~x� 2 � (x0) AND
x�t+1 2 G (x�t ) 8t AND
(11),

then ~x� is an OP from x0.

So �nd G�, then x�t+1 2 G� (x�t ) de�nes the time series of the solution.

Thus, to solve the SP we have the following outline:

1. Find V �.

2. Given V �, �nd G�

3. Check that (11) is satis�ed.

This shows that G� = OP.

In principle one could do this using either SP or FE for (1). But, in practive

it�s easier to do it using FE and this solves (2) at the same time.

Algorithm:

1. Guess V 0 (x).

2. Solve supy2�(x) F (x; y) + �V
0 (y).

3. For 8x, de�ne G0 (x) = argmax fy 2 � (x)F (x; y) + �V 0 (y)g

4. For all x; de�ne V 1 by V 1 (x) = F (x;G0 (x)) + �V 0 (G0 (x)).

5. Put V 1 into step (1) and iterate. ! G1; V 2; : : :
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Suppose for some V 0 and some T we �nd

V T+1 (x) � F
�
x;GT (x)

�
+ �V T (G (x)) � V T (x) :

Then, we see that V T solves FE, i.e., V T = V �! (And GT = G� as well).

Questions.
What if V T ! V ? Will it still work? (yes)

When will V T converge at all? Does it depend on V0? (under Blackwell�s

su¢ cient condition, V T ! V � independent of starting place).

Next order of business:

1. Make sure this procedure works.

2. Get some properties of V �, G� going for us.

A.4.3. X � R` is convex. � non-empty, compact valued and continuous.
� is l.h.c. if 8x�;8y� 2 � (x�) ;8xn ! x�;9yn 2 � (xn) such that yn ! y�.

� is u.h.c. if 8xn;8yn such that yn 2 � (xn) and (xn; yn) ! (x�; y�) then

y� 2 � (x�).
� is continuous if both of these hold.

Examples: Enter Graphs Here.

A.4.4. F is bounded and continuous, 0 < � < 1.

Problem. Show that if A.4.3 and A.4.4 then A.4.1 and A.4.2.

1. So SP is well de�ned.

2. Solutions (V �; G�) of SP and FE are the same. (V � is bounded.)
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If jF (x; y)j � B 8 x; y 2 A; then jV �(x)j � B
1�� 8x:

Let C(X) = ff : F =) R, continuous, boundedg. Clearly, if V � is contin-
uous, it is in C(X):

Consider:

[1] v(x) = max
y2�(x)

F (x; y) + �v(y):

For any v 2 C(X), the RHS of [1] has a solution (maximize a continuous
function on the compact set �(x)) and it this maximized value is continuous.

Accordingly de�ne the function T : C(X)! C(X)

by if f(x) 2 C(X), then
(T (f)) (x) = max

y2�(x)
F (x; y) + �v(y).

Thus [1] is T (v) � v, i.e., v is a �xed point of T:

Let d(f; g) = sup
x
jf(x)� g(x)j.

It can be shown that under metric d, C is a complete metric space.

Theorem 4.6. If 4.3, and 4.4, then,

1. T has a unique �xed point (which must be V �):

2. And for all V0 2 C(X);

kT n(V0)� V �k � �n kV0 � V �k (! 0):

3. The opt. policy corres, G� � argmaxy2�(x) (F (x; y) + V
�(y)) is non-

empty compact valued and u.h.c.
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3.1 Some Math We Need Before the Proof

Fixed Points
S a set, f : S ! S a function. S� is called a �xed point for f if f(s�) = s�

i.e., f leaves s� ��xed.� Some f 0s have �xed points and some f 0s don�t.

INSERT GRAPHS HERE

Brouwer�s Theorem
Let S � Rm be the closed disk with interior, i.e. S = fx 2 Rm j kxk � 1g.
Then every continuous fct f : S ! S has at least one �xed point.

Results like this are rare! Not true for C(X).

T : C ! C � f ! f + 1, i.e., Tf(x) = f(x) + 1 8x.

T is a very nice mapping but has NO �xed points.

To get a FP, in general you need strong assumptions.

