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the issue

• in my 2007 QJE paper, I showed

(1) small random firm-specific productivity shocks

(2) entrants learn from surviving incumbents

 ⇒
long-run aggregate growth, at an endogenous rate

– icing on the cake: Pareto-like firm size distributions

• but: the model has a continuum of steady state equilibria with dis-
tinct growth rates and firm size distributions

– the paper had a heuristic argument to select one equilibrium

• this multiplicity issue has arisen again in more recent models of so-
cial learning and aggregate growth

I this paper: a diagnosis of the problem, and a new way to obtain a
unique prediction for long-run growth
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idea flows

• some early work

Iwai 1984, Jovanovic and Rob 1989, Chari and Hopenhayn 1991,
Kortum 1997, Eaton and Kortum 1999

• social learning only

Alvarez, Buera and Lucas 2008, Lucas 2009,
Lucas and Moll 2014, Perla and Tonetti 2014

• individual discovery and social learning

Luttmer 2007, Staley 2011, König, Lorenz, Zilibotti 2012,
Luttmer 2015 (Fed)

• unique stationary distribution and balanced growth path

Luttmer 2012 (JET), this paper

I see Fed w.p. 724, “Four Models ...” for a survey of technical issues
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the easiest example

• agents randomly select others at rate β and copy if “better”

DtP (t, z) = −βP (t, z)[1− P (t, z)]

I the unique solution to this system of logistic ODE is

P (t, z) =
1

1 +
(

1
P (0,z) − 1

)
eβt

– but P (0, z) matters a lot. . .

I many stationary solutions (note that κ is a free parameter)

– linear trends

if P (0, z) =
1

1 +
(

1
P (0,0) − 1

)
e−(β/κ)z

then P (t, z) = P (0, z − κt)

– exponential trends

if P (0, z) =
1

1 +
(

1
P (0,1) − 1

)
z−β/κ

then P (t, z) = P (0, ze−κt)
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a better model: social learning and individual discovery

• two independent standard Brownian motions W1,t,W2,t,

E [max {σW1,t, σW2,t}] = σ
√
t

∫ ∞
−∞

2xφ(x)Φ(x)dx = σ
√
t/π

• reset to the max at random time τ j+1 > τ j

zτ j+1
= zτ j + σmax

{
W1,τ j+1

−W1,τ j,W2,τ j+1
−W2,τ j

}
• reset times arrive randomly at rate α = 2β

E

[
zτn+1 − zτn
τn+1 − τn

zτn

]
=

∫ ∞
0

σ
√
τ/π

τ
× αe−ατdτ

= σ
√
α

= σ2 ×

√
β

σ2/2
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what’s next

• in this example

– not just learning from each other but also trying new things
– research is cumulative, with random increments
– rather than more draws from the same old distribution
– and successful improvements are shared
– no multiplicity issues anywhere in sight

• unlike in a large economy, with only two agents there can be no thick
right tail of possible gains from social learning

• the idea in this paper

– a simple cap on how much entrants can learn from incumbents is
enough to get rid of the multiplicity in a large economy

– this has a well-behaved limit as the cap becomes large
– the selective replication logic survives and produces long-run growth

• will need to be careful to collect all the equilibrium conditions
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preferences, factor supplies, a bit of technology
• the population is Ht = Heηt, with η > 0

• dynastic preferences over {Ct}t≥0,

U(C) =

∫ ∞
0

e−ρtHt ln(Ct/Ht)dt

where

Ct =

(∫
ez/εc

1−1/ε
z,t N(t, dz)

)1/(1−1/ε)

• crucial parameter restrictions
ρ > η, ε > 1

• a Roy model for primary factors of production

– labor
L(qt/wt) =

∫
xι {wtx > qty} dP(x, y)

– entrepreneurial services

E(qt/wt) =

∫
yι {wtx < qty} dP(x, y)

• a linear labor-only technology with a unit productivity
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product market equilibrium

• demand curves for differentiated goods

cz,t =

(
pz,t
Pt

)−ε
ezCt, Pt =

(∫
ezp1−ε

z,t N(t, dz)

)1/(1−ε)

• monopolistic competition implies the Lerner price

pz,t =
wt

1− 1/ε

• together with the price index Pt, this implies

wt
Pt

=

(
1− 1

ε

)(
eZtNt

)1/(ε−1)
, eZt =

1

Nt

∫
ezN(t, dz)

where Nt = N(t,∞)

