Lecture Notes on Growth and Firm Heterogeneity

Erzo G.J. Luttmer
University of Minnesota

December 11, 2018
Peking University

growth and firm heterogeneity

1. a model of blueprint capital accumulation based on my

- "On the Mechanics of Firm Growth"
- Review of Economic Studies (2011)

2. a model of productivity growth based on my

- "Selection, Growth, and the Size Distribution of Firms"
- Quarterly Journal of Economics (2007)
- "Technology Diffusion and Growth"
- Journal of Economic Theory (2012)
- for a survey see
- "Models of Growth and Firm Heterogeneity"
- Annual Review of Economics (2010)
- on the potential multiplicity of stationary densities, see
- "Four Models of Knowledge Diffusion and Growth"
- Federal Reserve Bank of Minneapolis, w.p. 724 (2015)

Zipf's Law

$$
\begin{gathered}
\operatorname{Pr}[N \geq n]=\frac{1}{n} \\
\sum_{n=1}^{M} n \operatorname{Pr}[N=n]=\sum_{n=1}^{M} \frac{n}{n(n+1)}=\sum_{n=1}^{M} \frac{1}{n+1} \sim \ln (M) \\
\text { since } \sum_{n=1}^{M} \frac{1}{n+1} \text { behaves like } \int_{1}^{M} \frac{\mathrm{~d} x}{x} \text { for large } M
\end{gathered}
$$

right tail of the firm size distribution (BDS, 2015)

... cannot be literally Zipf (BDS, 2015)

some movement over time, but still quite stable

(updated from Luttmer [2010], Annual Review of Economics)
public service announcement: BDS data does have issues

large firms have many establishments (BDS, 2015)

the simplest example

- deterministic growth, conditional on survival

$$
p(a)=\delta e^{-\delta a}, \quad S(a)=e^{\gamma a}
$$

this implies

$$
\operatorname{Pr}[S(a) \geq s]=\operatorname{Pr}\left[a \geq \frac{1}{\gamma} \times \ln (s)\right]=e^{-\delta \times \frac{1}{\gamma} \times \ln (s)}=s^{-\delta / \gamma}
$$

- deterministic growth and population growth
- size of entering cohort at time t is $E_{t}=E e^{\eta t}$
- relative size of age- a cohort is $\eta e^{-\eta a}$
- adding up over all cohorts

$$
\int_{0}^{\infty} \iota\left[e^{\gamma a}>s\right] \eta e^{-\eta a} \mathrm{~d} a=e^{-\eta \times \frac{\ln (s)}{\gamma}}=s^{-\eta / \gamma}
$$

the Beta and Gamma functions

- the Gamma function, for $x>0$

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t
$$

- implies a recursion

$$
\Gamma(x+1)=\int_{0}^{\infty} u^{x} e^{-u} \mathrm{~d} u=-\left.u^{x} e^{-u \infty}\right|_{0} ^{\infty}+x \int_{0}^{\infty} u^{x-1} e^{-u} \mathrm{~d} u=x \Gamma(x)
$$

- Clearly, $\Gamma(1)=1$ and hence $\Gamma(n+1)=n$! for all $n \in \mathbb{N}$.
- the Beta function for $x>0$ and $y>0$ is defined as

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t
$$

- note that $u=e^{-t}$ gives $\mathrm{d} u=-e^{-t} \mathrm{~d} t=-u \mathrm{~d} t$ and thus

$$
\int_{0}^{1} u^{x-1}(1-u)^{y-1} \mathrm{~d} u=\int_{0}^{1} u^{x}(1-u)^{y-1}\left[u^{-1} \mathrm{~d} u\right]=\int_{0}^{\infty} e^{-x t}\left(1-e^{-t}\right)^{y-1} \mathrm{~d} t
$$

- can show

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

Stirling's formula

- for large x,

$$
\Gamma(x) \approx \sqrt{2 \pi} x^{x-\frac{1}{2}} e^{-x}
$$

- hence

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \sim\left(\frac{x}{x+y}\right)^{x} \frac{1}{(x+y)^{y}}
$$

for large x. Now

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{x+y}\right)^{x}=\lim _{x \rightarrow \infty}\left(1-\frac{y}{x+y}\right)^{x}=e^{-y}
$$

and so

$$
B(x, y) \sim \frac{1}{x^{y}}
$$

for large x.

- in other words,

$$
\lim _{x \rightarrow \infty} \frac{\Gamma(x) x^{y}}{\Gamma(x+y)}=1
$$

for any $y>0$.

a birth-death example

- existing projects beget new projects, randomly, at the rate $\mu>0$
- cohort distribution $\left\{p_{n, t}\right\}_{n=1}^{\infty}$, starting from $p_{1,0}=1$,

$$
\mathrm{D} p_{1, t}=-\mu p_{1, t},
$$

and

$$
\mathrm{D} p_{n, t}=\mu(n-1) p_{n-1, t}-\mu n p_{n, t}, \quad n-1 \in \mathbb{N}
$$

- first

$$
p_{1, t}=e^{-\mu t}
$$

and then

$$
\mathrm{D}\left[e^{\mu n t} p_{n, t}\right]=e^{\mu n t} \mu(n-1) p_{n-1, t}, \quad n-1 \in \mathbb{N}
$$

so that

$$
p_{n, t}=\mu(n-1) \int_{0}^{t} e^{\mu n(s-t)} p_{n-1, s} \mathrm{~d} s, \quad n-1 \in \mathbb{N}
$$

- iterate to construct the geometric solution

$$
p_{n, t}=e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-1}, \quad n \in \mathbb{N}
$$

verification

- for $n-1 \in \mathbb{N}$, observe that

$$
p_{n, t}=e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-1}
$$

implies

$$
\begin{aligned}
\mathrm{D} p_{n, t}= & -\mu e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-1}+\mu(n-1) e^{-2 \mu t}\left(1-e^{-\mu t}\right)^{n-2} \\
= & \mu(n-1) e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-2} \\
& +\mu(n-1)\left(e^{-2 \mu t}-e^{-\mu t}\right)\left(1-e^{-\mu t}\right)^{n-2}-\mu e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-1} \\
= & \mu(n-1) e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-2}-\mu n e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-1} \\
= & \mu(n-1) p_{n-1, t}-\mu n p_{n, t}
\end{aligned}
$$

as required.

combine with random firm exit at rate $\delta>0$

- implied age distribution of firms has a density $\delta e^{-\delta t}$
- the stationary size distribution is then given by

$$
\begin{aligned}
s_{n} & =\int_{0}^{\infty} \delta e^{-\delta t} p_{n, t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \delta e^{-\delta t} e^{-\mu t}\left(1-e^{-\mu t}\right)^{n-1} \mathrm{~d} t \\
& =\frac{\delta}{\mu} \int_{0}^{\infty} e^{-(1+\delta / \mu)[\mu t]}\left(1-e^{-[\mu t]}\right)^{n-1} \mathrm{~d}[\mu t] \\
& =\frac{\delta}{\mu} \int_{0}^{\infty} e^{-(1+\delta / \mu) s}\left(1-e^{-s}\right)^{n-1} \mathrm{~d} s=\frac{\delta}{\mu} \frac{\Gamma(n) \Gamma(1+\delta / \mu)}{\Gamma(n+1+\delta / \mu)}
\end{aligned}
$$

