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1 Two Quantitative Examples

In these notes I describe the details of the two numerical examples I did in class. The
¯rst uses the BGP assumption to generate a time series from the growth model that
can be compared to US time series. The second is a more general technique, that of
approximating the policy function by linearizing optimality conditions.

2 Simple Example of One Sector Model

maxfĉt ;n̂t;^̀t ;x̂t ;k̂tg
P1
t=0 ¯

t
h
º log(ĉt) + (1¡ º) log(^̀t)

i

subject to:

ĉt + x̂t · F̂ (k̂t; Atn̂t)

k̂t+1 · (1¡ ±)k̂t + x̂t

n̂t + ^̀t · 1

k̂0 given.

Assume that F̂ (k; z) = Ak®z1¡®, At = (1 + g)t.

Substitute to see that this is equivalent to (monotonicity):

maxfĉt;n̂t ;k̂tg
P1
t=0 ¯

t [º log(ĉt) + (1 ¡ º) log(1¡ n̂t)]

subject to:

ĉt + k̂t+1 · Ak̂®t ((1 + g)tn̂t)1¡®+ (1¡ ±)k̂t:

k̂0 given.

Let ct = ĉt
(1+g)t ; kt = k̂t

(1+g)t ; (n̂t = nt) and substitute to rewrite problem as:
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maxfct;nt ;ktg
P1
t=0 ¯

t [º log((1 + g)tct) + (1¡ º) log(1¡ nt)]

subject to:

(1+ g)tct + (1 + g)t+1kt+1 · A((1 + g)tkt)®((1 + g)tnt)1¡®+ (1¡ ±)(1 + g)tkt:

k0 given.

Or, equivalently:

maxfct;nt ;ktg
P1
t=0 ¯t [ºt log(1 + g) + º log(ct) + (1¡ º) log(1¡ nt)]

subject to:

ct + (1 + g)kt+1 · Ak®t n1¡®t + (1 ¡ ±)kt:

k0 given.

Or equivalently, since
P1
t=0 ¯

t [ºt log(1 + g)] is a constant:

maxfct;nt ;ktg
P1
t=0 ¯

t [º log(ct) + (1 ¡ º) log(1¡ nt)]

subject to:

ct + (1 + g)kt+1 · Ak®t n1¡®t + (1 ¡ ±)kt:

k0 given.

The FOC's for this problem are (with the multiplier being ¯t¸t):

ct : ¯tº
ct = ¯t¸t

nt : ¯t(1¡º)
(1¡nt) = ¯t¸tFn(t)

kt+1 : (1 + g)¯t¸t = ¯t+1¸t+1 [1¡ ± + Fk(t+ 1)]

F east : ct + (1 + g)kt+1 = Ak®t n
1¡®
t + (1¡ ±)kt:

Where F (k; n) = Ak®n1¡®.

From Cobb-Douglas, we have that Fn(t) = (1¡®)F (t)
nt

and Fk(t) = ®F (t)
kt

.
Substituting this and ¯tºct = ¯t¸t everywhere and eliminating that equation gives:

nt : ¯t(1¡º)
(1¡nt) = ¯tº

ct
(1¡®)F(t)
nt
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kt+1 : (1 + g)¯
tº
ct

= ¯t+1º
ct+1

h
1¡ ± + ®F (t+1)

kt+1

i

F east : ct + (1 + g)kt+1 = Ak®t n1¡®t + (1¡ ±)kt:

(1¡®)F (t)
nt

= (1¡®)Ak®t n1¡®t
nt

= (1¡®)A
h
kt
nt

i®
, and ®F (t+1)kt+1

= ®Ak®t+1n
1¡®
t+1

kt+1
= ®A

h
nt+1
kt+1

i1¡®

Simplify:

nt : (1¡º)ct
º(1¡nt) =

(1¡®)F (t)
nt

= (1¡ ®)A
h
kt
nt

i®

kt+1 : (1 + g) ct+1ct = ¯
·
1 ¡ ± +®A

h
nt+1
kt+1

i1¡®¸

F east : ct + (1 + g)kt+1 = Ak®t n
1¡®
t + (1¡ ±)kt:

Assuming that we are in a steady state, these become:

n : (1¡º)c
º(1¡n) = (1¡ ®)A

h
k
n

i®

k : (1 + g) = ¯
·
1¡ ± + ®A

h
n
k

i1¡®¸

F eas : c+ (1 + g)k = Ak®n1¡®+ (1¡ ±)k:

Given the deep parameters, k gives n=k. Given this Feas gives c=k. Given these,
n gives (1¡ n)=k:

And we need k0 = kss.

