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Class Notes: Parts III and IV

These notes deal with two �tweaks�on the standard single sector growth

model:

1. Endogenizing the rate of growth in the system (this is the content of

Part 3 of the notes),

2. Introducing the e¤ects of Uncertainty into the models (this is the con-

tent of Part 4 of the notes).

Number 1 above deals with simple versions of a literature that began

emerging in the 1980�s with Paul Romer�s dissertation. It deals with a simple

problemwith the Solow/Cass/Koopmans model of �growth��namely that the

system does NOT grow unless it is assumed that the production function itself

grows. That approach (i.e., simply assuming that the production function

changes over time) is useful for some things, there are also di¢ culties with

it:
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1. Does this exogenous change in the production function take place every-

where in the world?

2. If yes, does it occur at the same rate everywhere?

3. If yes, why is it that some countries are so poor?

4. If yes, why is measured �productivity� in many parts of the world so

low?

5. If yes, one implication is that EVEN HOLDING INPUTS FIXED, out-

put should grow. Does this mean that countries in which output grows

at less than 2% per year for long periods are employing fewer and fewer

resources over time? (This is what would seem to be required.)

6. If this exogenous rate of movement in the production frontier does not

occur at the same rate everywhere, why not? And why is it lower in

some places than in others?

7. Why is it that the change in the production frontier uses no �resources�?

I.e., if this is supposed to capture the e¤ects of ongoing R&D and/or

improvements in education, etc., don�t those activities take up labor

and capital to perform?
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8. If the answer to �7�is yes, they do take up resources, why aren�t they

included in the model? What are the incentives to use them up, etc.?

Models of Endogenous Growth are supposed to be a �rst attempt at a

positive solution to those problems. The versions studied below give a simple

introduction to the literature, and at the same time, provide a nice review of

all of the topics studied under the Exogenous Growth approach, viz., What

are the models? What are their comparative statics properties? What sort

of time series do they generate and how are those a¤ected by the parameters

of preferences and technology? How do you use DP to solve them? What

are the e¤ects of policies in the models? What is optimal policy? Etc.

Part 4 deals with a second, logically separate, issue with the single sector

growth model. The time series generated by the model are very �smooth.�

That is, they do not �uctuate up and down like those seen in the time series

of the US economy (for example). A natural way to change the models to

capture something like this is to add random shocks to the models. In prin-

ciple, this could be done to either the Exogenous Growth, or Endogenous

Growth versions of the model. Adding shocks to the Exogenous Growth ver-

sion of the model gives rise to what is known as the �Real Business Cycle�
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model, which has been hugely successful as a modeling device. However, a

drawback is that almost nothing can be done analytically for that class of

models. That is, almost everything must be done through computer simu-

lations. Because of this, it is less useful as a pedalogical device for learning

the ins and outs of adding stochastic elements to the models. Because of

this, I always like to introduce the topic of stochastic growth by examining

the e¤ects of adding uncertainty to the simplest form of Endogenous Growth

model. (These basically become random interest rate savings models.) In

this case, if the shocks are i.i.d., we can get some analytical results about

the e¤ects of changes in uncertainty in savings rates, consumption shares

and wealth growth rates that are simply not possible in Exogenous Growth

models.

As an aside on this, you should think carefully about the �type�of uncer-

tainty that is introduced. That is, what is introduced is �Aggregate Shocks.�

These are shocks that everyone in the economy is subject to. You should

convince yourself that if the shocks are �idiosyncratic,�and there are no bar-

riers to insurance markets, we are back in the non-stochastic world (unless

there is an aggregate component to the idiosyncratic shocks �and then, it�s

no longer clear what it means for the shocks to be �idiosyncratic�). It is NOT
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clear what real world phenomenon these �Aggregate Shocks�are supposed

to stand in for. That is, there is no simple, readily measureable microeco-

nomic counterpart to them that can be pointed to. This weakness is there for

both the Endogenous and Exogenous Growth versions of the models. What

is known is that it is impossible, so far, to replicate the types of aggregate

volatility seen in real world time series in a realistic way without introducing

them. One possibility is that the shocks are to government policy, and since

these shocks a¤ect everyone, they are indeed �Aggregate.� Although this

identi�cation has been attempted, I would not say that it has been �success-

ful�to this point �if the production function is not subject to direct random

shocks, but observed volatility is due to changes in policies, the measured

�A�term in the production function should not exhibit volatility.

1 Part 3: Endogenizing the Growth Rate

1.1 Review

The key feature of the time path of US GNP over the 1950 to 2000 period is

that it has exhibited remarkable growth. This is true for many of the coun-
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tries in the world, and particularly true of the �developed�countries. Indeed,

it is THE thing that distinguishes the developed countries from those that

have not developed. For some reason, some countries have had GNP grow,

while others have not. Moreover, for the expanding group of �currently de-

veloping�countries, there has been growth, but for some reason, that growth

began later in time, and has lagged behind that of the developed world.

What does the model we have studied to this point say about this phe-

nomenon/puzzle? The standard neoclassical growth model is:

Max
c;n;x;k

P
�tU (ct; 1� nt)

s.t. ct + xt = F (kt; nt)

kt+1 � (1� �) kt + xt

The time paths generated by the solution to this model are shown below.

This version of the model has di¢ culty when faced with real data. It

shows levels of GNP converging to a constant, steady state level, independent

of initial conditions. Thus, there is only growth in transition to the steady

state, and only for those countries for which the initial capital stock is below

the steady state level. This is in contrast to the time series of GNP per capita
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High k0

Low k0

GNPt

t

F(k*,n*)

in the developed world. Moreover, in the real world, there seems to be no

sign of growth slowing down.

The standard ��x�to the neo-classical model for this shortcoming is to

add exogenous technological change. Sometimes this is assumed to be simply

labor augmenting (i.e., multiplying labor supply), sometimes it is assumed

to be Harrod neutral (i.e., multiplying the entire production function). It is

always taken to be exogenous to the e¤orts, decisions of the agents in the

model. Moreover, it is always assumed to be FREE, that is, it does NOT

require any resources. The typical form for this is:

(Exogenous labor supply growth)

Max
c;n;x;k

P
�tU (ct; 1� nt)
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High k0

Low k0

GNPt

t

(1+g)t

s.t. ct + xt = F (kt; (1 + g)
tnt)

kt+1 � (1� �) kt + xt

where F is a time stationary production function. (Note that if F is

Cobb-Douglas, this is equivalent to the Harrod neutral form of technological

change.)

