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Abstract

This recaps the key idea in my Federal Reserve Bank of Minneaplis working

paper 696 (March 2012) and relates it to more recent work.

1. The Basic Example

This example is taken from Luttmer [2012]. Consider an economy in which firms enter

with size k0 > 0 and then grow exponentially at the rate µ, conditional on survival.

Firms exit randomly at the rate strictly positive rate δ. Suppose the flow of new firms

at time t is Et and define It = k0Et to be aggregate “investment”by entrants. Then the

aggregate measure of “capital”evolves according to

dKt = −(δ − µ)Ktdt+ Itdt. (1)

Assume δ > µ > 0. If Et = E, so that It = k0E is constant, then Kt converges to

k0E/(δ − µ). The speed of adjustment is measured by δ − µ.
The size of a surviving firm of age a is ka = k0e

µa. With Et = E, the long-run age

distribution will be exponential with right tail e−δa. This means that the size distribution

is determined by

1− F (k) = e−δ ln(k/k0)/µ =

(
k

k0

)−δ/µ
, for all k ≥ k0.

That is, the distribution is Pareto on [k0,∞) with right tail index ζ = δ/µ > 1. Benhabib

and Bisin [2007] trace this interpretation of the Pareto distribution back to Francesco
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Cantelli and Enrico Fermi. The speed of adjustment of the aggregate can now be written

as

δ − µ =

(
1− 1

ζ

)
δ. (2)

The key observation made in Luttmer [2012] is that this speed converges to zero precisely

when ζ ↓ 1. That is, if the size distribution is close to Zipf’s law (as is the case for firm

employment in US data), then the aggregate Kt will converge very slowly.

In Luttmer [2012], the flow of new entrants Et is, in fact, an endogenous variable

that responds to Kt. The resulting speed of convergence is proportional to (1 − 1/ζ)δ

but also depends on the elasticity of Et with respect to Kt. Importantly, because the

equilibrium response of Et to Kt is non-linear, the speed of convergence far away from

the steady state can be much faster than it is near the steady state. The formula (2) is

best thought of as an indication of what happens relatively close to the steady state.

2. Adding Brownian Shocks

An obvious extension is to suppose that firm size evolves with age according to

d ln(ka) = µda+ σdWa,

where Wa is a firm-specific standard Brownian motion and σ2 > 0. Ito’s lemma says

that

dka =

(
µ+

1

2
σ2

)
kada+ σkadWa.

This is linear in firm size. As before, suppose there is a flow of entrants Et, and that

every entrant starts with the same k0 > 0. Firms exit randomly at the rate δ > 0.

Taking into account entry and exit results in an aggregate Kt that evolves according to

dKt = −
(
δ −

(
µ+

1

2
σ2

))
Ktdt+ Itdt,

where It = k0Et. The condition for Kt to settle down when It = k0Et is constant is now

δ > µ+ σ2/2.

2.1 The Stationary Distribution

The condition δ > µ + σ2/2 also implies that there is a stationary density with a finite

mean. To see this, write f for the density of z = ln(k). The forward equation says that

0 = −µ∂f(z)

∂z
+

1

2
σ2∂

2f(z)

∂z2
− δf(z),
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for all z 6= ln(k0). One possible solution is e−αz with 0 = µα + 1
2
σ2α2 − δ. This yields

roots α ∈ {α−, α+}, where

α± = − µ

σ2
±

√( µ
σ2

)2

+
δ

σ2/2
. (3)

Note that δ > 0 implies that α− < 0 < α+. The resulting density f(z) is proportional

to e−α−z for z < ln(k0), to e−α+z for z > ln(k0), and continuous at ln(k0). As is well

known, the above process of entry, growth, and exit implies a distribution of firm size

that is double Pareto.

In particular, the right tail is Pareto with tail index ζ = α+,

ζ = − µ

σ2
+

√( µ
σ2

)2

+
δ

σ2/2
.

To see that the mean of k = ez will be finite, observe that

µ+
1

2
σ2 =

1

2
σ2

((
1 +

µ

σ2

)2

−
( µ
σ2

)2
)
,

and so δ > µ + σ2/2 implies ζ > 1. Given δ > 0, the converse is also true. The limit

ζ ↓ 1 corresponds to µ + σ2/2 ↑ δ, and so we have the same result as before: the mean
reversion rate of Kt goes to zero precisely when the stationary distribution of firm size

approaches Zipf’s law.