2.1 Parameters

Note tha the solution to the growth model above is homogeneous in (A; k0); that is
doubling A and k0 doubles all the real variables in the solution, holding n and ` ¯xed.
Thus, I will solve the model with A = 1 and then renormalize to match the initial
conditions of the US time series:

Assume that ¯ = :96, ± = :1, 1 + g = 1:02, ® = :33; A = 1 (normalization).

Then k is:

k : 1:02 = :96
·
:9 + :33

h
n
k

i1¡:33¸
, Solution is :

n
n
k = : 34738

o
,

3



F eas : c
k + (1 + g) = A

h
n
k

i1¡®
+ (1¡ ±):

F eas : c
k + 1:02 = [: 34738]1¡:33 + 0:9:, Solution is :

n
c
k = : 37242

o

n : (1¡º)c
º(1¡n) = (1¡ ®)A

h
k
n

i®

n : (1¡º) ck
º (1¡n)k

= (1 ¡ ®)A
h
k
n

i®

n : (1¡º) ck
º

h
n
k

i®
= (1¡n)

k (1¡ ®)A

n : (1¡º): 372 42
º [: 347 38]:33 = (1¡n)

k (1 ¡ :33)

Assume º = :33.

n : (1¡:33)(: 372 42)
:33 [: 347 38]:33 = (1¡n)

k (1 ¡ :33), Solution is :
n
1¡n
k = : 796 13

o

Now, to solve for the levels:

I have nk = a and (1¡n)
k = b, or,

n = ak and (1 ¡ n) = bk.

So, 1 ¡ ak = bk, or

1 = (a + b)k

or,

1 = (: 34738 + : 79613)k, Solution is : fk = : 8745g

n = (: 347 38)(:8745), Solution is : fn = : 303 78g

c = (: 37242)(:8745), Solution is : fc = : 32568g

y = c + (1 + g)k ¡ (1¡ ±)k

So, y = :32568 + 1:02(:8745) ¡ :9(:8745), Solution is : fy = : 43062g
c
y = :32568

:43062 = :7563:
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2.2 Solution is:

maxfĉt ;n̂t;^̀t ;x̂t ;k̂tg
P1
t=0 :96t

h
33 log(ĉt) + (1¡ :33) log(^̀t)

i

subject to:

ĉt + x̂t · (55; 100)k̂:33t [1:02tn̂t]1¡:67

k̂t+1 · (1¡ :1)k̂t + x̂t

n̂t + ^̀
t · 1

k̂0 given.

Is given by:

k̂0 = (55:100)(: 8745), Solution is : fk0 = 48: 185g

ĉ0 = (55:100)(: 32568), Solution is : fĉ0 = 17: 945g

ŷ0 = ĉ0=:7563 so, ŷ0 = 17: 945=:7563, Solution is : fŷ0 = 23: 727g

x̂0 = ŷ0 ¡ ĉ0 so x̂0 = 23: 727¡ 17: 945, Solution is : fx0 = 5: 782g
k̂t = (1:02)t ¤ 55; 100 ¤ : 8745

ĉt = (1:02)t ¤ 55; 100 ¤ : 325 68

ŷt = (1:02)t ¤ 23: 727

n̂t = : 30378

3 Approximating the Policy Function Near the Steady
State

In these notes I show how to approximate the policy function for the one-sector
growth model with exogenous labor supply near the steady state capital stock. The
idea is to use the FOC and envelope conditions and expand them in a Taylor's series
around the steady state value of the capital stock. This gives a quadratic equation
in g0(kss) which can be solved numerically.
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This approximation can then be used to describe, approximately, o® steady state
dynamics when the system is close to the steady state (or BGP). That is,

g(k) ¼ g(kss) + (k ¡ kss)g0(kss) + :::

This is only one way to do approximations like this, there are many others. You
should try some of them yourself!

3.1 Expansion around the Steady State

The FOC and Envelope conditions for the growth model are:

FOC u0(f (k) ¡ g(k)) = ¯V 0(g(k))

ENV V 0(k) = u0(f (k) ¡ g(k))f 0(k)

Rewriting ENV at g(k) gives:

ENV V 0(g(k)) = u0(f(g(k))¡ g(g(k)))f 0(g(k))

Thus, we have the following IDENTITY in k:

u0(f (k) ¡ g(k)) ´ ¯u0(f (g(k))¡ g(g(k)))f 0(g(k))

or,

H1(k) ´ H2(k),

where,

H1(k) = u0(f (k) ¡ g(k));

and,

H2(k) = ¯u0(f(g(k)) ¡ g(g(k)))f 0(g(k))

Since this is an identity, it must also hold that H 0
1(k) ´ H 0

2(k) and, in particular,
H 0

1(kss) = H 0
2(kss).

