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growth and firm heterogeneity

1. a model of blueprint capital accumulation based on my

• “On the Mechanics of Firm Growth”
—Review of Economic Studies (2011)

2. a model of productivity growth based on my

• “Selection, Growth, and the Size Distribution of Firms”
—Quarterly Journal of Economics (2007)
• “Technology Diffusion and Growth”
—Journal of Economic Theory (2012)

I for a survey see
• “Models of Growth and Firm Heterogeneity”
—Annual Review of Economics (2010)

I on the potential multiplicity of stationary densities, see
• “Four Models of Knowledge Diffusion and Growth”
—Federal Reserve Bank of Minneapolis, w.p. 724 (2015)
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Zipf’s Law

Pr [N ≥ n] =
1

n

M∑
n=1

nPr [N = n] =

M∑
n=1

n

n(n + 1)
=

M∑
n=1

1

n + 1
∼ ln(M)

since
M∑
n=1

1

n + 1
behaves like

∫ M

1

dx

x
for large M
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right tail of the firm size distribution (BDS, 2015)
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. . . cannot be literally Zipf (BDS, 2015)
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some movement over time, but still quite stable
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public service announcement: BDS data does have issues
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large firms have many establishments (BDS, 2015)
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the simplest example

• deterministic growth, conditional on survival

p(a) = δe−δa, S(a) = eγa

this implies

Pr [S(a) ≥ s] = Pr

[
a ≥ 1

γ
× ln(s)

]
= e−δ×

1
γ×ln(s) = s−δ/γ

• deterministic growth and population growth
—size of entering cohort at time t is Et = Eeηt

—relative size of age-a cohort is ηe−ηa

—adding up over all cohorts∫ ∞
0

ι [eγa > s] ηe−ηada = e−η×
ln(s)
γ = s−η/γ
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the Beta and Gamma functions

• the Gamma function, for x > 0

Γ(x) =

∫ ∞
0

tx−1e−tdt

• implies a recursion

Γ(x + 1) =

∫ ∞
0

uxe−udu = −uxe−u∞
0

+ x

∫ ∞
0

ux−1e−udu = xΓ(x).

—Clearly, Γ(1) = 1 and hence Γ(n + 1) = n! for all n ∈ N.
• the Beta function for x > 0 and y > 0 is defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

• note that u = e−t gives du = −e−tdt = −udt and thus∫ 1

0

ux−1(1−u)y−1du =

∫ 1

0

ux(1−u)y−1
[
u−1du

]
=

∫ ∞
0

e−xt(1−e−t)y−1dt.

• can show
B(x, y) =

Γ(x)Γ(y)

Γ(x + y)
.
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Stirling’s formula

• for large x,

Γ(x) ≈
√

2πxx−
1
2e−x

• hence
B(x, y) =

Γ(x)Γ(y)

Γ(x + y)
∼
(

x

x + y

)x
1

(x + y)y

for large x. Now

lim
x→∞

(
x

x + y

)x
= lim

x→∞

(
1− y

x + y

)x
= e−y,

and so
B(x, y) ∼ 1

xy

for large x.

• in other words,
lim
x→∞

Γ(x)xy

Γ(x + y)
= 1

for any y > 0.
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a birth-death example

• existing projects beget new projects, randomly, at the rate µ > 0

• cohort distribution {pn,t}∞n=1, starting from p1,0 = 1,

Dp1,t = −µp1,t,

and
Dpn,t = µ(n− 1)pn−1,t − µnpn,t, n− 1 ∈ N

• first
p1,t = e−µt

and then

D
[
eµntpn,t

]
= eµntµ(n− 1)pn−1,t, n− 1 ∈ N

so that

pn,t = µ(n− 1)

∫ t

0

eµn(s−t)pn−1,sds, n− 1 ∈ N.