Contractions and Contraction Mapping Theorem

Theorem 3.2 Contraction Mapping Theorem

If (S; �) is a complete metric space and T : S ! S is a contraction of modulus

�, that is, �(T (x); T (y)) � ��(x; y)8 x; y 2 S;
Then,

1. T has exactly one �xed point, s�.

2. � (T n(x); s�) � �n�(x; s�): 8 n; x 2 S.

Note: T n de�nes a di¤erence equation on S, i.e.,
s; T (s); T (T (s)) = T 2(s); s0; s1; s2; : : :

We are asking a hard question. When is it true that T n(s0)! s� 8 s0?
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INSERT GRAPHS HERE.

Completeness
LetX � Rm; and de�ne C(X) = bounded continuous functions fromX ! R.

De�ne kfk = sup
x2X

jf(x)j :
This is known as the supnorm of f .

De�ne d(f; g) = kf � gk = sup
x2X

jf(x)� g(x)j : It can be shown that d is
a metric �that is:

d � 0

d(f; g) = d(g; f)

d(f; g) � d(f; bf) + d( bf; g) 8 f; g; bf

Theorem 3.1 (C(X); k�k) is a complete metric space.

Theorem 3.2 If (S; �) is complete and bS � S is closed, then (bS; �) is
complete also.

Blackwell�s Theorem

Theorem 3.3 Let x � R`; B(x) be a space of bounded real valued functions
with:

d(f; g) � sup
x2X

jf(x)� g(x)j � kf � gk

Let T : B ! B satisfy:

(a) 8 f; g 2 B; such that f(x) � g(x) 8 x; then Tf(x) � Tg(x) 8x, and
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(b) 9 � 2 (0; 1) such that, 8 a � 0; 8 f 2 B; (T (f + a)) (x) � Tf(x) +
�a 8x 2 X.

THEN, T is a contraction of modulus �.

Theorem of the Maximum:

Theorem 3.6 Let x � R`; y � Rm; f : X � Y ! R is continuous and

� : X ! Y is compact valued and continuous.

Then,

(a) h(x) = max
y2�(x)

f(x; y) is continuous.

(b) G(x) = argmaxy2�(x) f(x; y) is non-empty, compact valued and u.h.c.

3.2 Back to the Proof of the Theorem

Recall what we want to show:

Theorem 4.6. If 4.3, and 4.4, then,

1. T has a unique �xed point (which must be V �):

2. And for all V0 2 C(X);

kT n(V0)� V �k � �n kV0 � V �k (! 0):

3. The optimal policy correspondence, G� � argmaxy2�(x) (F (x; y) + V �(y))
is non-empty compact valued and u.h.c.
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Proof: Given any V0 2 C it follows that

P (X) : max
y2�(x)

F (x; y) + �V0(y)

has a continuous objective function and a compact feasible set. So,

(a) GV0(x) = argmax( ) is non-empty and compact valued.

(b) GV0(x) is u.h.c. (Theorem of the Maximum).

(c) V (x) = F (x;GV0(x)) + �V0(GV0(x)) is bounded and continuous.

Thus, T : C ! C from (c), and (3) follows from (a) and (b) at any �xed

point. Thus we need show (1) and (2). These will follow from the Contraction

Mapping Theorem once we show that Blackwell�s su¢ cient conditions are

satis�ed by T .

If f(x) � g(x) 8 x; f; g 2 C

T (f)(x) � max
y2�(x)

[F (x; y) + �f(y)]

� max
y2�(x)

[F (x; y) + �g(y)]

� (Tg)(x):

(since it is true pointwise, and F is the same).

If f 2 C, a � 0, then

T (f)(x) � max
y2�(x)

[F (x; y) + �(f + a)(y)]

= max
y2�(x)

[F (x; y) + �f(y) + �a]

� (Tf)(x) + �a:

i.e., BSC are satis�ed so T is a contraction, so (1) and (2) hold.
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Summary Then:

Theorems 4.3 and 4.6 ) V � is bounded and continuous.

Theorems 4.5 and 4.6) 9 at least one optimal plan...any plan generated by
G� (since G� 6= ?)) implied.

Problem: Show that F bounded is necessary for this. How is this true?

4 Properties of V �; G�

A4.5 8 y; F (x; y) is strictly increasing in x (but not necessarily in y.)

A4.6 x � x0 (vector sense) ) �(x) � �(x0).