What types of time paths are generated for this version of the model? As

you have probably already seen, so long as preferences are of the CES form,

this model can be �detrended�by dividing all variables through by (1 + g)t

(except for n) resulting in a model that is equivalent to the time independent

one as above. (The discount factor and price of new investment goods must

be adjusted as well.)
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The above model gives better result than the previous one. There is trend

growth in the time series that it generated, but this occurs only because it is

assumed to grow. Indeed, note that even if, under the counter-factual that k,

did not grow, output would still grow in this world. That is, it is impossible

for output to not grow!!! You would have to have either k or n shrink over

time (or both). This is di¢ cult to understand in a world in which some

countries have still not started to grow (e.g., many in Sub-Saharan Africa),

many did not start to grow until the 1950�s or 1960�s, etc. Does this mean that

those countries actually had shrinking capital stocks during those periods?

Again, this seems implausible at best.

It is also di¢ cult to understand things like the productivity slowdown

which took place in the US and other developed countries beginning sometime

between 1969.and 1974 (1974 is the usual date given) and 1990 (or so), as

well as �crossings�in levels of GNP per capita by di¤erent countries.

For example, If we observe two di¤erent countries and we assume that g

is common to them both, but that they have di¤erent k0, then both converge

to (1 + g)tF (k�; n�) This does seem to occur in some examples, e.g., US

& Japan. But, in others, the opposite seems to happen. A good example

is Japan (or Korea) vs. Argentina. In 1950, GNP per capita was higher in
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Argentina than in Japan, or Korea, but that is no longer true. Why does this

kind of thing occur? In particular, it�s hard to rationalize with the standard

model.

This view also creates problems with measured interest rate observations.

An alternative is to assume that the (1 + g)t term in the production

function depends on the country. This also seems problematic. If it depends

on the country, it what sense is it �exogenous�? It�s �exogenous�but also

exogenously di¤erent in di¤erent countries? This gives a simple answer to

the question of why some countries produce a lot and others do not. Those

that do not, are not capable. But it seems a rather �hollow�explanation.

Because of this, a new literature has sprung up, beginning with Paul

Romer�s dissertation (published in 1986). This literature attempts to make

the growth rate itself, or interpreted broadly the rate at which the �technol-

ogy�is advanced, an endogenous property of the model. All of the models in

this class feature a technology set that is independent of time (and country

too typically), you can think of this as saying what it is possible to do, with

the choices within it being di¤erent in di¤erent times and countries. The

simplest way to think about it is that what you can do in period t in coun-
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try i as being dependent on the level of �knowledge�in period t and country

i. They are all explicit about how this �knowledge�evolves over time, and

the fact that it requires resources to �move it�from period t to period t+1.

The di¤erent models di¤er in the form that knowledge takes and in how it is

transmitted across individuals, times and locations. There is a fundamental

question here: Is economically productive knowlegde private thing or public.

Or is it a combination of both?

This approach thus o¤ers a very di¤erent answer to the question of rich

and poor countries then. In rich countries, there is a high level of knowlegde,

while in poor, it is low. This also changes the nature of the discussion about

development. The key questions become: What causes knowledge to change

over time? How is this �growth� a¤ected by di¤ering incentives? Why is

it di¤erent in di¤erent places? Why does it seem to be linked to �country�

borders rather than general geography or race?

This is now a large, and I think it�s fair to say, to this point, empirically

unsuccessful literature. Since our time is limited, we will talk only about the

simplest of all of the models in this class.

A second di¢ culty with the model as it stands is that the time paths that
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it delivers are much �smoother�than those seen in the data. That is, there are

no �business cycle��uctuations coming out of the model�i.e., recessions and

booms. Three approaches have been forwarded to address this shortcoming:

A) �Endogenous cycles�approach - i.e. chaotic dynamics and dynamical

systems and generate complex dynamics from deterministic systems. I think

it�s fair to say that this literature has not been very empirically successful to

this point, although its proponents might disagree, and certainly people are

still actively pursuing this line. For example, to generate the kind of behavior

seen in US time series, this typically requires extremely low discount factors,

making a period more like a generation rather than a quarter. You can play

with this yourself some. Imagine what the time series from a growth model

would look like if the policy function, k0 = gk(k) was decreasing near the

steady state. Draw yourself some pictures and see what you can get out of

it as a time series!

B) Aggregate shocks to technology - take the standard growth model and

hit it with a series of stochastic shocks:

Max
c;n;x;k

E0
�P

�tU (ct; 1� nt)
�

s.t. ct + xt = F (kt; nt; st) (= stk
�
t n

1��
t )
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kt+1 � (1� �) kt + xt

Where st is a stochastic process for productivity. (You could also add the

growth component to st.)

This is what is known as the Real Business Cycle Model I think it is fair

to say that this approach has been a quali�ed success in understanding the

high frequency �uctuations seen in US time series. That is, if you measure

st by assuming that F is Cobb�Douglas and that nt and kt are perfectly

observed (and � is known), the model has implications for the time series

properties of GNP, etc. that are similar to what is seen in the data. (This

measurement of the st process is called the Solow Residuals.) For example,

an implication is that investment should be much more volatile over the

cycle than consumption, etc. (Because U is concave, people don�t want c to

�uctuate much, and hence, systematically plan their investment timing to

insure this.)

This is not to say that the model is perfect, or fully satisfactory, but it

has some real successes!

Di¢ culties include what the shocks �are,�why they move the way they

do in the data, why are they common to everyone in the economy, etc. (For

example, you can check that if the sit are independent across i then this
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model does not generate any �uctuations in aggregates whatsoever.)

C) Partially in response to the di¢ culties described in B), many re-

searchers have attempted to try and use the model in B), but with only

measured aggregate shocks. Examples of these kinds of shocks are policy

shocks such as random �scal policy and monetary policy.

For example, if taxes were random, then st replaced by 1�� t in the model.

Similarly, random monetary policy could be introduced into the model with

the �uctuations given by those actually seen in the data. This literature has

also had some moderate successes, but I think it�s fair to say that no one has

yet found measured, micro-founded shocks that could be used in place of the

measured Solow Residuals as outlined in B). The search goes on to either

replace them, or link them to some real, observed innovations.

