Problem Set \#4

Econ 8105-8106
Prof. L. Jones

1. Write the following models in cannonical form:
(a) Human Capital

$$
\begin{aligned}
& \max \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, l_{t}\right) \\
& \text { s.t. } c_{t}+x_{t} \leq F\left(k_{t}, h_{t} n_{t}\right) \\
& k_{t+1}=\left(1-\delta_{k}\right) k_{t}+x_{t} \\
& h_{t+1}=\left(1-\delta_{h}\right) h_{t} v\left(n_{t}^{h}\right) \\
& n_{t}^{h}+n_{t}+l_{t}=\overline{n_{t}} \\
& \text { non neggativity }
\end{aligned}
$$

(b) One Sector Growth Model with multiple capital goods:

$$
\begin{aligned}
& \max \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, l_{t}\right) \\
& \text { s.t. } c_{t}+x_{1 t}+x_{2 t}+. .++x_{J t} \leq F\left(k_{1 t}, . . ., k_{J t}, n_{t}\right) \\
& k_{j t+1}=(1-\delta) k_{j t}+x_{j t} \\
& n_{t}+l_{t}=\overline{n_{t}} \\
& \text { non neggativity }
\end{aligned}
$$

2. Do problems 3.5, 3.6 (b), 3.8 and 4.4 from the Stokey, Lucas and Prescott (SLP) book.
3. Consider the infinite-horizon sequence problem (SP) and the functional equation (FE) (you know what they are by now). Suppose that, in (SP),
given any x_{0}, there is a ${\underset{\sim}{x}}^{*} \in \Pi\left(x_{0}\right)$ such that $\sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}^{*}, x_{t+1}^{*}\right)=V^{*}\left(x_{0}\right)$ and in (FE),
given any x, there is a $y^{*} \in \Gamma(x)$ such that $v(x)=F\left(x, y^{*}\right)+\beta v\left(y^{*}\right)$.

Prove Theorems 4.2 and 4.3 from SLP with these additional assumptions.
4. Consider the following finite-horizon sequence problem:

$$
\max _{\underline{x} \in \Pi\left(x_{0}\right)} \sum_{t=0}^{T} \beta^{t} F\left(x_{t}, x_{t+1}\right)
$$

where $\underset{\sim}{x}=\left(x_{0}, x_{1}, \ldots, x_{T+1}\right)$, and $\Pi\left(x_{0}\right)=\left\{\underset{\sim}{x}: x_{t+1} \in \Gamma\left(x_{t}\right) \forall t=1,2, \ldots, T\right\}$, for a fixed correspondence Γ that describes feasibility in each period.
Let $\Pi_{n}\left(x_{n}\right)=\left\{\underline{x}^{n}=\left(x_{n}, x_{n+1}, \ldots, x_{T+1}\right): x_{t+1} \in \Gamma\left(x_{t}\right) \forall t=n, n+1, \ldots T\right\}$ be the set of choices that are feasible from x_{n}, for all $n=0,1, \ldots, T$, and for all ${\underset{\sim}{x}}^{n} \in \Pi_{n}\left(x_{n}\right)$,
let $\quad u_{n}\left(x_{\sim}^{n}\right)=\sum_{t=n}^{T} \beta^{t-n} F\left(x_{t}, x_{t+1}\right)$,
and let $\quad V_{n}^{*}\left(x_{n}\right)=\sup _{\underline{x}^{n} \in \Pi_{n}\left(x_{n}\right)} u_{n}\left({\underset{\sim}{x}}^{n}\right)$, for all $n=0,1, \ldots, T$.
Prove analogues of Theorems 4.2 and 4.3 from SLP in this case - that is, define the appropriate functional equation problem corresponding to this sequence problem, and relate the functions V_{n}^{*} and the solutions of these equations.
(Note 1: since there are $T+1$ functions V_{n}^{*} (one for each $n=0,1, \ldots, T$), you will need $T+1$ value functions v_{n}.)
(Note 2 - regarding assumptions: do Assumption 4.2 and condition (8) in Theorem 4.3 have any use in the finite-horizon case? Should they be replaced with something else?)
(Note 3: you may assume what was assumed in Problem 3 above, i.e. that the sup's in each problem are attained by some element of the feasible set.)