- the right tail probabilities are

$$
R_{n}=\sum_{k=n}^{\infty} s_{k}=\sum_{k=n}^{\infty} \frac{\delta}{\mu} \frac{\Gamma(k) \Gamma(1+\delta / \mu)}{\Gamma(k+1+\delta / \mu)}=\frac{\delta}{\mu} \frac{\Gamma(n) \Gamma(\delta / \mu)}{\Gamma(n+\delta / \mu)} .
$$

for all $n \in \mathbb{N}$.

doing the sum

- the claim is that

$$
R_{n}=\sum_{k=n}^{\infty} \frac{\delta}{\mu} \frac{\Gamma(k) \Gamma(1+\delta / \mu)}{\Gamma(k+1+\delta / \mu)}=\frac{\delta}{\mu} \frac{\Gamma(n) \Gamma(\delta / \mu)}{\Gamma(n+\delta / \mu)}
$$

- the summation follows from

$$
\frac{\Gamma(n) \Gamma(x)}{\Gamma(n+x)}-\frac{\Gamma(n+1) \Gamma(x)}{\Gamma(n+1+x)}=\left(1-\frac{n}{n+x}\right) \frac{\Gamma(n) \Gamma(x)}{\Gamma(n+x)}=\frac{\Gamma(n) \Gamma(1+x)}{\Gamma(n+1+x)}
$$

the mean

- finite if $\delta>\mu$
- summation by parts implies

$$
\sum_{n=1}^{\infty} n s_{n}=\sum_{n=1}^{\infty} R_{n}=\sum_{n=1}^{\infty} \frac{\delta}{\mu} \frac{\Gamma(n) \Gamma(\delta / \mu)}{\Gamma(n+\delta / \mu)}=\frac{\delta}{\mu} \frac{\Gamma(\delta / \mu-1)}{\Gamma(\delta / \mu)}=\frac{1}{1-\mu / \delta}
$$

- to verify: consider $\sum_{k=n}^{\infty} R_{k}$ and use the same result as for R_{n} itself.
- infinite if $\delta \leq \mu$
- may be fine if there is a finite number of firms
- problematic in models with a continuum of firms
- key
- cannot have μ exogenous if n is employment
- firms cannot grow at just any rate-workers come from somewhere
- must respect labor market clearing

the tail index, Zipf's law

- Stirling's approximation, for x large

$$
\Gamma(x) \sim \sqrt{2 \pi} x^{x-\frac{1}{2}} e^{-x}
$$

- hence

$$
R_{n}=\frac{\delta}{\mu} \frac{\Gamma(n) \Gamma(\delta / \mu)}{\Gamma(n+\delta / \mu)} \sim n^{-\delta / \mu} .
$$

So $\ln \left(R_{n}\right)$ behaves like $-(\delta / \mu) \ln (n)$, and the slope is greater than 1 in absolute value if we assume $\mu<\delta$ to ensure a finite mean. In US data, δ / μ appears to be about 1.05 .

- note that $\mu \uparrow \delta$ gives

$$
s_{n}=\frac{\Gamma(n) \Gamma(2)}{\Gamma(n+2)}=\frac{1}{n(n+1)}
$$

and thus

$$
R_{n}=\sum_{k=n}^{\infty} s_{k}=\sum_{k=n}^{\infty} \frac{1}{k(k+1)}=\frac{1}{n}
$$

since $(1 / n)-1 /(1+n)=1 /[n(n+1)]$. This is Zipf's law.

alternative derivation

- a unit measure of firms
- exit at the rate δ
- replaced by a new entrant with $n=1$
- hence

$$
0=-(\delta+\mu) s_{1}+\delta
$$

and

$$
0=\mu(n-1) s_{n-1}-(\delta+\mu n) s_{n}, \quad n-1 \in \mathbb{N}
$$

- this yields

$$
s_{n}=\frac{\mu(n-1)}{\delta+\mu n} \times s_{n-1}, \quad n-1 \in \mathbb{N}
$$

- combined with $s_{1}=\delta /(\delta+\mu)$ this yields

$$
s_{n+1}=\frac{\delta}{\delta+\mu} \prod_{k=1}^{n} \frac{\mu k}{\delta+\mu(k+1)}=\frac{\delta}{\mu} \frac{\Gamma(n+1) \Gamma\left(\frac{\mu+\delta}{\mu}\right)}{\Gamma\left(n+1+\frac{\mu+\delta}{\mu}\right)}
$$

which holds for all $n+1 \in \mathbb{N}$.

model 1

the homogeneous blueprints model in

Luttmer [Review of Economic Studies, 2011]

dynastic households

- preferences

$$
\int_{0}^{\infty} e^{-\rho t} H_{t} \ln \left(c_{t}\right) \mathrm{d} t
$$

household consumption is

$$
\begin{aligned}
& C_{t}=H_{t} c_{t} \\
& H_{t}=H e^{\eta t}, \quad \rho>\eta>0
\end{aligned}
$$

- c_{t} is a CES composite good of differentiated commodties

$$
c_{t}=\left[\int_{0}^{N_{t}} c_{\omega, t}^{1-1 / \varepsilon} \mathrm{d} \omega\right]^{1 /(1-1 / \varepsilon)}
$$

where $\varepsilon>1$

household choices

- the dynastic present-value budget constraint

$$
\int_{0}^{\infty} \exp \left(-\int_{0}^{t} r_{s} \mathrm{~d} s\right) H_{t} c_{t} \mathrm{~d} t \leq \text { wealth }
$$

implies the first-order condition

$$
e^{-\rho t} H_{t} \times \frac{1}{c_{t}}=\lambda \exp \left(-\int_{0}^{t} r_{s} \mathrm{~d} s\right) H_{t}
$$

or simply

$$
\frac{e^{-\rho t}}{c_{t}}=\lambda \pi_{t}
$$

- differentiating yields the Euler condition

$$
r_{t}=\rho+\frac{\mathrm{D} c_{t}}{c_{t}}
$$

household choices

the differentiated commodity demands are

$$
c_{\omega, t}=\left(\frac{p_{\omega, t}}{P_{t}}\right)^{-\varepsilon} H_{t} c_{t}
$$

where P_{t} is the price index

$$
P_{t}=\left(\int_{0}^{N_{t}} p_{\omega, t}^{1-\varepsilon} \mathrm{d} \omega\right)^{1 /(1-\varepsilon)}
$$

producers

- blueprint + linear labor-only technology yields output $y_{\omega, t}=z l_{\omega, t}$
- the time- t wage in units of the composite consumption good $=w_{t}$
- to maximize $P_{t} v_{\omega, t}=\left(p_{\omega, t}-P_{t} w_{t} / z\right) c_{\omega, t}$ subject to $c_{\omega, t}=\left(p_{\omega, t} / P_{t}\right)^{-\varepsilon} H_{t} c_{t}$ set

$$
\frac{p_{\omega, t}}{P_{t}}=\frac{w_{t} / z}{1-1 / \varepsilon}
$$

- eliminating $p_{\omega, t} / P_{t}$ from the price index gives

$$
w_{t}=\left(1-\frac{1}{\varepsilon}\right) z N_{t}^{\frac{1}{\varepsilon-1}}
$$