– gains from variety via Nt

– the quality distribution N(t, z)/Nt will be a traveling wave
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key product market implications

• firm profits and use of labor[
vz,t

wtlz,t

]
=

[
1/ε

1− 1/ε

]
ez−Zt × PtCt

Nt

– this is a “Red Queen environment”

• aggregate production labor Lt is

Lt =

∫
lz,tN(t, dz)

– the definition of Zt implies

wtLt =

(
1− 1

ε

)
PtCt

• average profits in units of labor are

1

wtNt

∫
vz,tN(t, dz) =

1

ε− 1

Lt
Nt
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productivity dynamics and firm values

• the fundamental assumption is

dzt = θdt + σdWt

– firm-specific random walks, with a trend θ ∈ (−∞,∞)

– for example, θ = −1
2σ

2, so that ezt is a positive martingale
– there is always a non-trivial new set of modifications to try
– of course, we could, instead, run out of ideas. . .

• firm continuation requires φ > 0 units of labor per unit of time

• given zt = z, the value of a firm is

V (t, z)

Pt
= max

τ≥0
Et

[∫ t+τ

t

e−ρ(s−t) × Ct/Ht

Cs/Hs

(
vzs,s
Ps
− φws

Ps

)
ds

]
– where τ is a stopping time
– the use of logarithmic utility is not essential

• optimal to exit when zt ≤ bt, for some bt to be determined
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the knowledge diffusion assumption

• entrepreneurs produce a flow of entry opportunities E(qt/wt)Ht

• an entry opportunity is

– a random draw from the incumbent population
– then, may copy the z of the randomly sampled firm
– but only if z ∈ [bt, bt + ∆], for some ∆ ∈ (0,∞)

– interpretation: “everyone knows” bt and can learn up to ∆ more

• the value of an entry opportunity is

qt =

(∫ ∞
bt

N(t, dz)

)−1 ∫ bt+∆

bt

V (t, z)N(t, dz)

– draws from (bt + ∆,∞) go to waste

• the Roy model determines E(·)
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the Kolmogorov forward equation

• for any z ∈ (bt, bt + ∆)

the flow of entrants at z is E
(
qt
wt

)
Ht ×

n(t, z)

Nt
= αtn(t, z)

where αt is the attempted entry rate, defined as

αt =
E (qt/wt)

Nt/Ht

• the Kolmogorov forward equation is

Dtn(t, z) = −θDzn(t, z) +
1

2
σ2Dzzn(t, z) + αtn(t, z),

for z ∈ (bt, bt + ∆) and

Dtn(t, z) = −θDzn(t, z) +
1

2
σ2Dzzn(t, z),

for z ∈ (bt + ∆,∞)

• immediate exit at bt means that

n(t, bt) = 0

• the density should be smooth at bt + ∆
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constructing a BGP—an outline

• conjecture that Zt grows at some equilibrium rate θ − µ
• given µ, we will show that

– there is a unique stationary distribution if ∆ ∈ (0,∞),
– but a continuum if ∆ =∞

I a steady state supply of firms
N

H
= S

( q
w

;µ
)

(1)

– from entrepreneurial incentives, life cycle of firms

I a steady state demand for firms
N

H
= D

( q
w

;µ
)

(2)

– how many firms needed to employ all workers?

I a present-value condition
q

w
= Q (µ) (3)
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aggregate conjectures

I conjecture a common growth rate for

(i) per-capita consumption
(ii) the real wage

(iii) average real variable profits

• recall that [∫
vz,tN(t, dz), wtLt

]
=

[
1

ε
, 1− 1

ε

]
PtCt

and
wt
Pt

=

(
1− 1

ε

)(
eZtNt

)1/(ε−1)
, eZt =

1

Nt

∫
ezN(t, dz)

I this implies
Lt
Ht

=
L

H
,

Nt

Ht
=
N

H
and

Zt = Z + (θ − µ)t

for some L/H , N/H and µ to be determined
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what does µ do?