1.2 The Exogenous Growth �Fix�: Labor Augmenting

Technological Change

Suppose that the the feasibility constraint is given by:

ct + xt = F (kt; (1 + g)
tnt) (Labor Augmenting technological change)
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F(k,n)

kKARG KUS

f ’ = αkα1

<Weakness>

i) Can�t get di¤erences in long-term growth rates (within a country/between

countries)

ii) Even with di¤erences in policy (Mid-term Q.3. change in tax rate �

has no e¤ect on growth rate, @
@�
= 0)

iii) Implications about interest rates and k�s in US and Argentina

YUS
YARG

=
AK�

USN
1��
US (1+g)

AK�
ARGN

1��
ARG(1+g)

=
�

KUS

KARG

��
(NUS = NARG = 1)

If di¤erence in GNP was roughly 5 times, then

5 ' YUS
YARG

=
�

KUS

KARG

��
Let � = 1

3
, then

�
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�
= 5

1
� = 125

f
0

US

f
0

ARG

=
�
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�1��
=
�

KUS

KARG

� 2
3
=
�
1
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� 2
3 = 1

25

f
0

ARG = 25� f
0

US
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(implication, if rUS = 0:1 then rARG = 2:5. ???)

2 Endogenizing the (1 + g)t

Recall from above that the exogenous growth model has a feasibility con-

straint given by:

ct + xt � yt = F (kt; (1 + g)
tnt)

where (1 + g)t is taken as exogenous. Here then, total labor services, or,

�e¤ective hours�, are given by (1 + g)tnt where nt is the number of hours

spent working. It is important to note that a second thing is true about this

formulation, not only is the growth rate of productivity of labor exogenous,

it is also free! That is, it does not take anything away from the feasibility

constraint to have labor productivity grow.

In this part of the notes, we endogenize the growth rate of productivity, or

e¤ective hours by introducing human capital to the model. Here, the (1+g)t

term is chosen by the agent, and it will go by the term ht. Moreover, it is

costly to increase ht �it enters the left hand side of feasibility.
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The simplest and most straightforward way to handle this is to have the

constraint set given by:

ct + xkt + xht � yt = F (kt; htnt) ;

ht+1 � (1� �h)ht + xht;

kt+1 � (1� �k)kt + xkt;

(h0; k0) �xed.

The model that results is known as the A(k; h) model because the model

is �linear�(or homogeneous of degree one) in (k; h).

As you can see from this, the question will now be �under what conditions

is it true that the optimal choice of ht is (1 + g)th0? And if this holds, what

is it that determines g? These are the questions that we will answer here.

3 <The A(k; h) Model>

A slight variation on the model makes it quite a bit richer, but not too much

more di¢ cult. I think of this as the �Uzawa�model, but it is not exactly the

model outlined in Uzawa�s original paper. In that paper, he, for some reason,
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has very di¤erent technologies for the accumulation of physical capital and

human capital. This version is both simpler, and more �standard.�

(1) Max
P
�tU (ct; 1� nt)

s.t. ct + xkt + xht � F (kt; zt)

zt � ntht (e¤ective labor)

kt+1 � (1� �k) kt + xkt (physical capital)

ht+1 � (1� �h)ht + xht (human capital, knowledge)

(1) F (kt; zt) = Ak�t z
1��
t

Then yt = Ak�t (ntht)
1��

= Ak�t

h
ntf(ht)

1
t gt
i1��

i.e., ht = (1 + g)t is one interpretation.

(2) OR the alternative:

Max
P
�tU (ct; (1� nt)ht)

s.t. ct + xkt + xht � F (kt; zt)

zt � ntht

kt+1 � (1� �k) kt + xkt

ht+1 � (1� �h)ht + xht
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This version assumes that ht also a¤ects utility. It�s hard to know exactly

what this means, but one possibility is that the �leisure�term in utility really

captures home production, and that a higher level of ht also makes one more

productive in the home, not just in market activities. This formulation comes

originally from Heckman (1976) and has better mathematical properties �it

is easier to give �decentralizations�of the solution to the planner�s problem

in this case. If labor is inelastically supplied, the two versions are equivalent.

NOTE: . Now, 1+g is determined by h with the equation ct+xkt+xht �

F (kt; zt) and ht+1 � (1� �h)ht + xht.

(3) Just for reference purposes, the original Uzawa model was:

Max
P
�tU (ct; 1� nmt � nht)

s.t. ct + xkt � F (kt; nmtht)

kt+1 � (1� �k) kt + xkt

ht+1 �  (nht)ht

(4) Is ht individual or social? What we have done here takes ht as indi-

vidual. In some models, ht is assumed to depend on others�ht �there is an

externality.

One way to incorporate this would be:
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hit+1 � (1� �h)hit +G

�
xih;

R
I

xi0hdi
0
�

Literally, this would mean that how much you learned in a period �

hit+1 � (1� �h)hit depends not only on how much e¤ort you personally put

into learning �xih, but also how much e¤ort others put in as well �
R
I

xi0hdi
0.

It is not clear how much sense this makes, or indeed, why this versus any

other formulation might be �good.� For example, what if G is a function ofR
I

xi0hdi
0 only? Then nobody will invest xih = 0. It follows that hit ! 0 under

this speci�cation. Thus, this must be done carefully.

3.0.1 Special Case of A(k; h) model

We�ll do the simpli�ed version with inelastic labor supply, nt = 1

(P ) Max
P
�tU (ct)

s.t. ct + xkt + xht � AF (kt; ht)

kt+1 � (1� �k) kt + xkt

ht+1 � (1� �h)ht + xht

(FOC)

(EEK) U
0
(ct) = �U

0
(ct+1) (1� �k + Fk (t+ 1))

(EEH) U
0
(ct) = �U

0
(ct+1) (1� �h + Fh (t+ 1))
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g1

g2

(h/k)* (h/k)

(Note @zt+1
@ht+1

= nt+1 = 1.)

NOTE: If labor enters the utility function, then @z
@n
remains in the

equation and in EEH, Fz (t+ 1)nt+1.

Thus, 1 � �k + Fk (t+ 1) = 1 � �h + Fh (t+ 1). This is of the form

g1
�
h
k

�
= g2

�
h
k

�
since F is homogeneous of degree one and doesn�t depend on

time. Graphically,

Remark:

Notice that Fk(t + 1) = Fk(kt+1; ht+1) = Fk(
kt+1
ht+1

; 1) since Fk is homoge-

neous of degree zero. Since F is concave, it follows that Fk(kh ; 1) is decreasing

in k
h
, hence, g1 is increasing in h=k.

Similarly, Fh(t+1) = Fh(kt+1; ht+1) = Fh(1;
ht+1
kt+1

) since Fh is homogeneous
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of degree zero. Again, since F is concave, it follows that Fh(1; hk ) is decreasing

in h
k
, hence, g2 is decreasing in h=k.