- implied employment and profits per blueprint

$$
\left[\begin{array}{c}
w_{t} l_{\omega, t} \\
v_{\omega, t}
\end{array}\right]=\left[\begin{array}{c}
w_{t} l_{t} \\
v_{t}
\end{array}\right]=\left[\begin{array}{c}
1-1 / \varepsilon \\
1 / \varepsilon
\end{array}\right] \frac{H_{t} c_{t}}{N_{t}}
$$

- in particular

$$
\frac{v_{t}}{w_{t}}=\frac{l_{t}}{\varepsilon-1}
$$

entrants and incumbents

- two technologies for developing new blueprints
- skilled entrepreneurial time only
- new blueprints from scratch
- existing blueprints and labor
- new blueprint codes for distinct differentiated commodity
- firm $=$ collection of blueprints derived from the same initial blueprint
- no reason to trade blueprints-any positive cost forces no trade

costly blueprint replication

- recall that profits per blueprint are

$$
v_{t}=\frac{w_{t} l_{t}}{\varepsilon-1}
$$

- the price of a blueprint in units of consumption is q_{t}
- a flow of m_{t} units of labor can be used to replicate an existing blueprint randomly at the rate $g\left(m_{t}\right)$
- therefore

$$
r_{t} q_{t}=\max _{m}\left\{w_{t}\left(\frac{l_{t}}{\varepsilon-1}-m\right)+q_{t} g(m)+\mathrm{D} q_{t}\right\}
$$

- the first-order condition for replication is

$$
1=\frac{q_{t}}{w_{t}} \times \mathrm{D} g\left(m_{t}\right)
$$

a Roy model of primary factor supplies

- talent distribution $T \in \Delta\left(\mathbb{R}_{++}^{2}\right)$
per capita supply of entrepreneurial services

$$
E\left(\frac{q}{w}\right)=\int_{q x>w y} x \mathrm{~d} T(x, y)
$$

per capita supply of labor

$$
L\left(\frac{q}{w}\right)=\int_{w y>q x} y \mathrm{~d} T(x, y)
$$

aggregate blueprint accumulation

the number of blueprints evolves according to

$$
\mathrm{D} N_{t}=g\left(m_{t}\right) N_{t}+H_{t} E\left(\frac{q_{t}}{w_{t}}\right)
$$

- $N_{0}>0$ is a given initial value
- this will be non-stationary
- in per-capita terms

$$
\mathrm{D}\left(\frac{N_{t}}{H_{t}}\right)=-\left(\eta-g\left(m_{t}\right)\right) \times \frac{N_{t}}{H_{t}}+E\left(\frac{q_{t}}{w_{t}}\right)
$$

- a steady state requires

$$
\eta>g(m)
$$

- this will be an equilibrium outcome
- but individual firm histories are non-stationary

the number of firms

- blueprints, not firms, matter for aggregate dynamics
- but very relevant for observables
- entrepreneurs set up new firms

$$
\mathrm{D} M_{t}=H_{t} E\left(\frac{q_{t}}{w_{t}}\right)
$$

- per capita

$$
\mathrm{D}\left(\frac{M_{t}}{H_{t}}\right)=-\eta \times \frac{M_{t}}{H_{t}}+E\left(\frac{q_{t}}{w_{t}}\right)
$$

- in the steady state

$$
\frac{M_{t}}{H_{t}}=\frac{1}{\eta} E\left(\frac{q_{t}}{w_{t}}\right)
$$

the dynamic equilibrium

- use the N_{t} / H_{t} as the state, with q_{t} / c_{t} as the co-state
- the marginal utility weighted price q_{t} / c_{t} removes r_{t} from the system
- the differential equation is

$$
\begin{aligned}
\mathrm{D}\left(\frac{N_{t}}{H_{t}}\right) & =-\left(\eta-g\left(m_{t}\right)\right) \times \frac{N_{t}}{H_{t}}+E\left(\frac{q_{t}}{w_{t}}\right) \\
\mathrm{D}\left(\frac{q_{t}}{c_{t}}\right) & =\left(\rho-\left(g\left(m_{t}\right)-\mathrm{D} g\left(m_{t}\right) m_{t}\right)\right) \times \frac{q_{t}}{c_{t}}-\frac{1}{\varepsilon} \frac{1}{N_{t} / H_{t}}
\end{aligned}
$$

where

$$
\begin{aligned}
1-\frac{1}{\varepsilon} & =\frac{w_{t}}{c_{t}} \times l_{t} \times \frac{N_{t}}{H_{t}} \\
1 & =\frac{q_{t}}{w_{t}} \times \mathrm{D} g\left(m_{t}\right) \\
L\left(\frac{q_{t}}{w_{t}}\right) & =\left(l_{t}+m_{t}\right) \times \frac{N_{t}}{H_{t}}
\end{aligned}
$$

the phase diagram

balanced growth

- the per capita number of blueprints is constant

$$
N_{t}=N e^{\eta t}
$$

- wages are

$$
w_{t}=\left(1-\frac{1}{\varepsilon}\right) z N_{t}^{\frac{1}{\varepsilon-1}}
$$

- implied growth from variety

$$
\kappa=\frac{\mathrm{D} w_{t}}{w_{t}}=\frac{\eta}{\varepsilon-1}
$$

- familiar implications
- integrating the world improves welfare, a level effect
- persisent growth from variety depends on population growth
steady state equilibrium for $s=q / w$
let $m[s]$ and $l[s]$ solve

$$
\frac{1}{\mathrm{D} g(m)}=s=\frac{1}{\rho-g(m)}\left(\frac{l}{\varepsilon-1}-m\right)
$$

- steady state demand for blueprints

$$
\frac{N}{H}=\frac{L(s)}{l[s]+m[s]}
$$

- steady state supply of blueprints

$$
\frac{N}{H}=\frac{E(s)}{\eta-g(m[s])}
$$

- notice that this has an asymptote as $g(m[s]) \uparrow \eta$
- now clear the market
- the assumption $\rho>\eta$ implies that $\eta>g(m)$ guarantees $\rho>g(m)$

equilibrium

what if the skill distribution is degenerate at (x, y) ?