I for individual firms, µ is the drift of zt − Zt,

d (zt − Zt) = µdt + σdWt

– and lz,t ∝ ezt−Zt

• recall that [
Lt
Ht
,
Nt

Ht

]
=

[
L

H
,
N

H

]
, Ht = Heηt

and
wt
Pt

=

(
1− 1

ε

)(
eZtNt

)1/(ε−1)
,

wt
Pt

Lt
Ht

=

(
1− 1

ε

)
Ct
Ht

I so then Zt = Z + (θ − µ)t implies[
wt
Pt
,
Ct
Ht

]
=

[
w

P
,
C

H

]
eκt, κ =

θ − µ + η

ε− 1

– fast aggregate growth means slow firm growth
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the implied value function

• recall that
vz,t
wt

= ez−Zt × Lt/Nt

ε− 1
and Ct/Ht and wt/Pt grow at a common rate

• this yields

V (t, z)

Pt
=
φwt
Pt
×max

τ
Et

[∫ t+τ

t

e−ρ(s−t)
(

ezs−ZsL

(ε− 1)φN
− 1

)
ds

]
,

where

zs − Zs = z − Zt + µ(s− t) + σ(Ws −Wt) for all s ≥ t

I this must be of the form
V (t, z)

Pt
=
φwt
Pt
× U (y) , ey =

ez−ZtL

(ε− 1)φN

I will need the equilibrium µ to satisfy

µ +
1

2
σ2 < ρ
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the solution for V (t, z)

• is given by

V (t, z)

Pt
=
φwt
Pt
× U (y) , ey =

ez−ZtL

(ε− 1)φN

• where

U(y) =

{
0 , y ≤ a

1
ρ

ξ
1+ξ

(
ey−a − 1− 1−e−ξ(y−a)

ξ

)
, y ≥ a

– and the exit threshold a < 0 is determined by

ea =
ξ

1 + ξ

(
1− 1

ρ

(
µ +

1

2
σ2

))
and

ξ =
µ

σ2
+

√( µ
σ2

)2

+
ρ

σ2/2

– note that y = 0 corresponds to zero flow profits

I so we have a mapping
µ 7→ [a, U(·)]
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the stationarity conjecture

• strengthen Zt − bt = Z − b to time-invariance of the cross-sectional
distribution of z − bt,

n(t, z) = Ntf (z − bt), z ∈ (bt,∞)

– the definition of Zt implies a consistency condition

eZ−b =

∫ ∞
0

euf (u)du

I the value qt/wt of an entry opportunity now becomes

qt
wt

= φ

∫ ∆

0

U (a + u) f (u)du

– so qt/wt, E(qt/wt), and L(qt/wt) are constant over time

I since Nt/Ht = N/H , this means that αt = α, and hence

N

H
=

1

α
× E

( q
w

)
– this is the steady state supply of firms as a function of q/w
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clearing the labor market

• the employment size of firms scales with eu = ey−a = ez−b

• recall the consistency condition

eZ−b =

∫ ∞
0

euf (u)du

and that the threshold b for z is determined by the threshold a for y
via

ea =
eb−ZL

(ε− 1)φN

I the labor market clearing condition

L
( q
w

)
H = φN + L

can therefore be written as
N

H
=

1

φ

L (q/w)

1 + (ε− 1)
∫∞

0 ea+uf (u)du

– the steady state demand for firms as a function of q/w
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the stationary KFE

• recall
z − bt = z − Zt + Zt − bt = z − Zt + Z − b

and
d (zt − Zt) = µdt + σdWt

• the Kolmogorov forward equation for n(t, z) = Ntf (z − bt) becomes

ηf (u) = −µDf (u) +
1

2
σ2D2f (u) + αf (u)

for u ∈ (0,∆) and

ηf (u) = −µDf (u) +
1

2
σ2D2f (u)

for u ∈ (∆,∞)

• the boundary conditions are

– f (0) = 0 = f (∞)

– differentiability at ∆

• and f (·) is supposed to integrate to 1
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solving the KFE—1: characteristic roots

I KEY RESULT for ∆ ∈ (0,∞)

– for any µ ∈ (−∞,∞), there is precisely one attempted entry rate
α > 0 for which it is possible to solve the KFE

– so α and f (·) are pinned down jointly as a function of µ

• on (0,∆), a solution of the form e−χz implies χ ∈ {χ−, χ+},

χ± = − µ
σ2
±
√( µ

σ2

)2

− α− η
σ2/2

• on (∆,∞), a solution of the form e−ζz implies ζ ∈ {ζ−, ζ+},

ζ± = − µ
σ2
±
√( µ

σ2

)2

+
η

σ2/2

• then η > 0 implies ζ− < 0 < ζ+, irrespective of the sign of µ

– this forces f (u) ∝ e−ζ+u on (∆,∞), scale to be determined

• the χ± may be real or complex, which obviously depends on α
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solving the KFE—2: imposing differentiability at ∆