• iterate to construct the geometric solution

pn,t = e−µt(1− e−µt)n−1, n ∈ N
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verification

• for n− 1 ∈ N, observe that

pn,t = e−µt(1− e−µt)n−1

implies

Dpn,t = −µe−µt(1− e−µt)n−1 + µ(n− 1)e−2µt(1− e−µt)n−2

= µ(n− 1)e−µt(1− e−µt)n−2

+µ(n− 1)(e−2µt − e−µt)(1− e−µt)n−2 − µe−µt(1− e−µt)n−1

= µ(n− 1)e−µt(1− e−µt)n−2 − µne−µt(1− e−µt)n−1

= µ(n− 1)pn−1,t − µnpn,t
as required.
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combine with random firm exit at rate δ > 0

• implied age distribution of firms has a density δe−δt

• the stationary size distribution is then given by

sn =

∫ ∞
0

δe−δtpn,tdt

=

∫ ∞
0

δe−δte−µt(1− e−µt)n−1dt

=
δ

µ

∫ ∞
0

e−(1+δ/µ)[µt](1− e−[µt])n−1d[µt]

=
δ

µ

∫ ∞
0

e−(1+δ/µ)s(1− e−s)n−1ds =
δ

µ

Γ(n)Γ(1 + δ/µ)

Γ(n + 1 + δ/µ)

• the right tail probabilities are

Rn =

∞∑
k=n

sk =

∞∑
k=n

δ

µ

Γ(k)Γ(1 + δ/µ)

Γ(k + 1 + δ/µ)
=
δ

µ

Γ(n)Γ(δ/µ)

Γ(n + δ/µ)
.

for all n ∈ N.

14



doing the sum

• the claim is that

Rn =

∞∑
k=n

δ

µ

Γ(k)Γ(1 + δ/µ)

Γ(k + 1 + δ/µ)
=
δ

µ

Γ(n)Γ(δ/µ)

Γ(n + δ/µ)
.

I the summation follows from

Γ(n)Γ(x)

Γ(n + x)
− Γ(n + 1)Γ(x)

Γ(n + 1 + x)
=

(
1− n

n + x

)
Γ(n)Γ(x)

Γ(n + x)
=

Γ(n)Γ(1 + x)

Γ(n + 1 + x)
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the mean

• finite if δ > µ

—summation by parts implies
∞∑
n=1

nsn =

∞∑
n=1

Rn =

∞∑
n=1

δ

µ

Γ(n)Γ(δ/µ)

Γ(n + δ/µ)
=
δ

µ

Γ(δ/µ− 1)

Γ(δ/µ)
=

1

1− µ/δ.

—to verify: consider
∑∞

k=nRk and use the same result as for Rn itself.

• infinite if δ ≤ µ

—may be fine if there is a finite number of firms
—problematic in models with a continuum of firms

• key

—cannot have µ exogenous if n is employment
—firms cannot grow at just any rate–workers come from somewhere
—must respect labor market clearing

16



the tail index, Zipf’s law

• Stirling’s approximation, for x large

Γ(x) ∼
√

2πxx−
1
2e−x

• hence
Rn =

δ

µ

Γ(n)Γ(δ/µ)

Γ(n + δ/µ)
∼ n−δ/µ.

So ln(Rn) behaves like −(δ/µ) ln(n), and the slope is greater than 1 in
absolute value if we assume µ < δ to ensure a finite mean. In US data,
δ/µ appears to be about 1.05.

• note that µ ↑ δ gives

sn =
Γ(n)Γ(2)

Γ(n + 2)
=

1

n(n + 1)

and thus

Rn =

∞∑
k=n

sk =

∞∑
k=n

1

k(k + 1)
=

1

n

since (1/n)− 1/(1 + n) = 1/[n(n + 1)]. This is Zipf’s law.
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alternative derivation

• a unit measure of firms

—exit at the rate δ
—replaced by a new entrant with n = 1

• hence
0 = −(δ + µ)s1 + δ

and
0 = µ(n− 1)sn−1 − (δ + µn)sn, n− 1 ∈ N.

• this yields
sn =

µ(n− 1)

δ + µn
× sn−1, n− 1 ∈ N.