This is why the graph looks as it does.

Thus, it follows that there is a unique ratio of h to k, h
k

�
and that ht

kt
= h

k

�

for all t. Let�s call that ration  , so that ht =  kt for all t.

From this we see that F (kt; ht) = F (kt;  kt) = ktF (1;  ) = Akt where

A = F (1;  ).

As an example, in the Cobb-Douglas case with �h = �k, we can give an

explicit form for the optimal ratio of h to k.

In this case, rtkt = �yt,

so, Fk(t+ 1) = � yt+1
kt+1

(?)

Also, wtht = (1� �) yt

so, Fz(t+ 1) = (1� �) yt+1
ht+1

(??)

Since (?) = (??) at
�
h
k

��
,

� yt+1
kt+1

= (1� �) yt+1
ht+1

or
ht+1
kt+1

= 1��
� (doesn�t depend on t)

From the laws of motion of the two capital stocks, we get:

ht+1 = (1� �h)ht + xht
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 kt+1 = (1� �h) kt + xht

 ((1� �k)kt + xkt) = (1� �h) kt + xht

 (�h � �k)kt = xht �  xkt

Now, assume that �k = �h to see that:

xht =  xkt as well.

(In the Cobb-Douglas case, this becomes: xht = 1��
�
xkt.)

Problem: What happens if �k 6= �h ?

These simpli�cations almost turn the problem into a one capital problem.

The reason this is not quite true is that the initial ratio of h to k may not be

�right�and hence we need to carry both stocks along as states even though

we know that beginning in period t = 1, there will e¤ectively be only one

state.

To avoid that extra complication assume also that h0 =  k0.

Thus, the solution to (P ) solves:

Max
P
�tU (ct)

s.t. ct + (1 +  )xkt � Akt
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That is, the A(k; h) model with n �xed is equivalent to what is knows as

an Ak model, this is discussed in detail below.

This is a standard one sector growth model at this point except for one

fact. This is that the standard Inada conditions on the production function

do not hold, i.e., f(0) 6=1 and f(1) 6= 0. Because of this di¤erence, what

we saw in the standard case about dynamics and stability need not hold.

What does hold? To �gure this out, let�s make one more assumption �

U(c) = c1��

1�� . Thus, the problem is:

Max
P
�t

c1��t

1��

s.t. ct + (1 +  )xkt � Akt;

kt+1 � (1� �k)kt + xkt;

k0 given.

This is a homogeneous/homothetic problem. That is, if a path is feasible

from the initial condition k0 then, � times that path is feasible from the

initial condition �k0. Moreover, multiplying the entire time path of ct by �

multiplies utility by �1��.

As we have seen before in problems like this, it follows that the optimal

path from �k0 is simply � times the optimal path from k0.
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Because of this, we have the property of the value function:

v(�k) = �1��v(k)

Using this with � = k and k = 1 gives us:

v(k) = k1��v(1):

Thus, Bellman�s equation becomes:

v(k) = supc;xk;k0
c1��

1�� + �k1��v(1)

s.t. c+ (1 +  )xk � Ak

k0 � (1� �k)k + xk

Notice that the problem on the RHS of the BE is also a homogeneous/homothetic

problem. The constraint set is homogeneous of degree one in k, while the

utility function is homogeneous of degree 1� � in (c; k0).

Hence, the solution is homogeneous of degree one in the state. E.g., if we

denote the policy functions by c = gc(k), etc., then,
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gc(�k) = �gc(k).

As above then, we have:

gc(k) = kgc(1).

I.e., c is linear in k. Similar arguments hold for gx and gk.

Note that since y = Ak is also linear in k, it follows that c, and xk are

time invariant fractions of output.

Thus, to completely characterize the solution to the problem, all we need

to know are the three slopes, gc(1), etc.

There are many ways to do this. Let�s go back to the original problem:

Max
P
�t

c1��t

1��

s.t. ct + (1 +  ) (kt+1 � (1� �k)kt) � Akt;

k0 given.

Max
P
�t

c1��t

1��

s.t. ct + (1 +  )kt+1 � (A+ (1 +  )(1� �k)) kt;

k0 given.

Max
P
�t ((A+(1+ )(1��k))kt�(1+ )kt+1)

1��

1��
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The FOC for this problem is:

�tc��t (1 +  ) = �t+1c��t+1 (A+ (1 +  )(1� �k))

�
ct+1
ct

��
= �

�
A
1+ 

+ (1� �k)
�

�
gc(1)kt+1
gc(1)kt

��
= �

�
A
1+ 

+ (1� �k)
�

�
gk(1)kt
kt

��
= �

�
A
1+ 

+ (1� �k)
�

gk(1) =
h
�
�

A
1+ 

+ (1� �k)
�i1=�

:

Using this and the law of motion of k will give you gx(1), and �nally,

gc(1) can be obtained using feasibility:

gk(1)kt = (1� �k)kt + gx(1)kt

gk(1) = (1� �k) + gx(1)

gx(1) = gk(1)� (1� �k)

gc(1)kt + (1 +  )gx(1)kt = Akt

gc(1) = A� (1 +  )gx(1).

Notice that this model will exhibit growth (endogenously) if and only if

gk(1) > 1, i.e.,
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Slope : log γ

t

Log yt

High ko

Low ko

Ak model with some parameters but
different ko

�
�

�
A

1 +  
+ (1� �k)

��1=�
:

This condition is a combination of preference and technology parameters.

More productive technologies and more patient households give rise to higher

rates of growth. In general, higher � will imply lower growth rates.

Two countries with di¤erent initial capital stock (k0) but same everything

else.

In exogenous growth model,
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3.1 < The Ak Model >

For historical reasons, it�s useful to know a variant of the model presented

above, the Ak model. You can check for yourself that this is exactly what

you get above when you assume that  = 0.

Planner�s problem P (k0)� problem with initial capital given as k0 :

Max U
�
c
~

�
=
P
�t

c1��t

1��

s.t. ct + xt � Akt

kt+1 � (1� �) kt + xt

k0 �xed.

Note that this corresponds to the exogenous growth model with � = 1.

Think of this as k representing the individual�s knowledge in any given

period. Note that under this interpretation, we have adopted the extreme

(but simple, and maybe not so bad) assumption that knowledge is a purely

private good.
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3.2 Solution to the Ak Model

Let � (k0) = f(ct; xt; kt)1t=0 j feasible from k0g be the set of feasible time

paths from initial condition k0.