- demand for blueprints

$$
\frac{N}{H}=\frac{(1-a) y}{l[s]+m[s]}
$$

- supply of blueprints

$$
\frac{N}{H}(\eta-g(m[s]))=a x
$$

and

$$
s x \leq y, \text { w.e. if } a>0
$$

where $a=$ fraction of entrepreneurs.

- can have an equilibrium with $a=0$ and $\eta=g(m[s])$
- but then the size distribution of firms fans out forever

the Zipf limit

- a fraction $1-1 / \Lambda \in(0,1)$ of the population can only supply labor,

$$
L_{\Lambda}(s)=\left(1-\frac{1}{\Lambda}\right) \ell+\frac{\mathcal{L}(s)}{\Lambda}, \quad E_{\Lambda}(s)=\frac{\mathcal{E}(s)}{\Lambda}
$$

- demand for blueprints

$$
\frac{N}{H}=\frac{1}{l[s]+m[s]}\left(\left(1-\frac{1}{\Lambda}\right) \ell+\frac{\mathcal{L}(s)}{\Lambda}\right)
$$

- supply of blueprints

$$
\frac{N}{H}=\frac{1}{\eta-g(m[s])} \frac{\mathcal{E}(s)}{\Lambda}
$$

where $l[s]$ and $m[s]$ solve

$$
\frac{1}{\mathrm{D} g(m)}=s=\frac{1}{\rho-g(m)}\left(\frac{l}{\varepsilon-1}-m\right)
$$

the Zipf limit

- the steady state $\left(m_{\Lambda}, l_{\Lambda}, s_{\Lambda}\right)$ solves

$$
\begin{aligned}
1 & =s \mathrm{D} g(m), \quad s=\frac{1}{\rho-g(m)}\left(\frac{l}{\varepsilon-1}-m\right) \\
\frac{\mathcal{E}(s)}{(\eta-g(m)) \Lambda} & =\frac{1}{l+m}\left(\left(1-\frac{1}{\Lambda}\right) \ell+\frac{1}{\Lambda} \times \mathcal{L}(s)\right)
\end{aligned}
$$

- construct the $\Lambda \rightarrow \infty$ limit

$$
\begin{aligned}
\eta= & g\left(m_{\infty}\right) \\
1= & s_{\infty} \mathrm{D} g\left(m_{\infty}\right), \quad s_{\infty}=\frac{1}{\rho-\eta}\left(\frac{l_{\infty}}{\varepsilon-1}-m_{\infty}\right) \\
\frac{\mathcal{E}\left(s_{\infty}\right)}{\lim _{\Lambda \rightarrow \infty}\left(\eta-g\left(m_{\Lambda}\right)\right) \Lambda}= & \frac{\ell}{l_{\infty}+m_{\infty}} \\
\text { and } & \frac{N_{\infty}}{H}=\frac{\ell}{l_{\infty}+m_{\infty}}
\end{aligned}
$$

the Zipf limit

- employment per blueprint

$$
\left(\left(1-\frac{1}{\Lambda}\right) \ell+\frac{\mathcal{L}\left(s_{\Lambda}\right)}{\Lambda}\right) \frac{H_{t}}{N_{t}}=l\left[s_{\Lambda}\right]+m\left[s_{\Lambda}\right] \rightarrow l_{\infty}+m_{\infty}
$$

- number of firms per capita

$$
\frac{1 \mathcal{E}\left(s_{\Lambda}\right)}{\eta} \rightarrow 0
$$

- number of blueprints per firm

$$
\frac{\frac{1}{\eta-g\left(m_{\Lambda}\right)} \frac{\mathcal{E}\left(s_{\Lambda}\right)}{\Lambda}}{\frac{1 \mathcal{E}\left(s_{\Lambda}\right)}{\eta}}=\frac{1}{1-\frac{g\left(m_{\Lambda}\right)}{\eta}} \rightarrow \infty
$$

- employment per firm

$$
\frac{\left(1-\frac{1}{\Lambda}\right) \ell+\frac{\mathcal{L}\left(s_{\Lambda}\right)}{\Lambda}}{\frac{1}{\eta} \frac{\mathcal{E}\left(s_{\Lambda}\right)}{\Lambda}} \rightarrow \frac{\ell}{0}=\infty
$$

the Zipf limit

- the entry rate

$$
\frac{\frac{\mathcal{E}\left(s_{\Lambda}\right)}{\Lambda}}{\frac{1}{\eta} \frac{\mathcal{E}\left(s_{\Lambda}\right)}{\Lambda}}=\eta
$$

- contribution of entry flow to employment

$$
\frac{\left(l_{\Lambda}+m_{\Lambda}\right) \times \frac{\mathcal{E}\left(s_{\Lambda}\right)}{\Lambda}}{\left(1-\frac{1}{\Lambda}\right) \ell+\frac{\mathcal{L}(s)}{\Lambda}} \rightarrow \frac{\left(l_{\infty}+m_{\infty}\right) \times \lim _{\Lambda \rightarrow \infty} \frac{\mathcal{E}\left(s_{\Lambda}\right)}{\Lambda}}{\ell+\lim _{\Lambda \rightarrow \infty} \frac{\mathcal{L}\left(s_{\Lambda}\right)}{\Lambda}}=\frac{\left(l_{\infty}+m_{\infty}\right) \times 0}{\ell+0}=0
$$

- to summarize
- robust entry
- average firm size explodes
- contribution of entrants to employment growth negligible

increasing Λ

$$
\begin{gathered}
z=\text { tail index } \\
\frac{1}{1-\frac{1}{z}}=\text { number of blueprints per firm }
\end{gathered}
$$

some firms grow much faster than $g(m)<\eta=0.01$

- and large firms are much younger then implied by this model
- fix: two-type model with transitory rapid growth in Luttmer [2011]

transitory growth

- suppose

$$
\left[N_{t}, E_{t}\right]=[N, E] e^{\eta t}, \quad p(b)=\delta e^{-\delta b}, \quad S(a, b)=e^{\gamma \min \{a, b\}}
$$

- fix some age cohort,

$$
\begin{aligned}
\operatorname{Pr}\left[S_{a} \geq s\right] & =\operatorname{Pr}\left[e^{\gamma \min \{a, b\}} \geq s\right] \\
& =\operatorname{Pr}\left[\min \{a, b\} \geq \frac{1}{\gamma} \times \ln (s)\right]=\left\{\begin{array}{cl}
0 & \text { if } a<\frac{1}{\gamma} \times \ln (s) \\
e^{-\delta \times \frac{1}{\gamma} \times \ln (s)} & \text { if } a \geq \frac{1}{\gamma} \times \ln (s)
\end{array}\right.
\end{aligned}
$$

or

$$
\operatorname{Pr}\left[S_{a} \geq s\right]=\left\{\begin{array}{cl}
0 & \text { if } a<\frac{1}{\gamma} \times \ln (s) \\
s^{-\delta / \gamma} & \text { if } a \geq \frac{1}{\gamma} \times \ln (s)
\end{array}\right.
$$