• combined with s1 = δ/(δ + µ) this yields

sn+1 =
δ

δ + µ

n∏
k=1

µk

δ + µ(k + 1)
=
δ

µ

Γ(n + 1)Γ
(
µ+δ
µ

)
Γ
(
n + 1 + µ+δ

µ

)
which holds for all n + 1 ∈ N.
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model 1

the homogeneous blueprints model in

Luttmer [Review of Economic Studies, 2011]
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dynastic households

I preferences

∫ ∞
0

e−ρtHt ln(ct)dt,

household consumption is

Ct = Htct

Ht = Heηt, ρ > η > 0

I ct is a CES composite good of differentiated commodties

ct =

[∫ Nt

0

c
1−1/ε
ω,t dω

]1/(1−1/ε)

where ε > 1
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household choices

I the dynastic present-value budget constraint∫ ∞
0

exp

(
−
∫ t

0

rsds

)
Htctdt ≤ wealth

implies the first-order condition

e−ρtHt ×
1

ct
= λ exp

(
−
∫ t

0

rsds

)
Ht

or simply
e−ρt

ct
= λπt

I differentiating yields the Euler condition

rt = ρ +
Dct
ct

21



household choices

the differentiated commodity demands are

cω,t =

(
pω,t
Pt

)−ε
Htct

where Pt is the price index

Pt =

(∫ Nt

0

p1−ε
ω,t dω

)1/(1−ε)

22



producers

• blueprint + linear labor-only technology yields output yω,t = zlω,t

• the time-t wage in units of the composite consumption good = wt

• to maximize Ptvω,t = (pω,t− Ptwt/z)cω,t subject to cω,t = (pω,t/Pt)
−εHtct

set
pω,t
Pt

=
wt/z

1− 1/ε

• eliminating pω,t/Pt from the price index gives

wt =

(
1− 1

ε

)
zN

1
ε−1
t

I implied employment and profits per blueprint[
wtlω,t
vω,t

]
=

[
wtlt
vt

]
=

[
1− 1/ε

1/ε

]
Htct
Nt

I in particular
vt
wt

=
lt

ε− 1

23



entrants and incumbents

I two technologies for developing new blueprints

• skilled entrepreneurial time only

· new blueprints from scratch

• existing blueprints and labor

· new blueprint codes for distinct differentiated commodity

I firm = collection of blueprints derived from the same initial blueprint

• no reason to trade blueprints– any positive cost forces no trade

24



costly blueprint replication

• recall that profits per blueprint are

vt =
wtlt
ε− 1

• the price of a blueprint in units of consumption is qt
• a flow of mt units of labor can be used to replicate an existing blueprint
randomly at the rate g(mt)

I therefore

rtqt = max
m

{
wt

(
lt

ε− 1
−m

)
+ qtg(m) + Dqt

}
I the first-order condition for replication is

1 =
qt
wt
× Dg(mt)

25



a Roy model of primary factor supplies

I talent distribution T ∈ ∆
(
R2

++

)
per capita supply of entrepreneurial services

E
( q
w

)
=

∫
qx>wy

xdT (x, y)

per capita supply of labor

L
( q
w

)
=

∫
wy>qx

ydT (x, y)
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aggregate blueprint accumulation

the number of blueprints evolves according to

DNt = g(mt)Nt + HtE

(
qt
wt

)
• N0 > 0 is a given initial value

• this will be non-stationary

I in per-capita terms

D

(
Nt

Ht

)
= − (η − g(mt))×

Nt

Ht
+ E

(
qt
wt

)
• a steady state requires

η > g(m)

—this will be an equilibrium outcome
—but individual firm histories are non-stationary
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the number of firms

• blueprints, not firms, matter for aggregate dynamics

—but very relevant for observables

I entrepreneurs set up new firms

DMt = HtE

(
qt
wt

)
• per capita

D

(
Mt

Ht

)
= −η ×Mt

Ht
+ E

(
qt
wt

)

I in the steady state
Mt

Ht
=

1

η
E

(
qt
wt

)
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the dynamic equilibrium

• use the Nt/Ht as the state, with qt/ct as the co-state

—the marginal utility weighted price qt/ct removes rt from the system

I the differential equation is

D

(
Nt

Ht

)
= − (η − g(mt))×

Nt

Ht
+ E

(
qt
wt

)
D

(
qt
ct

)
= (ρ− (g(mt)− Dg(mt)mt))×

qt
ct
− 1

ε

1

Nt/Ht

where

1− 1

ε
=
wt
ct
× lt ×

Nt

Ht

1 =
qt
wt
× Dg(mt)

L

(
qt
wt

)
= (lt + mt)×

Nt

Ht
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the phase diagram

0
0

N/H

q/
c

D(N/H) = 0
D(q/c) = 0
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balanced growth

