Bounded Learning from Incumbent Firms

Erzo G.J. Luttmer University of Minnesota

Institute for Mathematical and Statistical Innovation University of Chicago, October 27, 2021

the issue

• in my 2007 QJE paper, I showed

- (1) small random firm-specific productivity shocks $\Big\}$
- (2) entrants learn from surviving incumbents

long-run aggregate growth, at an endogenous rate

- icing on the cake: Pareto-like firm size distributions

• but: the model has a continuum of steady state equilibria with distinct growth rates and firm size distributions

- the paper had a heuristic argument to select one equilibrium

- this multiplicity issue has arisen again in more recent models of social learning and aggregate growth
- this paper: a diagnosis of the problem, and a new way to obtain a unique prediction for long-run growth

idea flows

• some early work

Iwai 1984, Jovanovic and Rob 1989, Chari and Hopenhayn 1991, Kortum 1997, Eaton and Kortum 1999

• social learning only

Alvarez, Buera and Lucas 2008, Lucas 2009, Lucas and Moll 2014, Perla and Tonetti 2014

• individual discovery and social learning

Luttmer 2007, Staley 2011, König, Lorenz, Zilibotti 2012, Luttmer 2015 (*Fed*)

- unique stationary distribution and balanced growth path Luttmer 2012 (*JET*), this paper
- ▶ see *Fed w.p.* 724, *"Four Models* ..." for a survey of technical issues

the easiest example

• agents randomly select others at rate β and copy if "better"

$$D_t P(t, z) = -\beta P(t, z) [1 - P(t, z)]$$

▶ the *unique* solution to this system of logistic ODE is

$$P(t,z) = \frac{1}{1 + \left(\frac{1}{P(0,z)} - 1\right)e^{\beta t}}$$

– but P(0, z) matters a lot. . .

• *many stationary* solutions (note that κ is a free parameter)

– linear trends

if
$$P(0,z) = \frac{1}{1 + \left(\frac{1}{P(0,0)} - 1\right) e^{-(\beta/\kappa)z}}$$
 then $P(t,z) = P(0,z-\kappa t)$

– exponential trends

if
$$P(0, z) = \frac{1}{1 + \left(\frac{1}{P(0, 1)} - 1\right) z^{-\beta/\kappa}}$$

then $P(t,z) = P(0,ze^{-\kappa t})$

a better model: social learning *and* individual discovery

• two independent standard Brownian motions $W_{1,t}, W_{2,t}$,

$$\mathbb{E}\left[\max\left\{\sigma W_{1,t}, \sigma W_{2,t}\right\}\right] = \sigma\sqrt{t} \int_{-\infty}^{\infty} 2x\phi(x)\Phi(x)dx = \sigma\sqrt{t/\pi}$$

• reset to the max at random time $\tau_{j+1} > \tau_j$

$$z_{\tau_{j+1}} = z_{\tau_j} + \sigma \max\left\{ W_{1,\tau_{j+1}} - W_{1,\tau_j}, W_{2,\tau_{j+1}} - W_{2,\tau_j} \right\}$$

• reset times arrive randomly at rate $\alpha = 2\beta$

$$E\left[\frac{z_{\tau_{n+1}} - z_{\tau_n}}{\tau_{n+1} - \tau_n} \middle| z_{\tau_n}\right] = \int_0^\infty \frac{\sigma \sqrt{\tau/\pi}}{\tau} \times \alpha e^{-\alpha \tau} d\tau$$
$$= \sigma \sqrt{\alpha}$$

$$= \sigma^2 \times \sqrt{\frac{\beta}{\sigma^2/2}}$$

what's next

- in this example
 - not just learning from each other but also trying new things
 - research is cumulative, with random increments
 - rather than more draws from the same old distribution
 - and successful improvements are shared
 - no multiplicity issues anywhere in sight
- unlike in a large economy, with only two agents there can be no thick right tail of possible gains from social learning
- the idea in this paper
 - a simple cap on how much entrants can learn from incumbents is enough to get rid of the multiplicity in a large economy
 - this has a well-behaved limit as the cap becomes large
 - the selective replication logic survives and produces long-run growth
- will need to be careful to collect *all* the equilibrium conditions

preferences, factor supplies, a bit of technology

- the population is $H_t = He^{\eta t}$, with $\eta > 0$
- dynastic preferences over $\{C_t\}_{t\geq 0}$,

$$\mathcal{U}(C) = \int_0^\infty e^{-\rho t} H_t \ln(C_t/H_t) \mathrm{d}t$$

where

$$C_t = \left(\int e^{z/\varepsilon} c_{z,t}^{1-1/\varepsilon} N(t, \mathrm{d}z)\right)^{1/(1-1/\varepsilon)}$$