Theorem 4.7 If A4.3�4.6 hold and V � is unique solution to:

[1] v�(x) � max
y2�(x)

[F (x; y) + �v�(y)],

then, V � is strictly increasing.

Proof: Let C 0(x) be the set bounded increasing functions and let C 00 be those

that are strictly increasing. C 0
0
is a closed subset of C and hence, it is also

complete under the sup norm. By A4.5 and A4.6, if v 2 C 0(x) ) T (v) 2
C 00(x), i.e., T = C 0 ! C 00. Thus, the unique F.P. of T is in C 00: To see this,

pick any V 2 C 0, and consider T n(V ) 2 C 00: From above, T n(V )! V ��the

F.P. of T: Thus, since C 0 is closed, V � 2 C 0. But V � = T (V �) and hence,
V � = T (V �) 2 C 00 (since T (V ) 2 C 00 8 V 2 C 0).

A4.7 F is strictly concave.

F (�(x; y) + (1� �)(x0; y0)) � �F (x; y) + (1� �)F (x0; y0)
8 (x; y); (x0; y0) 2 A; 8 � 2 (0; 1):
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Moreover, the inequality is strict if x 6= x:

A4.8 � is convex�(really graph of � is convex).

8 � 2 [0; 1]; 8 x; x0; y0; y0 3 y 2 �(x); y0 2 �(x0))
�y + (1� �)y0 2 � (�x+ (1� �)x0):

Note: This rules out IRS across x. e.g., x 2 R, �(x) = fy j 0 � y � f(x)g.
�(x) is convex 8x, but A is not if f is IRS!

INSERT GRAPH HERE

Theorem 4.8 If A4.3, A4.4, A4.7 and A4.8 are satis�ed, then V � is strictly
concave and G�is a continuous function:

Proof : Let C 0 = bounded, continuous, weakly concave functions and let C 00

= those that are strictly concave. C 0 is closed in C. We will show T (C 0) � C 00.

Suppose V 2 C 0 and x0 6= x; � 2 (0; 1); x� = �x0 + (1 � �)x1.Let yi 2 G(xi);
i = 0; 1, and de�ne y� = �y0 + (1� �)y1.
Then by 4.8, y� 2 �(x�) for all �:
Thus,

TV (x�) � F (x�; y�) + �V (y�) (since y� 2 �(x�))
> � [F (x0; y0) + �V (y0)] + (1� �) [F (x1; y1) + �V (y1)]

(strict concavity of F , A.4.7, weak concavity of V )

= �TV (x0) + (1� �)TV (x1) as desired.

i.e., T (C 0) � C 00, since C 0 is closed, it follows that the unique FP of T 2 C 00.
Since V �; F are strictly concave, it follows that 8 x there is a unique solution
to:
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max
y2�(x)

F (x; y) + �V �(y)

that is, G�(x) is a function. Since it is uhc, it is continuous.

4.1 Other Related Results

Convergence of Approximating Policy Functions:
Theorem 4.9 Suppose V0 is bounded continuous and concave. De�ne Vn
and gn by

Vn+1 = TVn

gn = arg max
y2�(x)

F (x; y) + �Vn(y)

Then,

1. gn(x)! g(x) 8x

2. if X is compact, kgn � gk ! 0:

Di¤erentiability of V �:

Theorem 4.11 A4.3�4.4, 4.7, 4.8 and F is C1 on int(A); if x0 2 int(X),
and g(x0) 2 int(�(x0)); then V is continuously di¤erentiable at x0, and

@V

@x0
jx0 =

@F

@xi
j(x0;g;(x0)):

Proof : Choose a neighborhood of x0; U , such that, g(x0) 2 int(�(x0)) for all
x 2 U:

De�ne

W (x) = F (x; g(x0)) + �V (g(x0)).

Then,
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1. W (x) � V (x) 8 x 2 U (since g(x0) 2 �(x) 8 x 2 U):

2. W (x0) = V (x0).

3. W is concave and di¤erentiable, since F is. And, �V (g(x0)) is a con-

stant.

INSERT GRAPH HERE

Thus (Rockafeller) V is di¤erentiable at x0 and

@V

@xi

����
x0

=
@W

@x0

����
(x0)

=
@F

@xi

����
(x0;g;(x0))

5 Examples

Examples of closed form solutions are rare. (Well, there are 2 or 3).