Then z 2 � (k0) , �z 2 � (�k0) 8 � � 0

(Homogeneous of degree 1 in k0)

(ex. if initial capital doubles, then so does consumption, investment, and

capital stock.)

Let�s also make the same restriction on U as is typically made in the

exogenous growth model, i.e. CES.

U(�c
~
) = �1��U(c

~
) (! U is homogeneous of degree 1��) also homothetic

Thus,

Proposition I) (c�t ; x
�
t ; k

�
t )
1
t=0 solves P (k0)

, (�c�t ; �x
�
t ; �k

�
t )
1
t=0 solves P (�k0)

Proof: Same as what was done previously when discussing the properties

of homothetic utility functions and aggregation.

Proposition II) V (k) is homogeneous of degree 1�� in k0, i.e. V (�k) =

�1��V (k)

31



Proof: Obvious.

Note that P (k0) is a stationary dynamic programming problem, and

hence,

) 9 policy function gk (k) s.t. if (k�0; k�1; ::::) solves P (k0) then

i) k�0 = k0 = g0k (k)

ii) k�1 = gk (k0)

iii) k�2 = gk (k1) = gk (gk (k0)) = g2k (k0)

What does HD 1 tell us about k1 as a function of k0?

From Proposition I, it follows that k�t (�k0) = �k�t (k0) for all t. This, in

particular,

k�1 (�k0) = �k�1 (k0)

i.e. gk (�k0) = �gk (k0)

so, gk (k) = gk (1� k) = kgk (1)

i.e. gk (k) = �k � k where �k = gk (1)

Stationary dynamic programming implies 9 gk, gx, and gc such that

(?) x�0 = gx (k0)

x�1 = gx (k1)

x�2 = gx (k2)

32



(??) c�0 = gc (k0)

c�1 = gc (k1)

c�2 = gc (k2)

(?) =) k�1 = (1� �) k0 + x�0

! �kk0 � (1� �) k0 = x�0

) gx (k) = (�k � (1� �)) k0 holds for all k (let �x = �k � (1� �))

(??) =) c�0 = Ak0 � x�0 = Ak0 � �xk0 = (A� �x) k0 (let �c = A� �x)

So, the solution to the Ak model is determined by three �policy functions�.

k0 = gk (k) = �k � k

c = gc (k) = �c � k

x = gx (k) = �x � k

and �x = �k � (1� �) & �c = A� �x

We need only to �gure out what the constants �k, �c, and �x are.

(EE) from Ak model says: (Assuming �x > 0)

U 0(ct)
U 0(ct+1)

= � (1� � + A) where U (c) = c1��

1��

i) LHS doesn�t depend on time

ii) U 0 (ct) = c��t

iii) LHS !
�
ct+1
ct

��
= � (1� � + A)
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=) growth rate of consumption depends on �; �; �; A (not exogenously

determined).

Since ct+1 = �c � kt+1 = �c � �k � kt�
�c��k�kt
�c�kt

��
= � (1� � + A)

so, �k = [� (1� � + A)]
1
�

Then, c =
ct+1
ct
= �c��k�kt

�c�kt
= �k

k =
kt+1
kt
= �k�kt

kt
= �k

x =
xt+1
xt
= �x��k�kt

�x�kt
= �k

) c = k = x = 

Remark:. This last part assumes that the solution is interior. This

may seem �ne, but there are cases where this is di¢ cult, for example, if this

were to be consistent with the Chad case � (1� � + A) < 1.

3.3 Comparative Statics of Growth in the Ak Model

� @
@A

> 0

(rmk. x = �x � k =
�x
A
Ak)

� @
@�
< 0
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� @
@�
> 0 (make people more patient and growth rate increases)

� @
@�
? (� =elasticity of consumption between two periods)

ct+1
ct
= kt+1

kt
= xt+1

xt
= Yt+1

Yt
=  = [� (1� � + A)]

1
�

� @
@�
< 0 (if  > 1)

� @
@�
> 0 (if  < 1)

(� is intertemporal rate of substitution, or risk averseness, i.e. if � " then

more risk averse. � = 0 then linear indi¤erence curve, � = 1 then log i/c,

� =1 then Leontief)

3.3.1 Remarks:.

1. Growth from a time stationary technology (endogenous growth models

- as opposed to exogenous growth model where F (k; n; t) = A0k�
�
(1 + g)t n

�1��
),

F (k) = Ak:

2. Remember that we want to think of k as standing for knowledge not

physical capital.

3.  depends on �deep� parameters of technology & preferences in the

model (�; �; �; A:::)
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3.4 Adding Taxes in the Ak Model (� ct&� kt)

Max
P
�tU (ct)

s.t.
P
pt [(1 + � ct)ct + xt] �

P
[(1� � kt) rtkt + Tt]

kt+1 � (1� �) kt + xt

(EEK) U 0(ct)
1+�ct

= �U 0(ct+1)
1+�ct+1

[1� � + (1� � kt+1) rt+1]

U 0(ct)
U 0(ct+1)

= �(1+�ct)
1+�ct+1

[1� � + (1� � kt+1)A] (* A = @F
@kt+1

)

U 0(ct)
U 0(ct+1)

=
�
ct+1
ct

��
if U (ct) =

c1��t

1��

Thus, if � ct and � kt are constant, we have:

 = [� (1� � + (1� � k)A)]
1
� (also constant)

Note: Now the growth rate depends on �scal policy through the tax

rate � k.

(1) Does it matter if the revenue is used to �nance transfers, T , or gov-

ernment spending, g?

if Tt = � ktrtkt + � ctptct (FP A) A

or if ptgt = � ktrtkt + � ctptct (FP B) B

A = B
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Since the growth rate is directly determined through the Euler Equation,

we can see that both of these policies will have the same growth properties.

However, utility is higher if gt = 0 i.e. in the case of FP A. You should try

and show this yourself!

� =
�
ct+1
ct

��
= �(1+�ct)

1+�ct+1
[1� � + (1� � kt+1)A]

� kt = � k 8 t

� ct = � c 8 t

1. @
@�c

= 0

2. @
@�k

< 0

3. You can grow too fast, by setting � c > 0 and � k < 0 That is, raise

revenues from a consumption tax and use this to subsidize (negative

tax) capital. In this case,

 = [�f1� � + (1� � k)Ag]
1
� > [�f1� � + Ag]

1
� (= 0 if � c = � k = 0)

(speed up growth)
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3.4.1 Remarks:

1. Note that this points out that high  is NOT the same as high U ! For

example, the policy given causes U to fall even though  is higher!