• crucial parameter restrictions

$$\rho > \eta$$
, $\varepsilon > 1$

- a Roy model for primary factors of production
 - labor

$$\mathcal{L}(q_t/w_t) = \int x\iota \{w_t x > q_t y\} \,\mathrm{d}\mathcal{P}(x, y)$$

– entrepreneurial services

$$\mathcal{E}(q_t/w_t) = \int y\iota \left\{ w_t x < q_t y \right\} d\mathcal{P}(x, y)$$

• a linear labor-only technology with a unit productivity

product market equilibrium

• demand curves for differentiated goods

$$c_{z,t} = \left(\frac{p_{z,t}}{P_t}\right)^{-\varepsilon} e^z C_t, \qquad P_t = \left(\int e^z p_{z,t}^{1-\varepsilon} N(t, \mathrm{d}z)\right)^{1/(1-\varepsilon)}$$

• monopolistic competition implies the Lerner price

$$p_{z,t} = \frac{w_t}{1 - 1/\varepsilon}$$

• together with the price index P_t , this implies

$$\frac{w_t}{P_t} = \left(1 - \frac{1}{\varepsilon}\right) \left(e^{Z_t} N_t\right)^{1/(\varepsilon - 1)}, \quad e^{Z_t} = \frac{1}{N_t} \int e^z N(t, \mathrm{d}z)$$

where $N_t = N(t, \infty)$

- gains from variety via N_t
- the quality distribution $N(t, z)/N_t$ will be a traveling wave

key product market implications

• firm profits and use of labor

$$\begin{bmatrix} v_{z,t} \\ w_t l_{z,t} \end{bmatrix} = \begin{bmatrix} 1/\varepsilon \\ 1-1/\varepsilon \end{bmatrix} e^{z-Z_t} \times \frac{P_t C_t}{N_t}$$

- this is a "Red Queen environment"

• aggregate production labor L_t is

$$L_t = \int l_{z,t} N(t, \mathrm{d}z)$$

– the definition of Z_t implies

$$w_t L_t = \left(1 - \frac{1}{\varepsilon}\right) P_t C_t$$

• average profits in units of labor are

$$\frac{1}{w_t N_t} \int v_{z,t} N(t, \mathrm{d}z) = \frac{1}{\varepsilon - 1} \frac{L_t}{N_t}$$

productivity dynamics and firm values

• the fundamental assumption is

 $\mathrm{d}z_t = \theta \mathrm{d}t + \sigma \mathrm{d}W_t$

– firm-specific random walks, with a trend $\theta \in (-\infty, \infty)$

– for example, $\theta = -\frac{1}{2}\sigma^2$, so that e^{z_t} is a positive martingale

- there is always a *non-trivial* new set of *modifications* to try
- of course, we could, instead, run out of ideas...
- firm continuation requires $\phi > 0$ units of labor per unit of time
- given $z_t = z$, the value of a firm is

$$\frac{V(t,z)}{P_t} = \max_{\tau \ge 0} \mathcal{E}_t \left[\int_t^{t+\tau} e^{-\rho(s-t)} \times \frac{C_t/H_t}{C_s/H_s} \left(\frac{v_{z_s,s}}{P_s} - \frac{\phi w_s}{P_s} \right) \mathrm{d}s \right]$$

- where τ is a stopping time
- the use of logarithmic utility is not essential
- optimal to exit when $z_t \leq b_t$, for some b_t to be determined

the knowledge diffusion assumption

- entrepreneurs produce a flow of entry opportunities $\mathcal{E}(q_t/w_t)H_t$
- an entry opportunity is
 - a random draw from the incumbent population
 - then, may copy the z of the randomly sampled firm
 - but only if $z \in [b_t, b_t + \Delta]$, for some $\Delta \in (0, \infty)$
 - interpretation: "everyone knows" b_t and can learn up to Δ more
- the value of an entry opportunity is

$$q_t = \left(\int_{b_t}^{\infty} N(t, \mathrm{d}z)\right)^{-1} \int_{b_t}^{b_t + \Delta} V(t, z) N(t, \mathrm{d}z)$$