• FACT: no way to enforce differentiability at ∆ if the χ± are real

• suppose α large enough so that the roots χ± are complex

– let ψ = Re(χ+) and ω = Im(χ+),

ψ = − µ
σ2

, ω =

√
α− η
σ2/2

− ψ2

– requiring f (u) to be real forces

f (u) = [A cos(ωu) + B sin(ωu)] e−ψu

– imposing f (0) = 0 forces A = 0

– imposing continuity at u = ∆ yields

f (u) = B

{
sin(ωu)e−ψu, u ∈ [0,∆],
sin(ω∆)e−ψ∆e−ζ+(u−∆), u ∈ [∆,∞)

– this is positive on (0,∆) if and only if ω∆ ∈ (0, π)

– imposing differentiability at u = ∆ forces

− cos(ω∆)

sin(ω∆)/(ω∆)
= ∆

√
ψ2 +

η

σ2/2
.
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the solution for ω

0 1 2 3 4 5 6
­4

­2

0

2

4

6

8

10

ω
∆

co
s(

ω
∆

)/s
in

( ω
∆

)

ω∆
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solving the KFE—3: the implied attempted entry rate

• recall ψ = Re(χ+) and ω = Im(χ+),

ψ = − µ
σ2

, ω =

√
α− η
σ2/2

− ψ2

• differentiability at ∆ forces

− cos(ω∆)

sin(ω∆)/(ω∆)
= ∆

√
ψ2 +

η

σ2/2

– LHS is increasing in ω∆ ∈ (0, π), ranging throughout (−1,∞)

– unique solution ω ∈ (0, π/∆)

– this solution is increasing in ψ2, decreasing in ∆

• inverting the definition of ω delivers the attempted entry rate

α = η +
1

2
σ2
(
ω2 + ψ2

)
– so α is increasing in ψ2 ∝ µ2

– in particular, µ→ −∞ gives α→∞
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the large-∆ limiting distribution

Lemma The stationary distribution function converges to

lim
∆→∞

F (u) =

{
0 , ψ ∈ (−∞, 0]

1− (1 + ψu)e−ψu , ψ ∈ (0,∞)

for any u ∈ [0,∞). The truncated mean of eu behaves like

lim
∆→∞

∫ ∆

0

eudF (u) =

{
∞ , ψ ∈ (−∞, 1](
ψ
ψ−1

)2

, ψ ∈ (1,∞)

The attempted entry rate satisfies

lim
∆→∞

α = η +
1

2
σ2ψ2

• if ψ > 0 and ∆ ∈ (0,∞), then the right tail index is

ζ+ = ψ +

√
ψ2 +

η

σ2/2
> 2ψ (!)

I so the tail index is discontinuous at ∆ =∞
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the convergence is monotone in the sense
of first-order stochastic dominance

0
0

1

u

F(
u)
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densities
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∆ ∈ {3,6,∞}
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log-log plot of distributions
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recap

1. decision rules and steady state requirements imply

– the supply of firms
N

H
=

1

α
× E

( q
w

)
– the demand for firms

N

H
=

1

φ

L (q/w)

1 + (ε− 1)
∫∞

0 ea+uf (u)du

⇒ market clearing delivers q/w

2. perfect foresight also delivers a present value condition

q

w
= φ

∫ ∆

0

U (a + u) f (u)du

• in the background

– the Bellman equation gives a function µ 7→ [a, U(·)]
– the KFE gives a function µ 7→ [α, f (·)], provided ∆ ∈ (0,∞)

I the two versions of q/w must match, producing a restriction on µ
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the equations for balanced growth

• clearing the steady state market for firms gives

E (q/w)

L (q/w)
=

α/φ

1 + (ε− 1)
∫∞

0 ea+uf (u)du
(1)

• the relative price q/w must also satisfy

q

w
= φ

∫ ∆

0

U (a + u) f (u)du (2)

• in the background

– the Bellman equation yields

µ 7→ {a, U(·)}

– the KFE yields
µ 7→ {α, f (·)}

• if the initial density satisfies n(0, z)/N = f (z− b) for some b, then the
economy is on a balanced growth path
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an irregular special case: perfectly elastic factor supplies

• this fixes q/w, and then µ is determined by

q

w
= φ

∫ ∆

0

U (a + u) f (u)du (PF)