3. Other Moments

The aggregate Kt is the first moment of the distribution of firm size. It is very easy

to calculate the speed of adjustment of alternative moments. After all, a geometric

Brownian motion raised to a power is again a geometric Brownian motion, to which the

above reasoning applies.

To make this explicit, define

xa = k−ξa ,

and suppose α+ + ξ > 0 and −(α− + ξ) > 0, so that the mean of the stationary

distribution of k−ξ is finite. Ito’s lemma says that

dxa =

(
−µξ +

1

2
σ2ξ2

)
xada− ξσxadWa.
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Just like the evolution of ka itself, this is linear in xa. Write Xt for the aggregate at time

t. Accounting for entry and exit gives

dXt =

(
−µξ +

1

2
σ2ξ2 − δ

)
Xtdt+ Etk

−ξ
0 dt.

So the mean reversion rate of Xt is

λ(ξ) = δ + µξ − 1

2
σ2ξ2. (4)

This generalizes the above computation for ξ = −1.

3.1 Mean Reversion and Existence of Moments

Recall that δ > 0 ensures that α− < 0 < α+. The definition of the characteristic roots

α± implies that λ(−α±) = 0. The parabola λ(ξ) defined in (4) is therefore positive if

and only if ξ ∈ (−α+,−α−), a non-empty interval. This restriction on ξ can be written

as the combination of α+ + ξ > 0 and −(α− + ξ) > 0. So the mean reversion rate λ(ξ)

is strictly positive if and only the stationary distribution of k is such that the mean of

k−ξ is finite.

In any equilibrium, the aggregate capital stock (or aggregate firm employment, or

aggregate income, wealth) will have to be finite. So we have to have −1 ∈ (−α+,−α−)

in any equilibrium. The parabola λ(ξ) attains its maximum at µ/σ2, and so 0 < λ(ξ) <

λ(−1) for all ξ ∈ (−α+,−1) if −1 < µ/σ2. In other words, if µ + σ2 is positive,

then the speed of convergence λ(ξ) will be less than λ(−1) for any ξ < −1 (that is,

higher moments of k) for which the mean is still finite. More generally, one can take

ξ ∈ (−α+,−1) close enough to −α+ to obtain an arbitrarily slow rate of convergence.

It is worth noting that Xt is likely to be a poor approximation for a finite-population

aggregate when the parameters are such that ξ ∈ (−α+,−1) is close to −α+.

4. Two Applications

To learn about the convergence properties of the cross-sectional distribution of income,

Gabaix, Lasry, Lions, and Moll [2016] propose studying the rate at which its Laplace

transforms converge. This is the same as studying the convergence properties of Xt for

various ξ, and so they obtain the convergence rates λ(ξ). For values of ξ < −1, the

aggregate Xt puts more weight on what happens in the right tail than the aggregate

Kt. A rough estimate of the tail index of the US (non-human) wealth distribution is
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α+ = 1.5 in recent years and about α+ = 2 in the 1960s. The authors point out that a

one-time increase in σ2 would have lead to a much slower change in Xt than is observed

in the data.

Luttmer [2012] considers economies in which Kt turns out to be a suffi cient state

variable for the aggregate economy and studies the mean reversion of Kt (that is, ξ =

−1). The firm size distribution in US data is very close to Zipf’s law. This implies

very slow recoveries following a destruction of some part of Kt. This is proposed as an

ingredient for models that attempt to explain slow recoveries. The interval (−α+,−1)

is very small in this application, and so there is barely any scope for considering higher

moments.

5. Breaking the Link

Gabaix, Lasry, Lions, and Moll [2016] break the link between Zipf’s law and slow aggre-

gate mean reversion by introducing heterogeneity and dynamics in the drift parameter

µ. This device was used earlier in Luttmer [2011] to avoid the counterfactual firm age

implications of the random growth model: given Gibrat’s law, a calibration based on the

firm size distribution and observed entry and exit rates implies that large firms would

have to be centuries old.