– draws from $(b_t + \Delta, \infty)$ go to waste

 \bullet the Roy model determines $\mathcal{E}(\cdot)$

the Kolmogorov forward equation

• for any $z \in (b_t, b_t + \Delta)$

the flow of entrants at z is $\mathcal{E}\left(\frac{q_t}{w_t}\right)H_t\times\frac{n(t,z)}{N_t}=\alpha_tn(t,z)$

where α_t is the *attempted entry rate*, defined as

$$\alpha_t = \frac{\mathcal{E}\left(q_t/w_t\right)}{N_t/H_t}$$

• the Kolmogorov forward equation is

$$D_t n(t,z) = -\theta D_z n(t,z) + \frac{1}{2} \sigma^2 D_{zz} n(t,z) + \alpha_t n(t,z),$$

for $z \in (b_t, b_t + \Delta)$ and

$$D_t n(t,z) = -\theta D_z n(t,z) + \frac{1}{2} \sigma^2 D_{zz} n(t,z),$$

for $z \in (b_t + \Delta, \infty)$

• immediate exit at *b*_t means that

$$n(t, b_t) = 0$$

• the density should be smooth at $b_t + \Delta$

constructing a BGP—an outline

- conjecture that Z_t grows at some equilibrium rate $\theta \mu$
- given μ , we will show that
 - there is a unique stationary distribution if $\Delta \in (0, \infty)$,
 - but a continuum if $\Delta = \infty$
- ► a steady state supply of firms

$$\frac{N}{H} = \mathcal{S}\left(\frac{q}{w};\mu\right) \tag{1}$$

– from entrepreneurial incentives, life cycle of firms

► a steady state demand for firms

$$\frac{N}{H} = \mathcal{D}\left(\frac{q}{w}; \mu\right) \tag{2}$$

- how many firms needed to employ all workers?

► a present-value condition

$$\frac{q}{w} = \mathcal{Q}\left(\mu\right) \tag{3}$$

aggregate conjectures

► conjecture a common growth rate for

(i) per-capita consumption

(ii) the real wage

(iii) average real variable profits

• recall that

$$\left[\int v_{z,t} N(t, \mathrm{d}z), w_t L_t\right] = \left[\frac{1}{\varepsilon}, 1 - \frac{1}{\varepsilon}\right] P_t C_t$$

and

$$\frac{w_t}{P_t} = \left(1 - \frac{1}{\varepsilon}\right) \left(e^{Z_t} N_t\right)^{1/(\varepsilon - 1)}, \quad e^{Z_t} = \frac{1}{N_t} \int e^z N(t, \mathrm{d}z)$$

► this implies

$$\frac{L_t}{H_t} = \frac{L}{H'}, \quad \frac{N_t}{H_t} = \frac{N}{H}$$

and

$$Z_t = Z + (\theta - \mu)t$$

for some L/H, N/H and μ to be determined

what does μ do?

▶ for individual firms, μ is the drift of $z_t - Z_t$,

$$\mathrm{d}\left(z_t - Z_t\right) = \mu \mathrm{d}t + \sigma \mathrm{d}W_t$$

– and
$$l_{z,t} \propto e^{z_t - Z_t}$$

• recall that

$$\left[\frac{L_t}{H_t}, \frac{N_t}{H_t}\right] = \left[\frac{L}{H}, \frac{N}{H}\right], \quad H_t = He^{\eta t}$$

and

$$\frac{w_t}{P_t} = \left(1 - \frac{1}{\varepsilon}\right) \left(e^{Z_t} N_t\right)^{1/(\varepsilon - 1)}, \quad \frac{w_t}{P_t} \frac{L_t}{H_t} = \left(1 - \frac{1}{\varepsilon}\right) \frac{C_t}{H_t}$$

► so then $Z_t = Z + (\theta - \mu)t$ implies $\left[\frac{w_t}{P_t}, \frac{C_t}{H_t}\right] = \left[\frac{w}{P}, \frac{C}{H}\right] e^{\kappa t}, \quad \kappa = \frac{\theta - \mu + \eta}{\varepsilon - 1}$

- *fast* aggregate growth means *slow* firm growth

the implied value function

• recall that

$$\frac{v_{z,t}}{w_t} = e^{z - Z_t} \times \frac{L_t / N_t}{\varepsilon - 1}$$

and C_t/H_t and w_t/P_t grow at a common rate

• this yields

$$\frac{V(t,z)}{P_t} = \frac{\phi w_t}{P_t} \times \max_{\tau} \mathbb{E}_t \left[\int_t^{t+\tau} e^{-\rho(s-t)} \left(\frac{e^{z_s - Z_s} L}{(\varepsilon - 1)\phi N} - 1 \right) \mathrm{d}s \right],$$

where

$$z_s - Z_s = z - Z_t + \mu(s - t) + \sigma(W_s - W_t)$$
 for all $s \ge t$

► this must be of the form

$$\frac{V(t,z)}{P_t} = \frac{\phi w_t}{P_t} \times U(y), \qquad e^y = \frac{e^{z-Z_t}L}{(\varepsilon - 1)\phi N}$$