– the firm value U(a + u) is finite if and only if

ρ > µ +
1

2
σ2

• market clearing still requires finite average employment∫ ∞
0

ea+uf (u)du <∞

– this is the same as ζ+ > 1, or

η > µ +
1

2
σ2

I may not have a BGP because

– finite dynastic utility requires ρ > η, and then. . .
– the RHS of (PF) may not reach q/w on

{
µ : µ + 1

2σ
2 < η

}
31



perfectly elastic factor supplies

­0.2 ­0.18 ­0.16 ­0.14 ­0.12 ­0.1 ­0.08 ­0.06 ­0.04 ­0.02
0

1

2

3

4

5

6

7

8

9

10

µ

q/
w

∆ = 4.0

∆ = 1.0

∆ = ∞

∆ = 1.5

ψ = 1

∆ = 2.0

∆ = 0.8

• value of entry, bounded on the domain
{
µ : µ + 1

2σ
2 < η

}
• there may not be a BGP when ∆ ∈ (0,∞)
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a regular special case: perfectly inelastic factor supplies

• this fixes E/L, and µ is determined by
E
L =

α/φ

1 + (ε− 1)
∫∞

0 ea+uf (u)du
(MC)

– the Bellman equation yields

µ 7→ {a, U(·)}
– the KFE yields

µ 7→ {α, f (·)}
I the RHS of (MC) ranges throughout (0,∞) on

{
µ : µ + 1

2σ
2 < η

}
– since ρ > η, and since mean employment must be finite

µ +
1

2
σ2 < η < ρ

– the relative price q/w is determined by

q

w
= φ

∫ ∆

0

U (a + u) f (u)du

which is well defined by construction
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perfectly inelastic factor supplies

­0.03 ­0.025 ­0.02 ­0.015 ­0.01 ­0.005 0 0.005 0.01 0.015
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

µ

∆ = ∞
∆ = 4.0

∆ = 1.5

∆ = 1.0

∆ = 0.8

ψ = 1

ζ
+
 = 1

• relative factor demands, on the domain {µ : ζ+ > 1} =
{
µ : µ + 1

2σ
2 < η

}
• note that µ > 0 is possible

– the trend of ln(Zt) may be below θ when ∆ ∈ (0,∞)
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existence of a BGP

Proposition A Assume the relative factor supply curve E(·)/L(·) is con-
tinuous. When ∆ is large enough, a finite-∆ economy must have at least one
equilibrium, and every equilibrium must satisfy ψ∆ > 1.

Proposition B Assume the relative factor supply curve E(·)/L(·) is contin-
uous. Consider the equilibrium conditions (1)-(2) with ψ > 1, α = η + 1

2σ
2ψ2,

f (u) = ψ2ue−ψu, and ∆ = ∞. With these restrictions, the economy has pre-
cisely one balanced growth path, denoted by ψ∞ ∈ (1,∞).

Proposition C Assume the relative factor supply curves E(·)/L(·) are con-
tinuous and let E∆ ⊂ {ψ : ζ+ > 1} be the set of equilibria for the ∆ economy.
Then supψ∈E∆

|ψ − ψ∞| converges to zero as ∆ becomes large.

Corollary Productivity grows faster than θ when ∆ is large enough, since
ψ∞ = −µ∞/σ2 > 1.
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solving the KFE for ∆ =∞
• the KFE simplifies to

ηf (u) = −µDf (u) +
1

2
σ2D2f (u) + αf (u)

for all u ∈ (0,∞), with the boundary conditions f (0) = 0 = f (∞)

• solved by linear combinations of e−χ−u and e−χ+u,

χ± = ψ ±
√
ψ2 − α− η

σ2/2
, ψ = − µ

σ2

– complex χ± yields a positive density only on a bounded interval
– if α ∈ [0, η], then χ− ≤ 0 ≤ χ+, which rules out f (0) = 0 = f (∞)

• need α to satisfy 0 < (α− η)/(σ2/2) ≤ ψ2 and ψ > 0, and then

f (u) =
χ+χ−
χ+ − χ−

×
(
e−χ−u − e−χ+u

)
,

for all u ∈ [0,∞)

I this was the density obtained in Luttmer [2007]

– if (α−η)/(σ2/2) ↑ ψ2 this matches the large-∆ limit f (u) = ψ2ue−ψu
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balanced growth pathS

• steady state market clearing requires

E (q/w)