2. Actually, in this model, the undistorted growth rate, [�f1� � + Ag]
1
� �

� is optimal.

3. Some people have suggested that some spurts of growth actually ob-

served are ine¢ ciently high. This shows you how this could happen in

this model. An example might be growth in the Soviet Union during

the Stalinist period. Here you take away leisure and force output into

investment. This will lead to a high growth rate in output (but not if

it�s just tanks!!!).

4. Optimal taxation:

� k ! 0 still holds.

5. What about A(k; h) and taxation?

(Assume inelastic labor supply)

(CP ) Max
P
�tU (ct)

s.t.
P
pt [ct + xkt + xht] �

P
[(1� �nt)wtntht + (1� � kt) rtkt]
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kt+1 � (1� �) kt + xkt

ht+1 � (1� �)ht + xht

(EEK)
�
ct+1
ct

��
= � [1� �k + (1� � kt+1)Fk (t+ 1)]

(EEH)
�
ct+1
ct

��
= � [1� �h + (1� �nt+1)Fz (t+ 1)]

Assume that the production function is Cobb-Douglas and that �k = �h.

Then, it follows that (1� � kt+1)Fk (t+ 1) = (1� �nt+1)Fz (t+ 1).

A) ht+1
kt+1

= 1��nt+1
1��kt+1 �

1��
�

That is, di¤erential tax rates create a distortion on the composition of

capital, the ratio of ht+1 to kt+1.

In SS, � kt = � k & �nt = �n 8 t

If � k = �n then ht
kt
= 1��

�
. (Same as no-tax case, with

optimal ratio 1��
�
)

B) Can you increase the growth rate by using taxes to move

away from ht
kt
= 1��

�
?

C) Optimal Taxes (time path of taxes)

� kt ! 0

�nt ! 0 (labor income tax goes to zero)
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6. Then does government revenue go to zero? Yes. So, how are expendi-

tures �nanced?

Gov�t raises tax in the beginning and lives o¤ from the interest

earned.

7. Max
P
�tU (ct; 1� nt) (elastic labor)

s.t.
P
pt [(1 + � ct) ct + xkt + xht] �

P
[(1� �nt)wtntht + (1� � kt) rtkt]

kt+1 � (1� �) kt + xkt ht+1 � (1� �)ht + xht

8. The �Too many taxes�proposition that we had in our earlier study in

the neo-classical model, which says:

Get rid of consumption tax and get the same allocation, doesn�t hold

in this case.

A) � ct is no longer redundant.

B) � kt ! 0; �nt ! 0

C) If U = c1��V (l) � ct ! 0 too.

D) Here, @
@�c

6= 0 (rather, usually it is negative.)

9. If � c is increased, then typically, you consume less and enjoy leisure

more, which leads to a decrease in labor supply. Since the use of human
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capital is related to this, this also lowers the rate of return for investing

in h. This typically results in a lower growth rate, but in most examples

I have seen, this e¤ect is quite small.

With Neoclassical model, it was di¢ cult to get �crossings� in GDP per

capita levels. (Shown is Argentina and Japan.)

Can Ak model with � k generate crossings?

To get the above picture, you need

i) k20 > k10 (initial capital is higher in country 2)

ii) � k2 > � k1 (higher tax rate in country 2)

Note: Unfortunately, typically it is the more advanced countries that

have the higher tax rates. This creates di¢ culty with this as a theoretical
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Econ 8105 MACROECONOMIC THEORY

Class Notes: Part IV

Prof. L. Jones

4 Part IV: Stochastic Models

4.1 Adding Wiggles to the Time Series

As we noted in the previous section, two di¤erent approaches have developed

in the literature for the fact that the observed time series, unlike those gener-

ated by the models studied to this point, are not smooth. The two di¤erent

ways are deterministic chaotic dynamics, and the explicit inclusion of ran-

dom elements in the models. The last part of the class notes deals with one

speci�c example of this second approach. In it�s more popular form, this ap-

proach is the foundation of the modern approach to business cycle frequency

�uctuations in output, investment and employment. The prototypical model

in this genre is:
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4.2 The RBC Model

Max E0
�P

�tU (ct (s
t) ; 1� nt (s

t))
�
(expected discounted value of fu-

ture utility)

s.t. ct (s
t) + xt (s

t) = F (kt (s
t�1) ; nt (s

t) ; st)

kt+1 (s
t) � (1� �) kt (s

t�1) + xt (s
t)

Where the s0; s1; ::: form an in�nite sequence of random variables, and

st = (s0; s1; :::st) denotes the history up to period t. Note that it is assumed

that all choice variables are functions of the entire history of shocks up to

and including the date at which the decision is made. It is also assumed

that the current date decisions, labor supply, consumption and investment

are made in period t after the shock in period t is �seen.�

This class was �rst studied theoretically by Brock and Mirman.

The solution to this maximization problem is a stochastic process for the

endogenous variables, c, n, x and k and, of course, the solution depends on

the properties of the underlying stochastic process for s.

For example, if st � 1, 8t , then this model is identical to the Neo-

classical model without uncertainty. Typically, researchers assume that,

st = (1 + g)t exp(zt) where the zt are stationary (AR(1) for example).
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Pressing further, if we assume that F (kt (st�1) ; nt (st) ; st) = stk
�
t n

1��
t ,

we can, with data on yt, kt and nt, and knowledge of �, recover the true

stochastic process for the st. These are known as Solow residuals, log(st) =

log(yt) � � log(kt) � (1 � �) log(nt). The interpretation here is that the st

sequence is a sequence of �technological shocks.� Note that since we have

formulated the model as a representative agent problem, it is important that

the value of the stochastic shocks are the same for everyone.

The study of this model and its properties has been the object of intense

study since the publication of the paper by Kydland and Prescott in 1983.

Very few analytic results are available for this model, so most of the work

involves considerable simulation.

Since it would take too much time to do the set up, etc., to do justice

to this model. I will try and give you an introduction to some of the issues

that arise in a simpler version of the model. This is a stochastic version of

the Ak model discussed above. Most of the conceptual issues that arise from

modelling are similar, and we can actually get out a pretty interesting result

analytically that shows how stochastic models di¤er from their counterparts

with no uncertainty.
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4.3 The Stochastic Ak model

Consider the maximization problem:

P (k0; s0)

Max E0
�P

�tU (ct (s
t))
�
(expected discounted value of future util-

ity)

s.t. ct (st) + xt (s
t) � A (st) kt (s

t�1)

kt+1 (s
t) = xt (s

t)

Thus, we have assumed that there is full depreciation, � = 1 (or alterna-

tively that � is embedded in A), and that the value of A depends only on the

current value of the shock, st.