• will need the equilibrium μ to satisfy

$$\mu + \frac{1}{2}\sigma^2 < \rho$$

the solution for V(t, z)

• is given by

$$\frac{V(t,z)}{P_t} = \frac{\phi w_t}{P_t} \times U(y), \qquad e^y = \frac{e^{z-Z_t}L}{(\varepsilon - 1)\phi N}$$

• where

$$U(y) = \begin{cases} 0 , y \le a \\ \frac{1}{\rho} \frac{\xi}{1+\xi} \left(e^{y-a} - 1 - \frac{1-e^{-\xi(y-a)}}{\xi} \right) , y \ge a \end{cases}$$

– and the exit threshold a < 0 is determined by

$$e^{a} = \frac{\xi}{1+\xi} \left(1 - \frac{1}{\rho} \left(\mu + \frac{1}{2}\sigma^{2} \right) \right)$$

and

$$\xi = \frac{\mu}{\sigma^2} + \sqrt{\left(\frac{\mu}{\sigma^2}\right)^2 + \frac{\rho}{\sigma^2/2}}$$

– note that y = 0 corresponds to zero flow profits

► so we have a mapping

$$\mu\mapsto [a,U(\cdot)]$$

the stationarity conjecture

• strengthen $Z_t - b_t = Z - b$ to time-invariance of the cross-sectional distribution of $z - b_t$,

$$n(t,z) = N_t f(z - b_t), \qquad z \in (b_t, \infty)$$

– the definition of Z_t implies a consistency condition

$$e^{Z-b} = \int_0^\infty e^u f(u) \mathrm{d}u$$

▶ the value q_t/w_t of an entry opportunity now becomes

$$\frac{q_t}{w_t} = \phi \int_0^\Delta U\left(a+u\right) f(u) \mathrm{d}u$$

- so q_t/w_t , $\mathcal{E}(q_t/w_t)$, and $\mathcal{L}(q_t/w_t)$ are constant over time

▶ since $N_t/H_t = N/H$, this means that $\alpha_t = \alpha$, and hence

$$\frac{N}{H} = \frac{1}{\alpha} \times \mathcal{E}\left(\frac{q}{w}\right)$$

– this is the *steady state supply* of firms as a function of q/w

clearing the labor market

- the employment size of firms scales with $e^u = e^{y-a} = e^{z-b}$
- recall the consistency condition

$$e^{Z-b} = \int_0^\infty e^u f(u) \mathrm{d}u$$

and that the threshold *b* for *z* is determined by the threshold *a* for *y* via

$$e^a = \frac{e^{b-Z}L}{(\varepsilon - 1)\phi N}$$

► the labor market clearing condition

$$\mathcal{L}\left(\frac{q}{w}\right)H = \phi N + L$$

can therefore be written as

$$\frac{N}{H} = \frac{1}{\phi} \frac{\mathcal{L}(q/w)}{1 + (\varepsilon - 1) \int_0^\infty e^{a+u} f(u) du}$$

– the *steady state demand* for firms as a function of q/w

the stationary KFE

• recall

$$z - b_t = z - Z_t + Z_t - b_t = z - Z_t + Z - b_t$$

and

$$d(z_t - Z_t) = \mu dt + \sigma dW_t$$

• the Kolmogorov forward equation for $n(t, z) = N_t f(z - b_t)$ becomes

$$\eta f(u) = -\mu \mathbf{D} f(u) + \frac{1}{2} \sigma^2 \mathbf{D}^2 f(u) + \alpha f(u)$$

for $u\in(0,\Delta)$ and

$$\eta f(u) = -\mu \mathbf{D} f(u) + \frac{1}{2} \sigma^2 \mathbf{D}^2 f(u)$$

for $u \in (\Delta, \infty)$

- the boundary conditions are
 - $-f(0) = 0 = f(\infty)$
 - differentiability at Δ
- \bullet and $f(\cdot)$ is supposed to integrate to 1

solving the KFE—1: characteristic roots

- ▶ KEY RESULT for $\Delta \in (0, \infty)$
 - for any $\mu \in (-\infty, \infty)$, there is *precisely one* attempted entry rate $\alpha > 0$ for which it is possible to solve the KFE
 - so α and $f(\cdot)$ are pinned down jointly as a function of μ
- on $(0, \Delta)$, a solution of the form $e^{-\chi z}$ implies $\chi \in \{\chi_{-}, \chi_{+}\}$,

$$\chi_{\pm} = -\frac{\mu}{\sigma^2} \pm \sqrt{\left(\frac{\mu}{\sigma^2}\right)^2 - \frac{\alpha - \eta}{\sigma^2/2}}$$