- adding up over all cohorts

$$
\int_{0}^{\infty} \eta e^{-\eta a} \operatorname{Pr}\left[S_{a} \geq s\right] \mathrm{d} a=\int_{\frac{1}{\gamma} \ln (s)}^{\infty} \eta e^{-\eta a} s^{-\delta / \gamma} \mathrm{d} a=s^{-\delta / \gamma} \times e^{-\eta \times \frac{1}{\gamma} \ln (s)}=s^{-(\delta+\eta) / \gamma}
$$

- now we can have γ much larger than η

outside the steady state

- see the phase diagram-one aggregate state variable
- far below the steady state
$-q / w$ is very high
- Roy model implies that "everyone" is an entrepreneur
- near the steady state
- slow convergence when the firm size distribution is close to Zipf
- see my
- "Slow Convergence in Economies with Organization Capital"
- Federal Reserve Bank of Minneapolis w.p. 748, 2018
- and further references therein

model 2

based on

Luttmer [Quarterly Journal of Economics, 2007]

and

Luttmer [Journal of Economic Theory, 2012]
a crash course on the KFE for $\mathrm{d} y_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} B_{t}$

- without noise, $f(t, y)=f(0, y-\mu t)$ implies

$$
\mathrm{D}_{t} f(t, y)=-\mu \mathrm{D}_{y} f(0, y-\mu t)=-\mu \mathrm{D}_{y} f(t, y)
$$

- without drift, random increments make population move downhill
- CDF satisfies

$$
\mathrm{D}_{t} F(t, y)=\frac{1}{2} \sigma^{2} \mathrm{D}_{y} f(t, y)
$$

- differentiate

$$
\mathrm{D}_{t} f(t, y)=\frac{1}{2} \sigma^{2} \mathrm{D}_{y y} f(t, y)
$$

- combine and add random death at rate δ

$$
\mathrm{D}_{t} f(t, y)=-\mu \mathrm{D}_{y} f(t, y)+\frac{1}{2} \sigma^{2} \mathrm{D}_{y y} f(t, y)-\delta f(t, y)
$$

- real justification: take limit in binomial tree

the effect of exit at b

- number of firms

$$
M_{t}=\int_{b}^{\infty} f(t, y) \mathrm{d} y
$$

- boundary conditions

$$
f(t, b)=0, \quad \lim _{y \rightarrow \infty}\left[f(t, y), \mathrm{D}_{y} f(t, y), \mathrm{D}_{y y} f(t, y)\right]=0
$$

- this yields

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{b}^{\infty} f(t, y) \mathrm{d} y & =\int_{b}^{\infty} \mathrm{D}_{t} f(t, y) \mathrm{d} y \\
& =-\mu \int_{b}^{\infty} \mathrm{D}_{y} f(t, y) \mathrm{d} y+\frac{1}{2} \sigma^{2} \int_{b}^{\infty} \mathrm{D}_{y y} f(t, y) \mathrm{d} y-\delta \int_{b}^{\infty} f(t, y) \mathrm{d} y \\
& =-\left.f(t, y)\right|_{b} ^{\infty}-\frac{1}{2} \sigma^{2} \mathrm{D}_{y} f(t, b)-\delta \int_{b}^{\infty} f(t, y) \mathrm{d} y
\end{aligned}
$$

- therefore

$$
\mathrm{D} M_{t}=-\frac{1}{2} \sigma^{2} \mathrm{D}_{y} f(t, b)-\delta M_{t}
$$

- a steep density at the exit thresholds implies a lot of exit

entry and exit

- flow of entrants

$$
E_{t}=E e^{\eta t}
$$

- entry at $y_{0}=x$, and then

$$
\mathrm{d} y_{a}=\mu \mathrm{d} a+\sigma \mathrm{d} B_{a}
$$

- exit when y_{a} hits $b<x$
- density of firms

$$
m(t, y)=M_{t} f(t, y)
$$

where

$$
M_{t}=\int_{b}^{\infty} m(t, y) \mathrm{d} y
$$

- conjecture that there is a stationary density

$$
M_{t}=M e^{\eta t}, \quad f(t, y)=f(y)
$$

- which implies $\mathrm{D}_{t} m(t, y)=\eta M_{t} f(y)$ and

$$
\left[\mathrm{D}_{y} m(t, y) \mathrm{D}_{y y} m(t, y)\right]=M_{t}\left[\mathrm{D} f(y) \mathrm{D}^{2} f(y)\right]
$$

entry and exit

- the KFE simplifies to

$$
\eta f(y)=-\mu \mathrm{D} f(y)+\frac{1}{2} \sigma^{2} \mathrm{D}^{2} f(y), \quad y \in(b, x) \cup(x, \infty)
$$

- boundary conditions

$$
f(b)=0, \quad \lim _{x \uparrow y} f(x)=\lim _{x \downarrow y} f(x), \quad \lim _{x \rightarrow \infty} f(x)=0
$$

- try solutions of the form $e^{-\alpha y}$
- this implies a quadratic characteristic equation

$$
\eta=\mu \alpha+\frac{1}{2} \sigma^{2} \alpha^{2} \Rightarrow \alpha_{ \pm}=-\frac{\mu}{\sigma^{2}} \pm \sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\eta}{\sigma^{2} / 2}}
$$

- the solution for $f(y)$ is a linear combination of $e^{-\alpha_{+} y}$ and $e^{-\alpha-y}$
- one for each of the two domains (b, x) and (x, ∞)
- the boundary conditions pin down these linear combinations

the solution

- the density is

$$
f(y)=\frac{\alpha e^{-\alpha(y-b)}}{\left(e^{\alpha_{*}(x-b)}-1\right) / \alpha_{*}} \times \min \left\{\frac{e^{\left(\alpha+\alpha_{*}\right)(y-b)}-1}{\alpha+\alpha_{*}}, \frac{e^{\left(\alpha+\alpha_{*}\right)(x-b)}-1}{\alpha+\alpha_{*}}\right\}
$$

where

$$
\alpha=-\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\eta}{\sigma^{2} / 2}}, \quad \alpha_{*}=\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\eta}{\sigma^{2} / 2}}
$$

- note that the right tail behaves like $e^{-\alpha y}$
- the implied entry rate $\epsilon=E_{t} / M_{t}$ is

$$
\epsilon=\eta+\frac{1}{2} \sigma^{2} \mathrm{D} f(b)=\eta+\frac{1}{2} \alpha \sigma^{2}\left(\frac{e^{\alpha_{*}(x-b)}-1}{\alpha_{*}}\right)^{-1}
$$

the stationary density

- preferences

$$
\int_{0}^{\infty} e^{-\rho t} H_{t} \ln \left(c_{t}\right) \mathrm{d} t
$$

household consumption is

$$
\begin{aligned}
& C_{t}=H_{t} c_{t} \\
& H_{t}=H e^{\eta t}, \quad \rho>\eta>0
\end{aligned}
$$