Example 1 Full depreciation, Log/Cobb-Douglas.

u =
X

�t log ct

s.t. ct + kt+1 � Ak�t :

Then,

V �(k) =

logA

(1� �)(1� ��) +
1

1� �

�
log(1� ��) + ��

(1� ��) log(��)
�

+
�

(1� ��) log k
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Proof Just show that V � is an �xed point for T !

This does not give a lot of insight however.

Alternative:

Guess that k0 = gk(k) is given by k0 = 'f(k), (constant, savings rate�you

might guess this because k " r #, but under log, c=W independent of r for

some '.)

If correct, this implies that

kt+1 = 'f(kt) = 'Ak
�
t 8t;

and

ct = (1� ')f(kt) = (1� ')Ak�.t :
Thus,

k1 = 'Ak�0 ; k2 = 'Ak
2
1 = 'A('Ak

�
0 )
� = ('A)1+�k�

2

0

k3 = ' Ak�2 = 'A
h
('A)1+�k�

2

0

i�
= ('A)1+�+�

2

k�
3

0

kt = ('A)1+�+:::�
t�1
k�

t

0

Hence,

ct = (1� ')Ak�t = (1� ')A
h
('A)

1+�+:::+�t�1
k�

t

0

i�
= (1� ')A['A]�+�2+:::�tk�t+10

Thus,
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u(') =
X

�t log ct =
X

�t
�
log
h
(1� ')A � ['A]�+:::+�tk�t+10

i�
=

X
�t
�
log [(1� ')A] + (�+ : : :+ �t) log['A] + �t+1 log(k0)

	
=

log [(1� ')A]
1� � + log['A]

1X
t=0

�t
tX
s=1

�s

+� log(k0)

1X
t=0

(��)t

This uses:

(�+ : : :+ �t)(1� �) = �+ : : :+ �t � �2 � �3 � : : :� �t+1

= �� �t+1 = �(1� �t) so

�+ �2 + : : :+ �t =
�(1� �)
(1� �)

Hence,

u(') =
log(1� ')
(1� �) +

logA

(1� �) +
log('A)

(1� �)

1tX
0

�t�(1� �t) + �

1� �� log k0

=
log(1� ')
(1� �) +

logA

(1� �) +
�

(1� �) log('A)
" 1X

0

�t �
1X
0

(��)t

#
+

�

1� �� log k0

=
log(1� ')
(1� �) +

logA

(1� �) +
��

(1� �)(1� ��) log'

+
��

(1� �)(1� ��) logA+
�

(1� ��) log k0

What is the optimal choice of '?
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max
'2(0;1)

u(')

,
max
'
bu(') where bu(') = log(1� ') + ��

(1� ��) log'

The rest is constants (Note, it had to end up independent of k0; if this guess is

correct otherwise the optimal ' would end up depending on k,) constant '

would have to be wrong!)
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FOC

1

1� ' =
��

1� ��
1

'

1� ' =
1� ��
��

� '

1 = '

�
1� ��
��

+ 1

�
= '

�
1� �� + ��

��

�
=

1

��
'

That is

'� = ��:

So, if a policy of this �rm is optional then ' = ��.

To show that this is in fact optimal substitute '� into u (') to get:

u ('�) =
log (1� ��)
(1� �) +

logA

(1� �)

�
1 +

��

1� ��

�
+

��

(1� �) (1� ��) log (��) +
�

1� �� log (k0) :

Thus, if our guess is correct,

V � (k) =
logA

(1� �) (1� ��) +
1

(1� �)

�
log (1� ��) + ��

1� �� log (��)
�

+
�

1� �� log k

and g� (k) = ��Ak�.

To show that this is correct, it is necessary and su¢ cient to verify that

V � de�ned this way is an �xed point of T , i.e.
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V � (k) = [log ((1� ��)Ak�) + �V � (��Ak�)]

or equivalently g (k) = ��Ak� solves

max
0�y�Ak�

[log (Ak� � y) + �V � (y)] :

Problem. Do this.