I the per capita number of blueprints is constant

Nt = Neηt

I wages are

wt =

(
1− 1

ε

)
zN

1
ε−1
t

I implied growth from variety

κ =
Dwt
wt

=
η

ε− 1

I familiar implications
—integrating the world improves welfare, a level effect
—persisent growth from variety depends on population growth
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steady state equilibrium for s = q/w

let m[s] and l[s] solve

1

Dg(m)
= s =

1

ρ− g(m)

(
l

ε− 1
−m

)
I steady state demand for blueprints

N

H
=

L(s)

l[s] + m[s]

I steady state supply of blueprints

N

H
=

E(s)

η − g(m[s])

• notice that this has an asymptote as g(m[s]) ↑ η
• now clear the market
• the assumption ρ > η implies that η > g(m) guarantees ρ > g(m)
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equilibrium

q/w

N
/H demand

supply
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what if the skill distribution is degenerate at (x, y)?

I demand for blueprints

N

H
=

(1− a)y

l[s] + m[s]
.

I supply of blueprints

N

H
(η − g(m[s])) = ax

and
sx ≤ y, w.e. if a > 0.

where a = fraction of entrepreneurs.

I can have an equilibrium with a = 0 and η = g(m[s])

• but then the size distribution of firms fans out forever

34



the Zipf limit

• a fraction 1− 1/Λ ∈ (0, 1) of the population can only supply labor,

LΛ(s) =

(
1− 1

Λ

)
` +
L(s)

Λ
, EΛ(s) =

E(s)

Λ

I demand for blueprints

N

H
=

1

l[s] + m[s]

((
1− 1

Λ

)
` +
L(s)

Λ

)

I supply of blueprints

N

H
=

1

η − g(m[s])

E(s)

Λ

where l[s] and m[s] solve

1

Dg(m)
= s =

1

ρ− g(m)

(
l

ε− 1
−m

)
35



the Zipf limit

• the steady state (mΛ, lΛ, sΛ) solves

1 = sDg(m), s =
1

ρ− g(m)

(
l

ε− 1
−m

)
E(s)

(η − g(m))Λ
=

1

l + m

((
1− 1

Λ

)
` +

1

Λ
× L(s)

)
• construct the Λ→∞ limit

η = g(m∞)

1 = s∞Dg(m∞), s∞ =
1

ρ− η

(
l∞
ε− 1

−m∞
)

E(s∞)

limΛ→∞(η − g(mΛ))Λ
=

`

l∞ + m∞

and
N∞
H

=
`

l∞ + m∞
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the Zipf limit

• employment per blueprint((
1− 1

Λ

)
` +
L(sΛ)

Λ

)
Ht

Nt
= l[sΛ] + m[sΛ]→ l∞ + m∞

• number of firms per capita
1

η

E(sΛ)

Λ
→ 0

• number of blueprints per firm
1

η−g(mΛ)
E(sΛ)

Λ

1
η
E(sΛ)

Λ

=
1

1− g(mΛ)
η

→∞

• employment per firm (
1− 1

Λ

)
` + L(sΛ)

Λ

1
η
E(sΛ)

Λ

→ `

0
=∞
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the Zipf limit

• the entry rate
E(sΛ)

Λ

1
η
E(sΛ)

Λ

= η

• contribution of entry flow to employment

(lΛ + mΛ)× E(sΛ)
Λ(

1− 1
Λ

)
` + L(s)

Λ

→
(l∞ + m∞)× limΛ→∞

E(sΛ)
Λ

` + limΛ→∞
L(sΛ)

Λ

=
(l∞ + m∞)× 0

` + 0
= 0

I to summarize
—robust entry
—average firm size explodes
—contribution of entrants to employment growth negligible
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increasing Λ

q/w

N
/H demand

Λ = ∞

supply
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z = tail index
1

1−1
z

= number of blueprints per firm
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some firms grow much faster than g(m) < η = 0.01
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Tyson Foods, 11
BestBuy, 27

unemployment

• and large firms are much younger then implied by this model

—fix: two-type model with transitory rapid growth in Luttmer [2011]
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transitory growth