Assume further that U (c) = c1��

1�� .

Let V (k0; s0) be the maximized value of P (k0; s0), assuming that a solu-

tion exists.

Proposition: Under the assumptions above, the solution to P (k0; s0)

satis�es:

1) V (�k0; s0) = �1��V (k0; s0) Homogeneity of the value function

in the intial capital stock.
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2)
�
c
~

� (�k0; s0) ; k
� (�k0; s0)

�
= �

�
c
~

� (k0; s0) ; k
� (k0; s0)

�
homogene-

ity of the optimal time paths (which are state contingent) in the initial capital

stock.

Proof: Obvious.

The stochastic process s0; s1; :::, is called a First Order Markov Process if

P (st+1 = sjs0 = s0; :::; st = st) = P (st+1 = sjst = st). That is, if the

transition probabilies among states depend only on the most recent real-

ization of the state. This is the de�nition if a process takes on only �nitely

many (or countably many) values. The de�nition in the continuous case is

the natural analogue where P 0s are replaced by densities (or in general, by

conditional distribution functions).

Examples of stochastic processes satisfying this restriction are i.i.d processes

(these are actually zero order Markov processes since their transition proba-

bilities don�t depend on ANY of the elements of the history), and AR(1) &

MA(1) processes.

Recall that the non-stochastic version of the Neoclassical growth can be

simpli�ed into Bellman�s equation in the Value of the problem. Here, it is

�as if�you only care about the new k and not about the entire future time

47



path. This is because V already captures the value of the remainder of the

path. A similar result holds for stochastic maximization problems as well.

For the example we are studying, it is:

Theorem: Assume that s0; s1; ::: is a First Order Markov Process. Then,

(Bellman�s equation) V (k; s) = supfc;k0g [U (c) + � � EfV (k0; s0)jsg]

s.t. c+ k0 � A (s) k

Here, the expression EfV (k0; s0)jsg is the expected value of V (k0; s0) given

that the current value of the state is s. That is, s0 is drawn from the condi-

tional distribution of st+1 given st which, given that the fstg is stationary,

does not depend on t. Further, note that k0 and c are functions of s and k

of course, that is the solution to the RHS of Bellman�s Equation de�nes two

functions, c(k; s) and k0(k; s), (assuming the the solution to the problem in

the right exists and is unique for all (k; s)) and they satisfy:

V (k; s) = U (c(k; s)) + � � EfV (k0(k; s); s0)jsg.

NOTE: It is useful for students to write out what these equations mean

in terms of sums by assuming that the process fstg is a stationary Markov

Chain with transition probabilities �s0;s = Pr(st+1 = s0jst = s).

NOTE: Strictly speaking the above theorem requires some �measurability�
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assumptions too. See SLP for this. These will automatically satis�ed if the

state space, S, is countable. Since every function de�ned on a countable set

is measurable automatically.

Given the proposition above, we know something about the form of V .

This is that it is homogeneous of degree 1 � � in k. This has implications

about the form of Bellman�s equation in this example:

E(V (k0; s0)js) = E((k0)1�� V (1; s0)js) = (k0)1�� E (V (1; s0)js).

Here the last equality comes from the fact thatE(f(X)Y jX) = f(X)E(Y jX)

for any random variables X and Y and any function f .

If we make the additional assumption that the st process is i.i.d.this

simpli�es even further because E (V (1; s0)js) = E (V (1; s0)). Thus, in this

case, we have:

E(V (k0; s0)js) = (k0)1�� E (V (1; s0)js) = (k0)1�� E (V (1; s0)).

Let D = E(V (1; s)) and note that this is not random.

From all of this, it follows that in the case under consideration with i.i.d.

shocks, that the Right Hand Side of Bellman�s Equation simpli�es to:

sup
c;k0

U(c) + �(k0)1��D
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Income
expansion path

cA(s)k

k’

A(s)k

s.t. c+ k0 � A(s)k

Where D = E(V (1; s)) is a constant. But, because of our assumption

about the form of U , this objective function is homothetic in the choice

variables, (c; k0). Hence, as we have seen before, it follows that the solution,

which clearly depends only on A(s)k and not on s and k individually, is of

the form:

(c(k; s); k0(k; s)) = ('A(s)k; (1� ')A(s)k)

for some 0 � ' � 1. Note in particular that ', the fraction of output

going to consumption, does not depend on the value of the current shock,

s or on the size of the current capital stock, k. This is something that is

particular to the i.i.d. case. In general, D would depend on s and hence, '

would too.
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To �nish the solution of the problem and study its properties, all we have

to do is to �gure out what ' is.

There is more than one way to do this, but probably the simplest is to

use the stochastic version of the Euler Equation in conjunction with what

we have already learned about the solution from our application of Dynamic

Programming above.

The direct �rst order condition that comes out of P (k0; s0) is:

Uc(t) = �EfUc(t+ 1)rt+1 j stg,

where Uc(t) = @U(c(st))=@c(st).

In this case, since U(c) = c1��=(1 � �), Uc(t) = c��t and hence this can

be rewritten as:

1 = �Ef(ct=ct+1)�rt+1 j stg.

Subsituting that ct = 'A(st)kt, we get that

1 = �Ef(ct=ct+1)�rt+1 j stg = �Ef('A(st)kt='A(st+1)kt+1)�rt+1 j

stg =

�Ef(A(st)kt=A(st+1)(1 � ')A(st)kt)
�rt+1 j stg = �Ef(A(st+1)(1 �

'))��rt+1 j stg.
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As is standard in Ak models, rt+1 = A(st+1). Using this plus the fact

from above that ' is not random if the st are i.i.d., we can simplify this to:

(1 � ')� = �Ef(A(st+1))��A(st+1) j stg = �Ef(A(st+1))1�� j stg =

�Ef(A(st+1))1��g.

Note that the last step again uses the assumption that the st process is

i.i.d.

Finally, let�s assume for simplicity that A(st) = Ast. Then, this equation

reads:

(1� ') = [�Ef(As)1��g]1=�.

Where we have used the fact that the process is stationary so thatEf(Ast+1)1��g

does not depend on t.

Note that this says that the optimal savings rate, (1�') depends on the

entire distribution of s and not just it�s mean value. In particular, it is a

monotone increasing function of Efs1��g

What are the properties of the growth rate of output in this model? To

see this, recall that output in period t at node st is A(st)k(st�1) and hence,

we have:

y(st+1; kt+1)=y(st; kt) = A(st+1)kt+1=A(st)kt = A(st+1)(1�')A(st)kt=A(st)kt =
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(1� ')A(st+1).