The following discussion describes an alternative model that can also generate rela-

tively fast convergence of aggregates, even when the implied stationary distribution is

close to Zipf’s law.1

5.1 Stationary Markov Diffusions with a Linear Drift

Abstract from entry and exit and suppose there is fixed population of firms (or dynastic

households) that live forever. Suppose that the size kt of a typical firm is determined by

the stochastic differential equation

dkt = λ(µ− kt)dt+ σ(kt)dWt, (5)

where Wt is, as before, a firm-specific Brownian motion. The parameters λ, µ and σ(·)
are common to all firms. The key simplifying assumption is that the drift λ(µ − kt) is
linear in kt. The shape of σ(·) will be critical for determining the properties of kt.

1I thank Alberto Bisin for reminding me of the Kesten interpretation of Pareto-like distributions and

pointing me to the quantitative results in Section 6 of Benhabib, Bisin and Luo [2015]. This prompted

the following investigation.
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The random growth process considered previously had λ < 0, µ = 0 and σ(k) = σ.

The result was a geometric Brownian motion. Geometric Brownian motions are not

stationary, and stationarity was restored by entry and random exit. If entrants are

identified with specific firms that have just exited, then one can think of kt as the size

of an infinitely lived (dynastic) firm that has its size return to some baseline value k0 at

random times. In fact, such processes are known as return processes (Karlin and Taylor

[1981, p. 260]).

Take (5) as a continuous-time approximation of a process with stochastic increments

σ(kt)(Wt+∆ − Wt) at discrete time intervals ∆. In a large population of firms, with

Gaussian increments Wt+∆ −Wt that are independent across firms, the aggregate size

Kt will satisfy

dKt = λ(µ−Kt)dt.

The assumed linearity of the drift, combined with the fact that λ is the same for every-

one,2 implies that the aggregate size Kt is “Markov”again, and that we can interpret λ

as the aggregate mean reversion coeffi cient.

5.2 The Conditional Mean

Suppose that (5) produces a well-defined Markov diffusion. To begin studying its prop-

erties, write (5) in integral form

kt = k0 +

∫ t

0

λ(µ− ks)ds+

∫ t

0

σ(ks)dWs.

Define mt = E[kt|k0]. Taking an expectation conditional on k0 gives

mt = k0 +

∫ t

0

λ(µ−ms)ds.

This implies ∂mt/∂t = −λ(mt−µ), starting from the initial value m0 = k0. Solving this

differential equation gives

E[kt|k0] = µ+ (k0 − µ)e−λt.

That is, as is well known, the linearity of µ(k) = λ(µ − k) implies that the conditional

mean of kt given k0 is linear as well. And the mean of kt given k0 it converges to µ if and

only if λ is positive, at an exponential rate. If there is a stationary distribution, then µ

must be its mean.
2Recall from Granger (1980) that heterogeneity in λ can be a source of long memory in the aggregate.
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5.3 Stationary Distributions

The shape of σ(·) is key, for ensuring that there actually is a stationary distribution on
(0,∞), and for determining the tail properties of the stationary distribution.

5.3.1 Two Thin-Tailed Examples

Suppose that λ > 0 and that σ(·) = σ, a constant. Then (5) becomes an Ornstein-

Uhlenbeck process. One can write

kt+∆ − µ = e−λ∆(kt − µ) + σ

∫ ∆

0

eλadWt+a.

So the discretely sampled process is just an AR(1) process with Gaussian innovations. In

fact, the implied stationary distribution is Gaussian, and it will not have the thick-tailed

tail that we see in firm-size, income, and wealth data.

Another classic example is obtained by taking λ > 0 and σ(k) = σ
√
k. This is

the square-root process used by Cox, Ingersoll and Ross [1985] as a model for interest

rates. The resulting stationary distribution is known to be a Gamma distribution with

a density f(k) ∝ kγ−1e−βk, where β = λ/(σ2/2) and γ = βµ. Even though this begins

to look somewhat like a power law, the right tail is still thin, because of the exponential

factor e−βk.

5.3.2 A Thick-Tailed Example

If it exists, the stationary density f(k) associated with a Markov diffusion on (0,∞) with

drift µ(k) and diffusion coeffi cient σ(k) has to satisfy the Kolmogorov Forward Equation

0 =
∂[−µ(k)f(k)]

∂k
+

1

2

∂2[σ2(k)f(k)]

∂k2
, (6)

on (0,∞). And f(k) has to integrate to 1. The forward equation (6) can be integrated

explicitly to construct candidate stationary densities (for example, see Karlin and Taylor

[1981].)