• suppose

[Nt, Et] = [N,E] eηt, p(b) = δe−δb, S(a, b) = eγmin{a,b}

• fix some age cohort,

Pr [Sa ≥ s] = Pr
[
eγmin{a,b} ≥ s

]
= Pr

[
min{a, b} ≥ 1

γ
× ln(s)

]
=

{
0 if a < 1

γ × ln(s)

e−δ×
1
γ×ln(s) if a ≥ 1

γ × ln(s)

or

Pr [Sa ≥ s] =

{
0 if a < 1

γ × ln(s)

s−δ/γ if a ≥ 1
γ × ln(s)

• adding up over all cohorts∫ ∞
0

ηe−ηa Pr [Sa ≥ s] da =

∫ ∞
1
γ ln(s)

ηe−ηas−δ/γda = s−δ/γ×e−η×
1
γ ln(s) = s−(δ+η)/γ

I now we can have γ much larger than η
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outside the steady state

• see the phase diagram– one aggregate state variable
I far below the steady state
—q/w is very high
—Roy model implies that “everyone”is an entrepreneur

I near the steady state
—slow convergence when the firm size distribution is close to Zipf

• see my

—“Slow Convergence in Economies with Organization Capital”
—Federal Reserve Bank of Minneapolis w.p. 748, 2018
—and further references therein
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model 2

based on

Luttmer [Quarterly Journal of Economics, 2007]

and

Luttmer [Journal of Economic Theory, 2012]
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a crash course on the KFE for dyt = µdt + σdBt

• without noise, f (t, y) = f (0, y − µt) implies

Dtf (t, y) = −µDyf (0, y − µt) = −µDyf (t, y)

• without drift, random increments make population move downhill
—CDF satisfies

DtF (t, y) =
1

2
σ2Dyf (t, y)

—differentiate
Dtf (t, y) =

1

2
σ2Dyyf (t, y)

I combine and add random death at rate δ

Dtf (t, y) = −µDyf (t, y) +
1

2
σ2Dyyf (t, y)− δf (t, y)

• real justification: take limit in binomial tree
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the effect of exit at b

• number of firms
Mt =

∫ ∞
b

f (t, y)dy

—boundary conditions

f (t, b) = 0, lim
y→∞

[
f (t, y), Dyf (t, y), Dyyf (t, y)

]
= 0

I this yields
∂

∂t

∫ ∞
b

f (t, y)dy =

∫ ∞
b

Dtf (t, y)dy

= −µ
∫ ∞
b

Dyf (t, y)dy +
1

2
σ2

∫ ∞
b

Dyyf (t, y)dy − δ
∫ ∞
b

f (t, y)dy

= −f (t, y)
∞
b
− 1

2
σ2Dyf (t, b)− δ

∫ ∞
b

f (t, y)dy

I therefore
DMt = −1

2
σ2Dyf (t, b)− δMt

—a steep density at the exit thresholds implies a lot of exit

46



entry and exit

I flow of entrants
Et = Eeηt

—entry at y0 = x, and then

dya = µda + σdBa

—exit when ya hits b < x

I density of firms
m(t, y) = Mtf (t, y)

where

Mt =

∫ ∞
b

m(t, y)dy

• conjecture that there is a stationary density
Mt = Meηt, f (t, y) = f (y)

—which implies Dtm(t, y) = ηMtf (y) and[
Dym(t, y) Dyym(t, y)

]
= Mt

[
Df (y) D2f (y)

]
47



entry and exit

• the KFE simplifies to

ηf (y) = −µDf (y) +
1

2
σ2D2f (y), y ∈ (b, x) ∪ (x,∞)

—boundary conditions

f (b) = 0, lim
x↑y

f (x) = lim
x↓y

f (x), lim
x→∞

f (x) = 0

• try solutions of the form e−αy

• this implies a quadratic characteristic equation

η = µα +
1

2
σ2α2 ⇒ α± = − µ

σ2
±
√( µ

σ2

)2

+
η

σ2/2

I the solution for f (y) is a linear combination of e−α+y and e−α−y

—one for each of the two domains (b, x) and (x,∞)

—the boundary conditions pin down these linear combinations
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the solution

I the density is

f (y) =
αe−α(y−b)