• on (Δ, ∞) , a solution of the form $e^{-\zeta z}$ implies $\zeta \in \{\zeta_{-}, \zeta_{+}\}$,

$$\zeta_{\pm} = -\frac{\mu}{\sigma^2} \pm \sqrt{\left(\frac{\mu}{\sigma^2}\right)^2 + \frac{\eta}{\sigma^2/2}}$$

- then η > 0 implies ζ₋ < 0 < ζ₊, irrespective of the sign of μ
 this forces f(u) ∝ e^{-ζ₊u} on (Δ, ∞), scale to be determined
- the χ_{\pm} may be real or complex, which obviously depends on α

solving the KFE—2: imposing differentiability at Δ

- FACT: no way to enforce differentiability at Δ if the χ_{\pm} are real
- suppose α large enough so that the roots χ_{\pm} are complex

- let
$$\psi = \operatorname{Re}(\chi_+)$$
 and $\omega = \operatorname{Im}(\chi_+)$,
 $\mu \qquad \sqrt{\alpha - \eta}$

$$\psi = -\frac{\mu}{\sigma^2}, \quad \omega = \sqrt{\frac{\alpha - \eta}{\sigma^2/2}} - \psi^2$$

– requiring f(u) to be real forces

$$f(u) = [A\cos(\omega u) + B\sin(\omega u)] e^{-\psi u}$$

– imposing f(0) = 0 forces A = 0

– imposing continuity at $u = \Delta$ yields

$$f(u) = B \begin{cases} \sin(\omega u) e^{-\psi u}, & u \in [0, \Delta], \\ \sin(\omega \Delta) e^{-\psi \Delta} e^{-\zeta_+(u-\Delta)}, & u \in [\Delta, \infty) \end{cases}$$

– this is positive on $(0, \Delta)$ if and only if $\omega \Delta \in (0, \pi)$

– imposing differentiability at $u = \Delta$ forces

$$-\frac{\cos(\omega\Delta)}{\sin(\omega\Delta)/(\omega\Delta)} = \Delta\sqrt{\psi^2 + \frac{\eta}{\sigma^2/2}}$$

the solution for ω

solving the KFE—3: the implied attempted entry rate

• recall $\psi = \operatorname{Re}(\chi_+)$ and $\omega = \operatorname{Im}(\chi_+)$,

$$\psi = -\frac{\mu}{\sigma^2}, \quad \omega = \sqrt{\frac{\alpha - \eta}{\sigma^2/2} - \psi^2}$$

• differentiability at Δ forces

$$-\frac{\cos(\omega\Delta)}{\sin(\omega\Delta)/(\omega\Delta)} = \Delta\sqrt{\psi^2 + \frac{\eta}{\sigma^2/2}}$$

- LHS is increasing in $\omega \Delta \in (0, \pi)$, ranging throughout $(-1, \infty)$
- unique solution $\omega \in (0, \pi/\Delta)$
- this solution is increasing in ψ^2 , decreasing in Δ
- inverting the definition of ω delivers the attempted entry rate

$$\alpha = \eta + \frac{1}{2}\sigma^2 \left(\omega^2 + \psi^2\right)$$

- so α is increasing in $\psi^2 \propto \mu^2$
- in particular, $\mu \to -\infty$ gives $\alpha \to \infty$

the large- Δ limiting distribution

Lemma The stationary distribution function converges to

$$\lim_{\Delta \to \infty} F(u) = \begin{cases} 0 & , \ \psi \in (-\infty, 0] \\ 1 - (1 + \psi u)e^{-\psi u} & , \ \psi \in (0, \infty) \end{cases}$$

for any $u \in [0, \infty)$. The truncated mean of e^u behaves like

$$\lim_{\Delta \to \infty} \int_0^\Delta e^u \mathrm{d}F(u) = \begin{cases} \infty & , \ \psi \in (-\infty, 1] \\ \left(\frac{\psi}{\psi - 1}\right)^2 & , \ \psi \in (1, \infty) \end{cases}$$