Alternative Guess and Verify Strategy:

1. Guess that V � (k) = D0 +D1 log k for some choices of D0, D1.

2. For each D0; D1 �nd

gD0;D1 (k) = arg max
0�y�Ak�

[log (Ak� � y) + � [D0 +D1 log y]] :

3. Use (2) to �nd

VD0;D1 (k) � log (Ak� � gD0;D1 (k)) + � [D0 +D1 log (gD0;D1 (k))] :

4. Find D�
0; D

�
1 so that VD�

0 ;D
�
1
(k) = D�

0 +D
�
1 log k.

I.e., use this procedure to form an Educated Guess for V �:

5. Verify by showing that VD�
0 ;D

�
1
is a FP of T .

Example 2:L-Q Problems

Example 3: Ak Models

Problems
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1.

max
X

�t log ct

s.t. ct + kt+1 � Ak�t + (1� �) kt � < 1:

Guess that V � (k) = B0 + B1 log k for some B0; B1. What happens

when you �Smart Guess�?

2.

max
X

�t
c1��t

1� � � > 0; � 6= 1

s.t. ct + kt+1 � Ak�t

as above.

3.

max
X

�t log ct

s.t. ct + kt+1 � A [�k�t + (1� �) 1�]
1
�

� � 1; � 6= 0:

(Note: this comes from �nt = 1 8t, F (k; n) = u [�k�; (1� �)n�]
1
� ;

u (c; `) = log c+ 0 � log `:

6 Applying the Methods

Growth Model with Inelastic Labor Supply

max
X

�tu (ct) (SP)

s.t. ct + kt+1 � F (kt; 1) + (1� �) kt
xt � 0 kt+1 � (1� �) kt ct � 0:
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Assume that non-negativity is not binding and let:

f (kt) = F (kt; 1) + (1� �) kt:

max
X

�tu (ct) (SP)

ct + kt+1 � f (kt) :

So,

max
X

�tu (f (kt)� kt+1)
s.t. 0 � kt+1 � f (kt)

where

F = u (f (kt)� kt+1)
� (kt) = [0; f (kt)] :

States: What is x ? xt = kt or xt+1 = (kt+1; `t).

6.1 Assumptions

Utility

u1. 0 < � < 1;

u2. u is continuous;
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u3. u is strictly increasing;

u4. u is strictly concave;

u5. u is C1:

Technology

t1. f is continuous;

t2. f (0) = 0; 9 �k > 0 such that

�k � f (k) � k 8k 2
�
0; �k
�
:

f (k) < k 8k 2
�
�k;1

�
:

#
�k = max sustainable capital stock.

[INSERT PICTURE HERE]

(Feasibility implies k must fail if k0 > �k under this condition.)

t3. f is strictly increasing;

t4. f is weakly concave;

t5. f is C1:

FE

V � (k) � max
0�y�f(k)

[u (f (k)� y) + �V � (y)] :

Let X =
�
0; �k
�
.
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6.2 Results

Then the results from the general case imply under these assumptions: (Not

all assumptions are necessary for all parts).

a) SP () FE.

b) There is a unique bounded continuous function solving FE, V �, and

G� is non-empty and u.h.c. Thus, 8k0 2
�
0; �k
�
;9 (k�0; k�1; : : :) solving

(SP).

c) V � is strictly increasing.

d) V � is strictly concave, G� = g� is a function that is continuous.

e) If g� (k) 2 (0; f (k)), then V � is di¤erentiable at k 2
�
0; �k
�
and V �0 (k) =

U 0 (f (k)� g� (k)) f 0 (k).

f) If f 0 (0) = 1; U 0 (0) = 1, then 0 < g� (k) < f (k) 8k 2
�
0; �k
�
.

(Inada Conditions)

Characterizing g� :
Recall that g� solves

max
0�y�f(k)

U (f (k)� y) + �V � (y) :

FOC and ENV are:

U 0 (f (k)� g� (k)) = �V �0 (g� (k)) : (FO)

V �0 (k) = U 0 (f (k)� g� (k)) f 0 (k) : (Env)
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g) From FOC suppose k is increased. k0 ! k1 with k1 > k0: If g� (k1) �
g� (k0) then f (k0) � g� (k0) < f (k1)� g� (k1) (since f(k1) > f(k0)).