(eα∗(x−b) − 1)/α∗
×min

{
e(α+α∗)(y−b) − 1

α + α∗
,
e(α+α∗)(x−b) − 1

α + α∗

}
,

where

α = − µ
σ2

+

√( µ
σ2

)2

+
η

σ2/2
, α∗ =

µ

σ2
+

√( µ
σ2

)2

+
η

σ2/2

I note that the right tail behaves like e−αy

I the implied entry rate ε = Et/Mt is

ε = η +
1

2
σ2Df (b) = η +

1

2
ασ2

(
eα∗(x−b) − 1

α∗

)−1
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the stationary density

0
0

y­b

f(y
)

x­b
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an economy with differentiated commodities

• preferences ∫ ∞
0

e−ρtHt ln(ct)dt

household consumption is

Ct = Htct

Ht = Heηt, ρ > η > 0

• ct is a CES composite good of differentiated commodties

ct =

[∫
c

1−1/ε
ω,t dMt(ω)

]1/(1−1/ε)

where ε > 1
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household choices (dynamic)

I the dynastic present-value budget constraint∫ ∞
0

exp

(
−
∫ t

0

rsds

)
Htctdt ≤ wealth

implies the first-order condition

e−ρtHt ×
1

ct
= λ exp

(
−
∫ t

0

rsds

)
Ht

or simply

e−ρt

ct
= λπt

I differentiating yields the Euler condition

rt = ρ +
Dct
ct
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household choices (static)

I the differentiated commodity demands are

cω,t =

(
pω,t
Pt

)−ε
Htct

where Pt is the price index

Pt =

(∫
p1−ε
ω,t dMt(ω)

)1/(1−ε)
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producers

• blueprint + linear labor-only technology yields output yω,t = ezω,tlω,t

• the time-t wage in units of the composite consumption good = wt

I max Ptvω,t = (pω,t − Ptwte−zω,t)yω,t s.t. yω,t = (pω,t/Pt)
−εHtct gives

pω,t
Pt

=
wte

−zω,t

1− 1/ε

I eliminating pω,t/Pt from the price index gives

wt =

(
1− 1

ε

)
eZt, eZt =

(∫
e(ε−1)zω,tdMt(ω)

)1/(ε−1)

I implied employment and profits[
wtlω,t
vω,t

]
=

[
1− 1/ε

1/ε

]
e(ε−1)(zω,t−Zt)Htct

• also: a firm continuation cost of φ > 0 units of labor
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aggregate variable labor and consumption

• define
Lt =

∫
lω,tdMt(ω)

I the CES aggregator applied to yω,t = ezω,tlω,t gives

Htct = eZtLt (1)

where

eZt =

(∫
e(ε−1)zω,tdMt(ω)

)1/(ε−1)

• recall
wt =

(
1− 1

ε

)
eZt (2)

I from (1) and (2)
wtLt =

(
1− 1

ε

)
Htct

as expected.
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incumbent productivity processes

• log productivity of firm ω

dzω,t = θzdt + σzdWω,t

• recall that variable profits are

vω,t
ct

=
1

ε
× e(ε−1)(zω,t−Zt)Ht, ct =

eZtLt
Ht

,

where

eZt =

(∫
e(ε−1)zω,tdMt(ω)∫

dMt(ω)

)1/(ε−1)

×
(∫

dMt(ω)

)1/(ε−1)

I conjecture that there will (somehow) be a steady state of the form[
eZt, wt, ct

]
=
[
eZ, w, c

]
eκt, κ = θ +

η

ε− 1

for some θ to be determined

—this θ will generally differ from θz

—the key assumption will be about the productivity of entrants
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marginal utility weighted profits

• recall that
vω,t
ct

=
1

ε
× e(ε−1)(zω,t−Zt)Ht

with, in a steady state

dzω,t = θzdt + σzdWω,t, dZt = κdt =

(
θ +

η

ε− 1

)
dt

I Ito’s lemma implies

d ln

(
vω,t
ct

)
= µdt + σdWω,t

where [
µ
σ

]
= (ε− 1)

[
θz − θ
σz

]
—the calculation is

(ε− 1)(θz − κ) + η = (ε− 1)

(
θz −

(
θ +

η

ε− 1

))
+ η

= (ε− 1) (θz − θ)
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the value of a firm