The attempted entry rate satisfies

$$\lim_{\Delta \to \infty} \alpha = \eta + \frac{1}{2} \sigma^2 \psi^2$$

• if $\psi > 0$ and $\Delta \in (0, \infty)$, then the right tail index is

$$\zeta_{+} = \psi + \sqrt{\psi^{2} + \frac{\eta}{\sigma^{2}/2}} > 2\psi \qquad (!)$$

▶ so the tail index is discontinuous at $\Delta = \infty$

the convergence is monotone in the sense of first-order stochastic dominance

u

densities

log-log plot of distributions

recap

1. decision rules and steady state requirements imply

- the supply of firms

$$\frac{N}{H} = \frac{1}{\alpha} \times \mathcal{E}\left(\frac{q}{w}\right)$$

– the demand for firms

$$\frac{N}{H} = \frac{1}{\phi} \frac{\mathcal{L}\left(q/w\right)}{1 + (\varepsilon - 1)\int_0^\infty e^{a+u} f(u) \mathrm{d}u}$$

 \Rightarrow market clearing delivers q/w

2. perfect foresight also delivers a present value condition

$$\frac{q}{w} = \phi \int_0^\Delta U\left(a+u\right) f(u) \mathrm{d} u$$

- in the background
 - the Bellman equation gives a function $\mu \mapsto [a, U(\cdot)]$
 - the KFE gives a function $\mu \mapsto [\alpha, f(\cdot)]$, provided $\Delta \in (0, \infty)$
- ▶ the two versions of q/w must match, producing a restriction on μ

the equations for balanced growth

• clearing the steady state market for firms gives

$$\frac{\mathcal{E}\left(q/w\right)}{\mathcal{L}\left(q/w\right)} = \frac{\alpha/\phi}{1 + (\varepsilon - 1)\int_0^\infty e^{a+u} f(u) \mathrm{d}u} \tag{1}$$

• the relative price q/w must also satisfy

$$\frac{q}{w} = \phi \int_0^\Delta U\left(a+u\right) f(u) \mathrm{d}u \tag{2}$$

- in the background
 - the Bellman equation yields

$$\mu \mapsto \{a, U(\cdot)\}$$

- the KFE yields

$$\mu \mapsto \{\alpha, f(\cdot)\}$$

• if the initial density satisfies n(0, z)/N = f(z - b) for some *b*, then the economy is on a balanced growth path

an *irregular* special case: perfectly elastic factor supplies

• this fixes q/w, and then μ is determined by

$$\frac{q}{w} = \phi \int_0^\Delta U(a+u) f(u) du$$
 (PF)

– the firm value U(a + u) is finite if and only if

$$\rho > \mu + \frac{1}{2}\sigma^2$$

• market clearing still requires finite average employment

 $\int_0^\infty e^{a+u} f(u) \mathrm{d}u < \infty$

– this is the same as $\zeta_+ > 1$, or

$$\eta > \mu + \frac{1}{2}\sigma^2$$

- ▶ may not have a BGP because
 - finite dynastic utility requires $\rho > \eta$, and then...
 - the RHS of (PF) may not reach q/w on $\left\{\mu : \mu + \frac{1}{2}\sigma^2 < \eta\right\}$

perfectly elastic factor supplies

- value of entry, bounded on the domain $\{\mu : \mu + \frac{1}{2}\sigma^2 < \eta\}$
- there may not be a BGP when $\Delta \in (0,\infty)$

a *regular* special case: perfectly inelastic factor supplies

• this fixes \mathcal{E}/\mathcal{L} , and μ is determined by

$$\frac{\mathcal{E}}{\mathcal{L}} = \frac{\alpha/\phi}{1 + (\varepsilon - 1)\int_0^\infty e^{a+u} f(u) du}$$
(MC)

- the Bellman equation yields

$$\mu \mapsto \{a, U(\cdot)\}$$

– the KFE yields

$$\mu \mapsto \{\alpha, f(\cdot)\}$$

▶ the RHS of (MC) ranges throughout $(0, \infty)$ on $\{\mu : \mu + \frac{1}{2}\sigma^2 < \eta\}$

– since $\rho > \eta$, and since mean employment must be finite

$$\mu + \frac{1}{2}\sigma^2 < \eta < \rho$$

– the relative price q/w is determined by

$$\frac{q}{w} = \phi \int_0^\Delta U\left(a+u\right) f(u) \mathrm{d}u$$

which is well defined by construction

perfectly inelastic factor supplies

- relative factor demands, on the domain $\{\mu : \zeta_+ > 1\} = \{\mu : \mu + \frac{1}{2}\sigma^2 < \eta\}$
- note that $\mu > 0$ is possible

- the trend of $\ln(Z_t)$ may be below θ when $\Delta \in (0, \infty)$

existence of a BGP

Proposition A Assume the relative factor supply curve $\mathcal{E}(\cdot)/\mathcal{L}(\cdot)$ is continuous. When Δ is large enough, a finite- Δ economy must have at least one equilibrium, and every equilibrium must satisfy $\psi_{\Delta} > 1$.