For a thick-tailed example, consider the same diffusion coeffi cient σ(k) = σk as in

the case of the geometric Brownian motion. But now, as in the two thin-tailed examples,

the drift is λ(µ − k) instead of (µ + σ2/2)k. The resulting process can be interpreted

as a continuous-time version of the Kesten [1973] process. A slightly laborious but

straightforward calculation shows that

f(k) ∝ 1

k2+βeγ/k
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solves (6) when β = λ/(σ2/2) and γ = βµ. One can show that this is the only solution

to (6) that is integrable. The result is a density with a strictly positive mode, equal to 0

at k = 0, and with right tail probabilities that behave like 1/k1+β. Therefore, the right

tail index of the stationary distribution is

ζ = 1 +
λ

σ2/2
> 0,

and the mean-reversion coeffi cient is λ > 0.

Holding fixed σ > 0, one can take λ close to zero and obtain what happens in the

random growth model: letting aggregate mean reversion go to zero results in a tail index

that approaches 1 from above, an approximate version of Zipf’s law. But the converse is

no longer true. A stationary distribution that is close to Zipf’s law in the right tail does

not imply slow aggregate mean reversion. All an approximate version of Zipf’s law says

is that λ/(σ2/2) is small. This can be achieved not only with a suffi ciently small λ > 0,

but also with a large λ combined with a large σ2. Or in other words, given a certain

aggregate rate of mean reversion, a suffi ciently large diffusion coeffi cient will produce a

stationary distribution that is close to Zipf’s law.

5.4 The Idiosyncratic Returns Interpretation

A natural interpretation of (5) with σ(k) = σk is as follows. Suppose infinitely lived

dynastic households earn constant income flows y > 0 and face investment opportunities

that produce idiosyncratic cumulative return processes Rt. Suppose that these returns

are not predictable. Specifically, take

dRt = Rt (µRdt+ σRdWt) , (7)

for some parameters µR and σR, common across households, and idiosyncratic Brownian

motions Wt. If kt represents household assets, and households consume ct = φ+ψkt for

some φ ∈ [0, y) and ψ > 0, then their assets will evolve according to

dkt = (y − [φ+ ψkt])dt+ ktdRt/Rt. (8)

Combining (7) and (8) gives

dkt = (y − φ− (ψ − µR)kt)dt+ σRktdWt.

This is an example of (5), with mean reversion parameter λ = ψ − µR, mean µ =

(y − φ)/(ψ − µR) and diffusion parameter σ = σR. Aggregate mean reversion will be
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relatively quick if ψ−µR is well above zero, and the stationary distribution of household

assets will have a thick right tail if σR is also large.

Given a tail index ζ, the implied mean reversion coeffi cient is λ = 1
2
σ2 (ζ − 1). Sup-

pose the distribution of household assets has a tail index of 1.5 and σR = 0.15 on an

annual basis, like the NYSE. Then λ = (.15/2)2 = 0.005625. The resulting half life for

aggregate assets is ln(2)/λ ≈ 123 years. As in the basic random growth model, this is

very slow. Idiosyncratic returns will have to be substantially more volatile to account

for much more rapid aggregate mean reversion. Figure 1 shows how volatile, for the two

scenarios ζ ∈ {1.5, 2.0}.
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Figure 1 The Half-Life ln(2)/λ, ζ = 1 + λ/(σ2/2).

Entrepreneurial returns are likely to be more volatile than the NYSE, and so Figure

1 opens up the possibility of fairly rapid mean reversion in combination with a wealth

distribution with a rather fat right tail.

Idiosyncratic returns are the key mechanism for wealth inequality emphasized by

Benhabib, Bisin and Zhu [2011]. They present an overlapping generations economy

with bequests and idiosyncratic returns drawn from a distribution with finite support

at the beginning of each new life. From one generation to the next, wealth follows a

(discrete-time) Kesten process, and the tail index of the stationary distribution is given

explicitly. In a similar economy, Benhabib, Bisin and Luo [2015] find relatively rapid

convergence to the steady state.
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The example given here also uses idiosyncratic returns. But wealth is dynastic asset

wealth of an infinitely lived household. The implicit bequests and intergenerational

mobility implications are no doubt counterfactual. The payoff is an explicit analysis

of the relation between aggregate mean reversion and tail indices that may shed some

further light on the calibration and quantitative findings of Benhabib, Bisin and Luo

[2015].
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