It follows that

E(yt+1=yt) = (1� ')E(A(st+1)) = (1� ')AE(st+1).

Thus, movements in the mean growth rate, are completely determined by

the savings rate, (1� ').

The only thing left to determine is the properties of (1�') as it depends

on the distribution of s.

4.3.1 How does E () depend on d� (s)?

As noted, E () is a monotone function of '. (if ' " =) E () #)

� Increasing E (s1��) will decrease ': This leads to higher savings and

E () ".

Decreasing E (s1��) will increase '. This leads to lower savings and

E () # :

� Properties of E (s1��) as a function of d� (s).
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s

s1σ

0<σ<1
increasing & concave in s

σ >1
decreasing & convex in s

s1σ

s
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<Jensen�s Inequality- A Technical Aside> i) If g is convex, g (E (s)) �

E (g (s)),

ii) If g is concave, g (E (s)) � E (g (s)).

Note: Equality holds if g is linear in s or if the distribution of s puts mass

one on one point.

From above, s1�� is increasing and concave in s if 0 < � < 1, and it is

decreasing and convex in s if 1 < �.

Without loss of generality, let�s normalize so that E (s) = 1 (the rest can

be put into A.)

So, if � > 1, E (s1��) � (E (s))1�� = 1.

Note also that E (s)1�� = E (s1��) if � (ds) = 1 no matter what the value

of �.

It follows that E (s1��) is larger (weakly) under any other distribution

for s with E(s) = 1 than it is under the distribution � (ds) � 1.

That is, consider two possible distributions for s.

�1 (ds) � any distribution of s�s with E (s) = 1

�2 (ds) � Larry�s choice, s = 1 with probability one. i.e. P (s = 1) = 1

Let 1 � expected growth rate if the s�s are i.i.d. �1 (ds) and 2 �
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expected growth rate if s�s are i.i.d. �2 (ds)

Then, we want to know which is larger 1 or 2?

From above, it follows that

1 > 2 ()
R
s1��d�1 > 1

1 < 2 ()
R
s1��d�1 < 1.

From Jensen�s Inequality,

Eg (s) =
R
s1��d�1 (ds) > 1 = g(E(s)) iff � > 1, and

Eg (s) =
R
s1��d�1 (ds) < 1 = g(E(s)) iff � < 1.

Thus,

Proposition:

i) 1 > 2 () � > 1,

ii) 1 < 2 () � < 1.

That is, the growth rate is higher under uncertainty than under certainty

if and only if � > 1, and it is lower under uncertainty than under certainty

if and only if � < 1.

Summarizing: Under high risk aversion, adding uncertainty increases the

savings rate and hence the growth rate, while the opposite occurs if risk

aversion is low.
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4.3.2 Remarks:

1. If � = 1, the case of log utility, the growth rate is the same under

certainty and uncertainty.

2. Under U(c) = c, risk neutrality, � = 0, adding uncertainty lowers the

growth rate.

3. Under Leontie¤ Preferences, � = 1, adding uncertainy increases the

growth rate.

4. Intuitively, if 1�' increases, you are saving more for the future. In this

way, you are acting in the only way you can to provide self-insurance.

This, increases the growth rate.

Can this result be generalized beyond the comparison between perfect

certainty and uncertainty? Yes.

De�nition: Z2 is a mean preserving spread over Z1 if

1) Z2 = Z1 + "

2) E (") = 0

3) " and Z1 are independent.
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Intuitively, Z2 is a mean preserving spread over Z1 if it is �noisier�

than Z1.

Example: If Z1 is such that, P (Z1 = 1) = 1 (like 2 case), then for

any Z2 s.t. E (Z2) = 1 (like 1 case), is a mean preserving spread over Z1.

Theorem: (Rothschild and Stiglitz) If Z2 is amean preserving spread

over Z1 then

i) E(g(Z1)) > E(g(Z2)) 8 concave g, and,

ii) E(g(Z1)) < E(g(Z2)) 8 convex g.

In fact, a converse of this also holds. See the Rothschild and Stiglitz

paper for details.

Since we already have the characterization of E() in our case in terms

of E(s1��), and we know which way E(s1��) goes as a function of �, we have

the following result:

Theorem: If �1 (ds) & �2 (ds) are the distributions of the shocks in two

~Ak models and �2 is a mean preserving spread over �1,

then, E (2) > E (1) if � > 1

E (2) < E (1) if 0 < � < 1

Proof: Obvious.
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An interesting special case of this result when we remember that if the

Budget is Balanced period by period (and here, state by state as well), models

with linear income taxes are equivalent to those with altered production

functions:

� Consider the model where A is certain but there is a random income

tax and random government spending with the government balancing

its budget in a state by state way:

Consumer�s Problem:

Max E0
�P

�tU (c (st))
�

s.t.
PP

pt (s
t) [ct (s

t) + xt (s
t)] �

PP
[(1� � (st)) rt (s

t) kt (s
t)]

kt+1 (s
t) � xt (s

t)

where full depreciation is assumed as above and k0 is given.

Firms Problem:

Max pt (s
t)
h
cft (s

t) + xft (s
t) + gft (s

t)
i
� rt (s

t) kft (s
t)

s.t. cft (s
t) + xft (s

t) + gft (s
t) � Akft (s

t).

Finally, we assume that pt (st) gt (st) = � t (s
t)Akft (s

t) for all t and st.
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(Note that kft (s
t) = kt (s

t�1) in equilibrium, so that although it looks like

the �rms capital stock is a function of the current state, in equilibrium it

cannot be since it is equal to that of the consumer and this is determined as

a function of actions taken in period t� 1.)

The equilibrium of this model solves

Max E0
�P

�tU (ct (s
t))
�

s.t. ct (s
t) + xt (s

t) � (1� � t (s
t))Akt (s

t�1)

kt+1 (s
t) � xt (s

t)

� Consider two alternative �scal policy, � 1 (st) and � 2 (st) such that:

i) E (� 1 (st)) = E (� 2 (s
t))

ii) � (st)0s are i.i.d.

iii) U = c1��

1��

Then, when � > 1, E ( under � 1) > E ( under � 2) if � 1 is a mean

preserving spread over � 2.

Note: If you want higher growth then make income taxes more volatile!?!?!?!?!?!

An interesting counter-intuitive result that serves as a good place to stop.
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