Proposition B Assume the relative factor supply curve $\mathcal{E}(\cdot)/\mathcal{L}(\cdot)$ is continuous. Consider the equilibrium conditions (1)-(2) with $\psi > 1$, $\alpha = \eta + \frac{1}{2}\sigma^2\psi^2$, $f(u) = \psi^2 u e^{-\psi u}$, and $\Delta = \infty$. With these restrictions, the economy has precisely one balanced growth path, denoted by $\psi_{\infty} \in (1, \infty)$.

Proposition C Assume the relative factor supply curves $\mathcal{E}(\cdot)/\mathcal{L}(\cdot)$ are continuous and let $E_{\Delta} \subset \{\psi : \zeta_+ > 1\}$ be the set of equilibria for the Δ economy. Then $\sup_{\psi \in E_{\Delta}} |\psi - \psi_{\infty}|$ converges to zero as Δ becomes large.

Corollary *Productivity grows faster than* θ *when* Δ *is large enough, since* $\psi_{\infty} = -\mu_{\infty}/\sigma^2 > 1.$

solving the KFE for $\Delta=\infty$

• the KFE simplifies to

$$\eta f(u) = -\mu \mathbf{D} f(u) + \frac{1}{2} \sigma^2 \mathbf{D}^2 f(u) + \alpha f(u)$$

for all $u \in (0,\infty)$, with the boundary conditions $f(0) = 0 = f(\infty)$

• solved by linear combinations of $e^{-\chi_{-}u}$ and $e^{-\chi_{+}u}$,

$$\chi_{\pm} = \psi \pm \sqrt{\psi^2 - \frac{\alpha - \eta}{\sigma^2/2}}, \quad \psi = -\frac{\mu}{\sigma^2}$$

- complex χ_{\pm} yields a positive density only on a bounded interval - if $\alpha \in [0, \eta]$, then $\chi_{-} \leq 0 \leq \chi_{+}$, which rules out $f(0) = 0 = f(\infty)$

• need α to satisfy $0 < (\alpha - \eta)/(\sigma^2/2) \le \psi^2$ and $\psi > 0$, and then

$$f(u) = \frac{\chi_{+}\chi_{-}}{\chi_{+} - \chi_{-}} \times \left(e^{-\chi_{-}u} - e^{-\chi_{+}u}\right),$$

for all $u \in [0,\infty)$

▶ this was the density obtained in Luttmer [2007]

– if $(\alpha - \eta)/(\sigma^2/2) \uparrow \psi^2$ this matches the large- $\Delta \liminf f(u) = \psi^2 u e^{-\psi u}$

balanced growth pathS

• steady state market clearing requires

$$\frac{\mathcal{E}\left(q/w\right)}{\mathcal{L}\left(q/w\right)} = \frac{\alpha/\phi}{1 + (\varepsilon - 1)\int_0^\infty e^{a+u} f(u) \mathrm{d}u}$$

• the relative price q/w must also satisfy

$$\frac{q}{w} = \phi \int_0^\infty U\left(a+u\right) f(u) \mathrm{d}u \tag{PF}$$

- in the background
 - the Bellman equation yields

$$\mu \mapsto \{a, U(\cdot)\}$$

- the KFE yields

$$(\mu, \alpha) \mapsto f(\cdot) \tag{!}$$

rather than $\mu \mapsto \{\alpha, f(\cdot)\}$

• aside: in Luttmer [2007], the factor supplies are perfectly elastic, and (PF) forces the mean of e^u to be finite

feasible α given μ

• recall

$$\chi_{\pm} = \psi \pm \sqrt{\psi^2 - \frac{\alpha - \eta}{\sigma^2/2}}, \quad \psi = -\frac{\mu}{\sigma^2}$$

• need χ_{\pm} real and $\chi_{-} > 1$, which is the same as

$$1 < \psi$$
, $2\psi - 1 < \frac{\alpha - \eta}{\sigma^2/2} \le \psi^2$

• note that on this domain

$$\frac{\partial \chi_{-}}{\partial \psi} = \frac{\partial}{\partial \psi} \left(\psi - \sqrt{\psi^2 - \frac{\alpha - \eta}{\sigma^2/2}} \right) < 0$$