Thus, from the concavity of U :

U 0 (f (k0)� g� (k0)) > U 0 (f (k1)� g� (k1)) :

Thus, using the FOC

V �0 (g� (k0)) > V
�0 (g� (k1)) :

Thus, since V � strictly concave, g� (k0) < g� (k1) ; contradiction. Thus,

g� is strictly increasing.

h) Since V � concave,

k " g� (k) "
) V �0 (g� (k)) #
) U 0 (f (k)� g� (k)) #
) (f (k)� g� (k)) " (U is concave);

i:e:; c� (k) = f (k)� g� (k) is increasing in k too!

[INSERT PICTURE HERE]

This result is a bit of an oddity... this is just a 2 variable budget

problem, and we�ve just shown that both demand curves are increasing

in Wealth. Why can�t either c or k0 be an inferior good?

Steady States i.e. g (k�) = k�

i) g (0) = 0 � feasibility
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j) If k� = g (k�) use FOC and the ENV to get

U 0 (f (k�)� k�) = �U 0 (f (k�)� k�) f 0
�
kt
�

so
1

�
= f 0 (k�) :

k) If f 0 (0) = 1, f 0 (1) < 1

�
(e.g. f 0 (1) = 0). There is at least one

strictly positive solution to this. If f is strictly concave, there is exactly

one.

l) If f 0 (k�) =
1

�
then g (k�) = k�:

From Env:

V �0 (k�) = U 0 (f (k�)� g� (k�)) f 0 (k�)

i.e.

�V �
0
(k�) = U 0 (f (k�)� g� (k�)) :

From FOC:

U 0 (f (k�)� g� (k�)) = �V �0 (g� (k)) :

Thus

�V �0 (k�) = �V �0 (g� (k�))

) k� = g� (k�)

since V � is strictly increasing.

Global Dynamics:

First a little Math Result:

IfW (z) is strictly concave and di¤erentiable then (W 0 (z)�W 0 (ẑ)) (z � ẑ) �
0 with equality , z = ẑ.

Proof.
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z < ẑ ) (W 0 (z)�W 0 (ẑ)) > 0; (z � ẑ) < 0:
z > ẑ ) (W 0 (z)�W 0 (ẑ)) < 0; (z � ẑ) > 0:
z = ẑ ! 0:

Thus, since V � is strictly concave and di¤erentiable on
�
0; �k
�
, z = k, ẑ = g (k)

gives

[V �0 (k)� V �0 (g� (k))] [k � g� (k)] � 0 8k 2
�
0; k̂
i

(*)

with equality i¤ k = g (k).

From ENV

V �0 (k) = U 0 (f (k)� g� (k)) f 0 (u) :

From FOC

V �0 (g (k)) =
1

�
U 0 (f (k)� g� (k)) :

Thus * is�
U 0 (f (k)� g� (k)) f 0 (k)� 1

�
U 0 (f(k)� g� (k)

�
[k � g� (k)] � 0 (*)

equality , k = g (k) :

or �
f 0 (k)� 1

�

�
[k � g� (k)] � 0 (*)

equality , k = g (k) : (1)
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Thus, since f 0 (k�) =
1

�
) k� = g (k�) as desired. But we already showed

that 9! positive stationary point so that k 6= g (k) for k 6= k�, k > 0. Thus

�
f 0 (k)� 1

�

�
[k � g� (k)] < 0

if k 6= k�.

1. If k < k� ) f 0 (k) >
1

�
)
�
f 0 (k)� 1

�

�
> 0 ) (k � g� (k)) < 0 )

k < g� (k), and since g is monotone, k < k� ) k < g (k) < g (k�) = k;

g (k) 2 (k; k�).

2. If k > k� ) f 0 (k) <
1

�
)
�
f 0 (k)� 1

�

�
< 0 ) (k � g� (k)) > 0 )

k > g� (k), and since g is monotone k > k�, k > g (k) > g (k�) = k�,

g (k) 2 (k�; k).

[INSERT PICTURE HERE]

Proposition. In the growth model, there are 2 steady states k = 0, k = k��
f (k�) =

1

�

�
. If k0 > 0; k0 < k�; k�t+1 > k

�
t 8t and k�t ! k�. If k� < k0 <

�k:::: k�t+1 < k
�
t and k

�
t ! k�.

[INSERT PICTURE HERE]

Does it always work this nice? NO!

Theorem 6.1 (Boldrin & Montrucchio) Let X � R be compact, g : X !
X; C2. Then 9F; �; and � such that g� = g (and � (x) � X).
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