- c_{t} is a CES composite good of differentiated commodties

$$
c_{t}=\left[\int c_{\omega, t}^{1-1 / \varepsilon} \mathrm{d} M_{t}(\omega)\right]^{1 /(1-1 / \varepsilon)}
$$

where $\varepsilon>1$

household choices (dynamic)

- the dynastic present-value budget constraint

$$
\int_{0}^{\infty} \exp \left(-\int_{0}^{t} r_{s} \mathrm{~d} s\right) H_{t} c_{t} \mathrm{~d} t \leq \text { wealth }
$$

implies the first-order condition

$$
e^{-\rho t} H_{t} \times \frac{1}{c_{t}}=\lambda \exp \left(-\int_{0}^{t} r_{s} \mathrm{~d} s\right) H_{t}
$$

or simply

$$
\frac{e^{-\rho t}}{c_{t}}=\lambda \pi_{t}
$$

- differentiating yields the Euler condition

$$
r_{t}=\rho+\frac{\mathrm{D} c_{t}}{c_{t}}
$$

household choices (static)

- the differentiated commodity demands are

$$
c_{\omega, t}=\left(\frac{p_{\omega, t}}{P_{t}}\right)^{-\varepsilon} H_{t} c_{t}
$$

where P_{t} is the price index

$$
P_{t}=\left(\int p_{\omega, t}^{1-\varepsilon} \mathrm{d} M_{t}(\omega)\right)^{1 /(1-\varepsilon)}
$$

producers

- blueprint + linear labor-only technology yields output $y_{\omega, t}=e^{z_{\omega, t}} l_{\omega, t}$
- the time- t wage in units of the composite consumption good $=w_{t}$
$\checkmark \max P_{t} v_{\omega, t}=\left(p_{\omega, t}-P_{t} w_{t} e^{-z_{\omega, t}}\right) y_{\omega, t}$ s.t. $y_{\omega, t}=\left(p_{\omega, t} / P_{t}\right)^{-\varepsilon} H_{t} c_{t}$ gives

$$
\frac{p_{\omega, t}}{P_{t}}=\frac{w_{t} e^{-z_{\omega, t}}}{1-1 / \varepsilon}
$$

- eliminating $p_{\omega, t} / P_{t}$ from the price index gives

$$
w_{t}=\left(1-\frac{1}{\varepsilon}\right) e^{Z_{t}}, \quad e^{Z_{t}}=\left(\int e^{(\varepsilon-1) z_{\omega, t}} \mathrm{~d} M_{t}(\omega)\right)^{1 /(\varepsilon-1)}
$$

- implied employment and profits

$$
\left[\begin{array}{c}
w_{t} l_{\omega, t} \\
v_{\omega, t}
\end{array}\right]=\left[\begin{array}{c}
1-1 / \varepsilon \\
1 / \varepsilon
\end{array}\right] e^{(\varepsilon-1)\left(z_{\omega, t}-Z_{t}\right)} H_{t} c_{t}
$$

- also: a firm continuation cost of $\phi>0$ units of labor
aggregate variable labor and consumption
- define

$$
L_{t}=\int l_{\omega, t} \mathrm{~d} M_{t}(\omega)
$$

- the CES aggregator applied to $y_{\omega, t}=e^{z_{\omega, t}} l_{\omega, t}$ gives

$$
\begin{equation*}
H_{t} c_{t}=e^{Z_{t}} L_{t} \tag{1}
\end{equation*}
$$

where

$$
e^{Z_{t}}=\left(\int e^{(\varepsilon-1) z_{\omega, t}} \mathrm{~d} M_{t}(\omega)\right)^{1 /(\varepsilon-1)}
$$

- recall

$$
\begin{equation*}
w_{t}=\left(1-\frac{1}{\varepsilon}\right) e^{Z_{t}} \tag{2}
\end{equation*}
$$

- from (1) and (2)

$$
w_{t} L_{t}=\left(1-\frac{1}{\varepsilon}\right) H_{t} c_{t}
$$

as expected.

incumbent productivity processes

- \log productivity of firm ω

$$
\mathrm{d} z_{\omega, t}=\theta_{z} \mathrm{~d} t+\sigma_{z} \mathrm{~d} W_{\omega, t}
$$

- recall that variable profits are

$$
\frac{v_{\omega, t}}{c_{t}}=\frac{1}{\varepsilon} \times e^{(\varepsilon-1)\left(z_{\omega, t}-Z_{t}\right)} H_{t}, \quad c_{t}=\frac{e^{Z_{t}} L_{t}}{H_{t}}
$$

where

$$
e^{Z_{t}}=\left(\frac{\int e^{(\varepsilon-1) z_{\omega, t}} \mathrm{~d} M_{t}(\omega)}{\int \mathrm{d} M_{t}(\omega)}\right)^{1 /(\varepsilon-1)} \times\left(\int \mathrm{d} M_{t}(\omega)\right)^{1 /(\varepsilon-1)}
$$

- conjecture that there will (somehow) be a steady state of the form

$$
\left[e^{Z_{t}}, w_{t}, c_{t}\right]=\left[e^{Z}, w, c\right] e^{\kappa t}, \quad \kappa=\theta+\frac{\eta}{\varepsilon-1}
$$

for some θ to be determined

- this θ will generally differ from θ_{z}
- the key assumption will be about the productivity of entrants

marginal utility weighted profits

- recall that

$$
\frac{v_{\omega, t}}{c_{t}}=\frac{1}{\varepsilon} \times e^{(\varepsilon-1)\left(z_{\omega, t}-Z_{t}\right)} H_{t}
$$

with, in a steady state

$$
\mathrm{d} z_{\omega, t}=\theta_{z} \mathrm{~d} t+\sigma_{z} \mathrm{~d} W_{\omega, t}, \quad \mathrm{~d} Z_{t}=\kappa \mathrm{d} t=\left(\theta+\frac{\eta}{\varepsilon-1}\right) \mathrm{d} t
$$

- Ito's lemma implies

$$
\mathrm{d} \ln \left(\frac{v_{\omega, t}}{c_{t}}\right)=\mu \mathrm{d} t+\sigma \mathrm{d} W_{\omega, t}
$$

where

$$
\left[\begin{array}{c}
\mu \\
\sigma
\end{array}\right]=(\varepsilon-1)\left[\begin{array}{c}
\theta_{z}-\theta \\
\sigma_{z}
\end{array}\right]
$$