With a little work, we ¯nd:

H 0
1(kss) = u00(f(kss)¡ g(kss)) [f 0(kss) ¡ g0(kss)]

and,
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H 0
2(kss) = ¯ £ [A+ B]

where

A = u00(f(g(kss))¡ g(g(kss))f 0(g(kss)) [f 0(g(kss))g0(kss) ¡ g0(g(kss))g0(kss)]

and

B = u0(f(g(kss))¡ g(g(kss)))f 00(g(kss))g0(kss):

Since g(kss) = kss these can be simpli¯ed to obtain:

A = u00(f(kss)¡ kss)f 0(kss)
h
f 0(kss)g0(kss) ¡ [g0(kss)]2

i

and

B = u0(f(kss)¡ kss)f 00(kss)g0(kss):

Thus, dividing through both H 0
1 and H 0

2, by u00, we obtain:

f 0 ¡ g0 = ¯
h
f 0

h
f 0g0 ¡ (g0)2

i
+ u0(f¡kss)
u00(f¡kss)f

00g0
i

where all functions are evaluated at k = kss. At kss, f 0 = 1
¯ . Making this

substitution, we obtain:

1
¯ ¡ g0 = ¯

h
1
¯

h
1
¯ g

0 ¡ (g0)2
i
+ u0(f¡kss)
u00(f¡kss)f

00g0
i
.

Rearranging terms, we obtain:

(g0)2 ¡
³
1
¯ +1 + ¯Z

´
g0 + 1

¯ = 0;

where,

Z = u0(f (kss)¡kss)
u00(f (kss)¡kss)f

00(kss).

Note that Z > 0.

This is of the form:

a(g 0)2 ¡ bg0 + c = 0;

where, a = 1, b =
³
1
¯ + 1+ ¯Z

´
and c = 1

¯ .

Note that this is positive at g0 = 0 and the slope at g0 = 0 is negative. It follows
that all roots, should any exist, are postive.
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What do we know about the roots of this quadratic? For one thing, we know that
the true value of g0(kss) is one of the roots. However there are two roots, how do we
know which one is the correct one?

Recall from the theory we know that the system is globally stable, this implies
that g0(kss) < 1. We will show that there is only one root satisfying this restriction.
To see this, use the quadratic formula, to obtain the two roots:

g0 = ¡b§ 2pb2¡4ac
2a = ¡b§ 2

p
b2¡4=¯
2 :

Call these two roots r1 and r2. Then, we have:

r1+ r2 =
¡b+ 2

p
b2¡4=¯
2 + ¡b¡ 2

p
b2¡4=¯
2 = ¡2b

2 = ¡b:

From above,

¡b = 1
¯ + 1+ ¯Z > 1

¯ + 1 > 2

where the ¯rst inequality follows since Z > 0 and the second follows since 1=¯ > 1:

Thus, since one of the roots we know is less than one, the other must be larger
than one. And thus, it follows that we want the smaller of the two roots:

g0(kss) =
¡b¡ 2

p
b2¡4=¯
2 :

(It can also be shown that r1 ¤ r2 = 1
¯ .)

3.2 Finding Z

To go any further than this, we need to know Z.

Z = u0(f (kss)¡kss)
u00(f (kss)¡kss)f

00(kss) = u0(css)
u00(css)f

00(kss).

Assuming that u(c) = c1¡¾=(1 ¡ ¾), we see that u0 = c¡¾, and u00 = ¡¾c¡¾¡1.
Thus,

u0
u00 =

c¡¾
¡¾c¡¾¡1 = ¡ c¾ .

Assuming that f (k) = Ak® + (1¡ ±)k, we have that f 0 = ®Ak®¡1 + (1 ¡ ±) and
f 00 = ®(® ¡ 1)Ak®¡2 = ¡®(1¡ ®)Ak®¡2.

To ¯nd kss use the fact that 1
¯ = f 0(kss) and so:
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1
¯ = ®Ak®¡1ss + (1¡ ±):

Thus,

®Ak®¡1ss = 1
¯ + ± ¡ 1, or,

kss =
h

1
®A

³
1
¯ + ± ¡ 1

´i1=(®¡1)
.

From this it follows that

css = yss ¡ ±kss = Ak®ss ¡ ±kss.

Thus,

Z = ®(1¡®)Ak®¡2ss css
¾ .

From the expressions above, once ®, ¾, ¯, ± and A are chosen, Z can be calculated
directly.

4 Figures for the Examples
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Consumption
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g'(k_ss) as a Function of beta
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