L (q/w)
=

α/φ

1 + (ε− 1)
∫∞

0 ea+uf (u)du

• the relative price q/w must also satisfy

q

w
= φ

∫ ∞
0

U (a + u) f (u)du (PF)

• in the background

– the Bellman equation yields

µ 7→ {a, U(·)}

– the KFE yields
(µ, α) 7→ f (·) (!)

rather than µ 7→ {α, f (·)}

• aside: in Luttmer [2007], the factor supplies are perfectly elastic, and
(PF) forces the mean of eu to be finite
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feasible α given µ

• recall

χ± = ψ ±
√
ψ2 − α− η

σ2/2
, ψ = − µ

σ2

• need χ± real and χ− > 1, which is the same as

1 < ψ, 2ψ − 1 <
α− η
σ2/2

≤ ψ2

• note that on this domain
∂χ−
∂ψ

=
∂

∂ψ

(
ψ −

√
ψ2 − α− η

σ2/2

)
< 0

– holding fixed α, a lower firm growth rate µ implies a thicker tail
– bootstrap logic: a lower µ tends to generate more exit; without

more entry, must have a thicker tail so it takes more firms longer
to reach the exit barrier

• recall that the limiting BGP as ∆→∞ is ψ∞ > 1, and

– the attempted entry rate is at its (∆ =∞) upper bound

α∞ = η +
1

2
σ2ψ2

∞
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constructing alternative BGP

• can construct BGP for any ψ > ψ∞

• so there is no upper bound on how fast the economy can grow

• the key calculation is∫ ∞
0

euf (u)du =
χ+χ−

(χ+ − 1) (χ− − 1)
=

α−η
σ2/2

α−η
σ2/2
− (2ψ − 1)

– decreasing in α
– increasing in ψ, reflecting the bootstrap logic
– but at α = η + 1

2σ
2ψ, this mean equals (ψ/(ψ − 1))2. . .

– . . . which is decreasing in ψ
– . . . as in the ∆→∞ limit

• when factor supplies are inelastic, only need to consider

E
L =

α/φ

1 + (ε− 1)
∫∞

0 ea+uf (u)du

– and remember that the exit threshold ea is increasing inψ = −µ/σ2
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miraculous growth in the ∆ =∞ economy

1
1

ψ

(α
­η

)/(
σ

2 /2
)

RHS > LHS

RHS = 0

RHS = LHS

2ψ­1ψ2

RHS < LHS

∆→∞

• this construction is for an economy with inelastic factor supplies

– first increase ψ > ψ∞ while α = η + 1
2σ

2ψ2 > α∞

– then fix α and increase ψ further to clear the market
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concluding remark

• with continuous factor supplies, the equilibrium will satisfy

µ +
1

2
σ2 < η

• this implies a per-capita consumption growth rate

κ =
θ − µ + η

ε− 1
>

1

ε− 1

(
θ +

1

2
σ2

)
• for individual firms

d [ezt] = [ezt]

((
θ +

1

2
σ2

)
dt + σdWt

)
• the scenario θ + 1

2σ
2 = 0 shows that

– even if ezt is “only” a martingale for individual firms. . .
– . . . the overall economy will grow
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additional material
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key properties of the value function

Lemma The value function is well defined if and only if µ + 1
2σ

2 < ρ. Given
this restriction, it has the following properties:

(i) The value function is strictly increasing and unbounded in y > a.

(ii) The exit threshold is strictly decreasing in µ,

lim
µ→−∞

a = 0, and lim
µ↑ρ−σ2/2

a = −∞.

(iii) For any u ∈ (0,∞) or y ∈ (−∞,∞),

lim
µ→−∞

U(a + u) = 0, lim
µ↑ρ−σ2/2

U(a + u) ∈ (0,∞), lim
µ↑ρ−σ2/2

U(y) =∞,

and U(a + u) is increasing in µ.

• the time-t exit threshold for firm of type z must then be

bt = b + (θ − µ)t, ea =
eb−ZL

(ε− 1)φN

• so the gap Zt − bt = Z − b is constant over time
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an accounting identity implied by the KFE

• integrating the differential equation over (0,∞) yields

α

∫ ∆

0

f (u)du = η +
1

2
σ2Df (0)

– need to use the above stated boundary conditions
– this fails if f (·) not differentiable at ∆

• we also know that the exit rate at z = b is given by 1
2σ

2Df (0)

• this confirms the basic steady state accounting condition

successful entry rate

=

population growth rate + exit rate

I can infer α from f (·), without knowing µ

44