- the calculation is

$$
\begin{aligned}
(\varepsilon-1)\left(\theta_{z}-\kappa\right)+\eta & =(\varepsilon-1)\left(\theta_{z}-\left(\theta+\frac{\eta}{\varepsilon-1}\right)\right)+\eta \\
& =(\varepsilon-1)\left(\theta_{z}-\theta\right)
\end{aligned}
$$

the value of a firm

- the marginal utility weighted price of a firm

$$
\tilde{V}_{t}=\frac{1}{c_{t}} \times \max _{\tau} \mathrm{E}_{t}\left[\int_{t}^{t+\tau} \exp \left(-\int_{t}^{s} r_{u} \mathrm{~d} u\right)\left(v_{\omega, s}-\phi w_{s}\right) \mathrm{d} s\right]
$$

- recall, from logarithmic utility

$$
\exp \left(-\int_{t}^{s} r_{u} \mathrm{~d} u\right)=e^{-\rho t} \times \frac{c_{t}}{c_{s}}
$$

- therefore

$$
\begin{aligned}
\tilde{V}_{t} & =\max _{\tau} \mathrm{E}_{t}\left[\int_{t}^{t+\tau} \exp \left(-\int_{t}^{s} r_{u} \mathrm{~d} u\right) \frac{c_{s}}{c_{t}}\left(\frac{v_{\omega, s}}{c_{s}}-\frac{\phi w_{s}}{c_{s}}\right) \mathrm{d} s\right] \\
& =\max _{\tau} \mathrm{E}_{t}\left[\int_{t}^{t+\tau} e^{-\rho s}\left(\frac{v_{\omega, s}}{c_{s}}-\frac{\phi w_{s}}{c_{s}}\right) \mathrm{d} s\right]
\end{aligned}
$$

a convenient state variable

- in units of fixed cost labor

$$
V_{t}=\frac{\tilde{V}_{t}}{\phi w_{t} / c_{t}}=\max _{\tau} \mathrm{E}_{t}\left[\int_{t}^{t+\tau} e^{-\rho s} \times \frac{w_{s} / c_{s}}{w_{t} / c_{t}} \times\left(\frac{v_{\omega, s}}{\phi w_{s}}-1\right) \mathrm{d} s\right]
$$

- in a steady state

$$
\frac{w_{t}}{c_{t}}=\left(1-\frac{1}{\varepsilon}\right) \frac{H_{t}}{L_{t}} \text { will be constant }
$$

and then

$$
V_{t}=\max _{\tau} \mathrm{E}_{t}\left[\int_{t}^{t+\tau} e^{-\rho s}\left(\frac{v_{\omega, s}}{\phi w_{s}}-1\right) \mathrm{d} s\right]
$$

- define

$$
e^{y_{t}}=\frac{v_{\omega, t}}{\phi w_{t}}
$$

- in a steady state,

$$
\mathrm{d} y_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

the Bellman equation

- given some exit threshold b, the Bellman equation is then

$$
\rho V(y)=e^{y}-1+\mu \mathrm{D} V(y)+\frac{1}{2} \sigma^{2} \mathrm{D}^{2} V(y), \quad y>b
$$

- and the boundary conditions are

$$
0=V(b) \quad \lim _{y \rightarrow \infty} V(y)=\frac{e^{y}}{\rho-\left(\mu+\frac{1}{2} \sigma^{2}\right)}
$$

- the optimal b must be such that

$$
0=\mathrm{D} V(b)
$$

- the solution is

$$
V(y)=\frac{1}{\rho} \frac{\xi}{1+\xi}\left(e^{y-b}-1-\frac{1-e^{-\xi(y-b)}}{\xi}\right)
$$

where

$$
e^{b}=\frac{\xi}{1+\xi}\left(1-\frac{\mu+\sigma^{2} / 2}{\rho}\right), \quad \xi=\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\rho}{\sigma^{2} / 2}}
$$

entry

- let $z_{X, t}$ the \log productivity of exiting firms
- suppose entrants can use

$$
z_{E, t}=z_{X, t}+\frac{\Delta}{\varepsilon-1}
$$

- standing on the shoulders of midgets...
- translates into entry state

$$
e^{x_{t}}=e^{\Delta} \times\left(\frac{v_{\omega, t}}{\phi w_{t}}\right)_{\text {exiting firms }}
$$

in a steady state

$$
x=b+\Delta
$$

- price of a new firm in units of fixed cost labor

$$
s=V(x)
$$

- as before, a Roy model delivers
- a flow of entrants $E(s)$
- labor supply $L(s)$

variable labor as a function of the state

- the derived firm state variables are

$$
e^{y_{\omega, t}}=\frac{v_{\omega, t}}{\phi w_{t}}
$$

- depends on the individual productivities $z_{\omega, t}$
- and on the aggregate state
- recall

$$
\frac{v_{\omega, t}}{w_{t} l_{\omega, t}}=\frac{1 / \varepsilon}{1-1 / \varepsilon}
$$

- so variable labor is

$$
l_{\omega, t}=(\varepsilon-1) \phi \times e^{y_{\omega, t}}
$$

the balanced growth path

- the number of firms is $M_{t}=M e^{\eta t}$
- the steady state market clearing conditions are

1. the market for labor

$$
L(s) H=\left(1+(\varepsilon-1) \int_{b}^{\infty} e^{y} f(y) \mathrm{d} y\right) \phi M
$$

2. the market for entrepreneurial services

$$
E(s) H=\left(\eta+\frac{1}{2} \sigma^{2} \mathrm{D} f(b)\right) M
$$

- b is the optimal exit threshold
- $f(\cdot)$ is the stationary density on (b, ∞)
- both functions only of the firm growth rate $\mu=(\varepsilon-1)\left(\theta_{z}-\theta\right)$

summary of balanced growth conditions

- demand for firms

$$
\frac{M}{H}=\frac{1}{\phi} \frac{L(s)}{1+(\varepsilon-1) \int_{b}^{\infty} e^{y} f(y) \mathrm{d} y}
$$

- supply of firms

$$
\frac{M}{H}=\frac{E(s)}{\eta+\frac{1}{2} \sigma^{2} \mathrm{D} f(b)}
$$

where

$$
s=V(b+\Delta)
$$

and we have a mapping

$$
\mu \mapsto(b, V(\cdot), f(\cdot))
$$

- the growth rate is

$$
\kappa=\theta+\frac{\eta}{\varepsilon-1}
$$

where

$$
\theta=\theta_{z}-\frac{\mu}{\varepsilon-1}
$$

is the growth rate of entrant productivities

$$
\text { the mapping } \mu \mapsto(b, V(\cdot), f(\cdot))
$$

- the value function is

$$
V(y)=\frac{1}{\rho} \frac{\xi}{1+\xi}\left(e^{y-b}-1-\frac{1-e^{-\xi(y-b)}}{\xi}\right)
$$

and

$$
e^{b}=\frac{\xi}{1+\xi}\left(1-\frac{\mu+\sigma^{2} / 2}{\rho}\right), \quad \xi=\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\rho}{\sigma^{2} / 2}}
$$