• the marginal utility weighted price of a firm

Ṽt =
1

ct
×max

τ
Et

[∫ t+τ

t

exp

(
−
∫ s

t

rudu

)
(vω,s − φws) ds

]

• recall, from logarithmic utility

exp

(
−
∫ s

t

rudu

)
= e−ρt × ct

cs

• therefore

Ṽt = max
τ

Et

[∫ t+τ

t

exp

(
−
∫ s

t

rudu

)
cs
ct

(
vω,s
cs
− φws

cs

)
ds

]
= max

τ
Et

[∫ t+τ

t

e−ρs
(
vω,s
cs
− φws

cs

)
ds

]
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a convenient state variable

• in units of fixed cost labor

Vt =
Ṽt

φwt/ct
= max

τ
Et

[∫ t+τ

t

e−ρs × ws/cs
wt/ct

×
(
vω,s
φws
− 1

)
ds

]

• in a steady state
wt
ct

=

(
1− 1

ε

)
Ht

Lt
will be constant

and then

Vt = max
τ

Et

[∫ t+τ

t

e−ρs
(
vω,s
φws
− 1

)
ds

]

• define
eyt =

vω,t
φwt

—in a steady state,
dyt = µdt + σdWt
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the Bellman equation

• given some exit threshold b, the Bellman equation is then

ρV (y) = ey − 1 + µDV (y) +
1

2
σ2D2V (y), y > b

—and the boundary conditions are

0 = V (b) lim
y→∞

V (y) =
ey

ρ−
(
µ + 1

2σ
2
)

• the optimal b must be such that

0 = DV (b).

• the solution is

V (y) =
1

ρ

ξ

1 + ξ

(
ey−b − 1− 1− e−ξ(y−b)

ξ

)
where

eb =
ξ

1 + ξ

(
1− µ + σ2/2

ρ

)
, ξ =

µ

σ2
+

√( µ
σ2

)2

+
ρ

σ2/2
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entry

• let zX,t the log productivity of exiting firms
• suppose entrants can use

zE,t = zX,t +
∆

ε− 1

—standing on the shoulders of midgets...

• translates into entry state

ext = e∆ ×
(
vω,t
φwt

)
exiting firms

in a steady state
x = b + ∆

• price of a new firm in units of fixed cost labor
s = V (x)

• as before, a Roy model delivers
—a flow of entrants E(s)

—labor supply L(s)
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variable labor as a function of the state

• the derived firm state variables are

eyω,t =
vω,t
φwt

—depends on the individual productivities zω,t
—and on the aggregate state

• recall
vω,t
wtlω,t

=
1/ε

1− 1/ε

I so variable labor is
lω,t = (ε− 1)φ× eyω,t
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the balanced growth path

• the number of firms is Mt = Meηt

I the steady state market clearing conditions are
1. the market for labor

L(s)H =

(
1 + (ε− 1)

∫ ∞
b

eyf (y)dy

)
φM

2. the market for entrepreneurial services

E(s)H =

(
η +

1

2
σ2Df (b)

)
M

I b is the optimal exit threshold

I f (·) is the stationary density on (b,∞)

—both functions only of the firm growth rate µ = (ε− 1)(θz − θ)
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summary of balanced growth conditions
I demand for firms

M

H
=

1

φ

L(s)

1 + (ε− 1)
∫∞
b eyf (y)dy

I supply of firms
M

H
=

E(s)

η + 1
2σ

2Df (b)

where
s = V (b + ∆),

and we have a mapping

µ 7→ (b, V (·), f (·))
• the growth rate is

κ = θ +
η

ε− 1
,

where
θ = θz −

µ

ε− 1
is the growth rate of entrant productivities
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the mapping µ 7→ (b, V (·), f (·))

• the value function is

V (y) =
1

ρ

ξ

1 + ξ

(
ey−b − 1− 1− e−ξ(y−b)

ξ

)
and

eb =
ξ

1 + ξ

(
1− µ + σ2/2

ρ

)
, ξ =

µ

σ2
+

√( µ
σ2

)2

+
ρ

σ2/2

• the stationary density is

f (y) =
αe−α(y−b)