- the stationary density is

$$
f(y)=\frac{\alpha e^{-\alpha(y-b)}}{\left(e^{\alpha_{*} \Delta}-1\right) / \alpha_{*}} \times \min \left\{\frac{e^{\left(\alpha+\alpha_{*}\right)(y-b)}-1}{\alpha+\alpha_{*}}, \frac{e^{\left(\alpha+\alpha_{*}\right) \Delta}-1}{\alpha+\alpha_{*}}\right\}
$$

and

$$
\alpha=-\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\eta}{\sigma^{2} / 2}}, \quad \alpha_{*}=\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\eta}{\sigma^{2} / 2}}
$$

key properties of the mapping $\mu \mapsto(b, V(\cdot), f(\cdot))$

- recall that $\mu=(\varepsilon-1)\left(\theta_{z}-\theta\right)$
- the mean

$$
\frac{\partial}{\partial \mu} \int_{b}^{\infty} e^{y} f(y) \mathrm{d} y>0
$$

- importantly,

$$
\mu+\frac{1}{2} \sigma^{2} \uparrow \eta \text { implies } \int_{b}^{\infty} e^{y} f(y) \mathrm{d} y \rightarrow \infty
$$

- the exit rate

$$
\frac{\partial}{\partial \mu}\left(\frac{1}{2} \sigma^{2} \mathrm{D} f(b)\right)<0
$$

- the value of an entrant

$$
\frac{\partial s}{\partial \mu}=\frac{\partial V(b+\Delta)}{\partial \mu}>0
$$

- the tail index

$$
\frac{\partial \alpha}{\partial \mu}=\frac{\partial}{\partial \mu}\left(-\frac{\mu}{\sigma^{2}}+\sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}+\frac{\eta}{\sigma^{2} / 2}}\right)<0
$$

demand and supply curves have the usual slopes

- rapid firm growth increases the value of entrants

$$
\frac{\partial s}{\partial \mu}=\frac{\partial V(b+\Delta)}{\partial \mu}>0
$$

- demand

$$
\frac{M}{H}=\frac{1}{\phi} \frac{L(s)}{1+(\varepsilon-1) \int_{b}^{\infty} e^{y} f(y) \mathrm{d} y} \Rightarrow \frac{\partial}{\partial s}\left(\frac{M}{H}\right)<0
$$

- converges to zero as $\mu+\frac{1}{2} \sigma^{2} \uparrow \eta$
- supply

$$
\frac{M}{H}=\frac{E(s)}{\eta+\frac{1}{2} \sigma^{2} \mathrm{D} f(b)} \Rightarrow \frac{\partial}{\partial s}\left(\frac{M}{H}\right)>0
$$

market clearing and the tail index α

the Zipf asymptote

- demand and supply for firms

$$
\begin{aligned}
\frac{M}{H} & =\frac{1}{\phi} \frac{L(s)}{1+(\varepsilon-1) \int_{b}^{\infty} e^{y} f(y) \mathrm{d} y} \\
\frac{M}{H} & =\frac{E(s)}{\eta+\frac{1}{2} \sigma^{2} \mathrm{D} f(b)}
\end{aligned}
$$

where $s=V(b+\Delta)$

- average firm size explodes as s increases and $\mu+\frac{1}{2} \sigma^{2} \uparrow \eta$
- hence, the demand for firms goes to zero
- to approach Zipf
- shift the supply curve in along the downward sloping demand curve
- can use shifts in $E(\cdot)$ and $L(\cdot)$ (from the Roy model)

so what determines growth?

- recall

$$
e^{Z_{t}}=\left(\frac{\int e^{(\varepsilon-1) z_{\omega, t}} \mathrm{~d} M_{t}(\omega)}{\int \mathrm{d} M_{t}(\omega)}\right)^{1 /(\varepsilon-1)} \times\left(\int \mathrm{d} M_{t}(\omega)\right)^{1 /(\varepsilon-1)}
$$

- two components

1. improvements in some "average" of the individual productivities
2. gains from variety

growth with a constant population

- this implies $\alpha=-\mu /\left(\sigma^{2} / 2\right)$ and $\alpha_{*}=0$
- the density near b is then

$$
f(y)=\frac{1-e^{-\alpha(y-b)}}{\Delta}, \quad y \in[b, b+\Delta]
$$

- implied entry and exit rates

$$
\epsilon=\frac{1}{2} \sigma^{2} \mathrm{D} f(b)=\frac{1}{2} \sigma^{2} \times \frac{\alpha}{\Delta}=-\frac{\mu}{\Delta}=-\frac{(\varepsilon-1)\left(\theta_{z}-\theta\right)}{\Delta}
$$

- this can be written as

$$
\theta=\theta_{z}+\epsilon \times \frac{\Delta}{\varepsilon-1} .
$$

- so growth follows from

1. incumbent firms improving their own productivities at the rate θ_{z}
2. replacing firms, selectively, with firms that are better

$$
z_{t}[\text { entry }]=z_{t}[\text { exit }]+\frac{\Delta}{\varepsilon-1}
$$

- the entry rate ϵ is endogenous
- could enrich the model by making θ_{z} and Δ endogenous as well

randomly copying incumbents

- suppose entrants draw random incumbent and copy productivity
- stationary density must satisfy

$$
\eta f(y)=-\mu \mathrm{D} f(y)+\frac{1}{2} \sigma^{2} \mathrm{D}^{2} f(y)+\epsilon f(y)
$$

together with the boundary conditions

$$
f(b)=0=\lim _{y \rightarrow \infty} f(y)
$$

- solutions of form $e^{-\alpha y}$ imply

$$
\alpha_{ \pm}=-\frac{\mu}{\sigma^{2}} \pm \sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}-\frac{\epsilon-\eta}{\sigma^{2} / 2}}
$$

- need $\epsilon>\eta$ to replace exit at b, and need real roots

$$
\left(\frac{\mu}{\sigma^{2}}\right)^{2} \geq \frac{\epsilon-\eta}{\sigma^{2} / 2}
$$

- if $\mu<0$ then both $\alpha_{+}>\alpha_{-}>0$
- not "enough" boundary conditions
- continuum of stationary densities

initial conditions matter

- recall

$$
\alpha_{ \pm}=-\frac{\mu}{\sigma^{2}} \pm \sqrt{\left(\frac{\mu}{\sigma^{2}}\right)^{2}-\frac{\epsilon-\eta}{\sigma^{2} / 2}}
$$

- need real roots

$$
\left(\frac{\mu}{\sigma^{2}}\right)^{2} \geq \frac{\epsilon-\eta}{\sigma^{2} / 2}
$$

- when this holds with equality, $\alpha_{+}=\alpha_{-}=\alpha>0$, and

$$
f(y)=\alpha^{2}(y-b) e^{-\alpha(y-b)}
$$

- take limit as $\alpha_{+}-\alpha_{-} \downarrow 0$
- log firm size follows a Gamma density
- Luttmer [2007] argues this is what will happen when the economy starts with an initial productivity distribution that has bounded support