(eα∗∆ − 1)/α∗
×min

{
e(α+α∗)(y−b) − 1

α + α∗
,
e(α+α∗)∆ − 1

α + α∗

}
and

α = − µ
σ2

+

√( µ
σ2

)2

+
η

σ2/2
, α∗ =

µ

σ2
+

√( µ
σ2

)2

+
η

σ2/2
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key properties of the mapping µ 7→ (b, V (·), f (·))

• recall that µ = (ε− 1) (θz − θ)

I the mean
∂

∂µ

∫ ∞
b

eyf (y)dy > 0

—importantly,

µ +
1

2
σ2 ↑ η implies

∫ ∞
b

eyf (y)dy →∞

I the exit rate
∂

∂µ

(
1

2
σ2Df (b)

)
< 0

I the value of an entrant
∂s

∂µ
=
∂V (b + ∆)

∂µ
> 0

I the tail index
∂α

∂µ
=

∂

∂µ

(
− µ
σ2

+

√( µ
σ2

)2

+
η

σ2/2

)
< 0
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demand and supply curves have the usual slopes

• rapid firm growth increases the value of entrants
∂s

∂µ
=
∂V (b + ∆)

∂µ
> 0

I demand
M

H
=

1

φ

L(s)

1 + (ε− 1)
∫∞
b eyf (y)dy

⇒ ∂

∂s

(
M

H

)
< 0

—converges to zero as µ + 1
2σ

2 ↑ η

I supply
M

H
=

E(s)

η + 1
2σ

2Df (b)
⇒ ∂

∂s

(
M

H

)
> 0
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market clearing and the tail index α
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the Zipf asymptote

• demand and supply for firms
M

H
=

1

φ

L(s)

1 + (ε− 1)
∫∞
b eyf (y)dy

M

H
=

E(s)

η + 1
2σ

2Df (b)

where s = V (b + ∆)

—average firm size explodes as s increases and µ + 1
2σ

2 ↑ η
—hence, the demand for firms goes to zero

• to approach Zipf

—shift the supply curve in along the downward sloping demand curve
—can use shifts in E(·) and L(·) (from the Roy model)
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so what determines growth?

I recall

eZt =

(∫
e(ε−1)zω,tdMt(ω)∫

dMt(ω)

)1/(ε−1)

×
(∫

dMt(ω)

)1/(ε−1)

I two components

1. improvements in some “average”of the individual productivities

2. gains from variety
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growth with a constant population
• this implies α = −µ/(σ2/2) and α∗ = 0

—the density near b is then

f (y) =
1− e−α(y−b)

∆
, y ∈ [b, b + ∆]

• implied entry and exit rates

ε =
1

2
σ2Df (b) =

1

2
σ2 × α

∆
= −µ

∆
= −(ε− 1)(θz − θ)

∆
—this can be written as

θ = θz + ε× ∆

ε− 1
.

I so growth follows from
1. incumbent firms improving their own productivities at the rate θz
2. replacing firms, selectively, with firms that are better

zt[entry] = zt[exit] +
∆

ε− 1
I the entry rate ε is endogenous
—could enrich the model by making θz and ∆ endogenous as well

71



randomly copying incumbents

• suppose entrants draw random incumbent and copy productivity
• stationary density must satisfy

ηf (y) = −µDf (y) +
1

2
σ2D2f (y) + εf (y)

together with the boundary conditions

f (b) = 0 = lim
y→∞

f (y)

• solutions of form e−αy imply

α± = − µ
σ2
±
√( µ

σ2

)2

− ε− η
σ2/2

—need ε > η to replace exit at b, and need real roots( µ
σ2

)2

≥ ε− η
σ2/2

—if µ < 0 then both α+ > α− > 0

—not “enough”boundary conditions

I continuum of stationary densities
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initial conditions matter

• recall

α± = − µ
σ2
±
√( µ

σ2

)2

− ε− η
σ2/2

—need real roots ( µ
σ2

)2

≥ ε− η
σ2/2

• when this holds with equality, α+ = α− = α > 0, and

f (y) = α2(y − b)e−α(y−b)

—take limit as α+ − α− ↓ 0

—log firm size follows a Gamma density

I Luttmer [2007] argues this is what will happen when the economy starts
with an initial productivity distribution that has bounded support
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