- holding fixed α , a *lower* firm growth rate μ implies a thicker tail
- *bootstrap logic*: a lower μ tends to generate more exit; without more entry, must have a thicker tail so it takes more firms longer to reach the exit barrier
- recall that the limiting BGP as $\Delta \to \infty$ is $\psi_{\infty} > 1$, and
 - the attempted entry rate is at its ($\Delta = \infty$) upper bound

$$\alpha_{\infty} = \eta + \frac{1}{2}\sigma^2\psi_{\infty}^2$$

constructing alternative BGP

- can construct BGP for any $\psi > \psi_{\infty}$
- so there is no upper bound on how fast the economy can grow
- the key calculation is

$$\int_0^\infty e^u f(u) du = \frac{\chi_+ \chi_-}{(\chi_+ - 1)(\chi_- - 1)} = \frac{\frac{\alpha - \eta}{\sigma^2/2}}{\frac{\alpha - \eta}{\sigma^2/2} - (2\psi - 1)}$$

- decreasing in α
- increasing in ψ , reflecting the bootstrap logic
- but at $\alpha = \eta + \frac{1}{2}\sigma^2\psi$, this mean equals $(\psi/(\psi 1))^2...$
- . . . which is decreasing in ψ
- . . . as in the $\Delta \rightarrow \infty$ limit
- when factor supplies are inelastic, only need to consider

$$\frac{\mathcal{E}}{\mathcal{L}} = \frac{\alpha/\phi}{1 + (\varepsilon - 1)\int_0^\infty e^{a+u} f(u) \mathrm{d}u}$$

– and remember that the exit threshold e^a is increasing in $\psi = -\mu/\sigma^2$

miraculous growth in the $\Delta = \infty$ economy

- this construction is for an economy with inelastic factor supplies
 - first increase $\psi > \psi_{\infty}$ while $\alpha = \eta + \frac{1}{2}\sigma^2\psi^2 > \alpha_{\infty}$
 - then fix α and increase ψ further to clear the market

concluding remark

• with continuous factor supplies, the equilibrium will satisfy

$$\mu + \frac{1}{2}\sigma^2 < \eta$$

• this implies a per-capita consumption growth rate

$$\kappa = \frac{\theta - \mu + \eta}{\varepsilon - 1} > \frac{1}{\varepsilon - 1} \left(\theta + \frac{1}{2} \sigma^2 \right)$$

• for individual firms

$$d[e^{z_t}] = [e^{z_t}] \left(\left(\theta + \frac{1}{2} \sigma^2 \right) dt + \sigma dW_t \right)$$

- the scenario $\theta + \frac{1}{2}\sigma^2 = 0$ shows that
 - even if e^{z_t} is "only" a martingale for individual firms...
 - ... the overall economy will grow

additional material

key properties of the value function

Lemma The value function is well defined if and only if $\mu + \frac{1}{2}\sigma^2 < \rho$. Given this restriction, it has the following properties:

(i) *The value function is strictly increasing and unbounded in y > a.*(ii) *The exit threshold is strictly decreasing in μ,*

$$\lim_{\mu\to-\infty}a=0, and \lim_{\mu\uparrow\rho-\sigma^2/2}a=-\infty.$$

(iii) For any $u \in (0, \infty)$ or $y \in (-\infty, \infty)$,

 $\lim_{\mu \to -\infty} U(a+u) = 0, \quad \lim_{\mu \uparrow \rho - \sigma^2/2} U(a+u) \in (0,\infty), \quad \lim_{\mu \uparrow \rho - \sigma^2/2} U(y) = \infty,$ and U(a+u) is increasing in μ .

• the time-*t* exit threshold for firm of type *z* must then be

$$b_t = b + (\theta - \mu)t$$
, $e^a = \frac{e^{b-Z}L}{(\varepsilon - 1)\phi N}$

• so the gap $Z_t - b_t = Z - b$ is constant over time

an accounting identity implied by the KFE

 \bullet integrating the differential equation over $(0,\infty)$ yields

$$\alpha \int_0^{\Delta} f(u) \mathrm{d}u = \eta + \frac{1}{2} \sigma^2 \mathrm{D} f(0)$$

– need to use the above stated boundary conditions

- this fails if $f(\cdot)$ not differentiable at Δ
- we also know that the exit rate at z = b is given by $\frac{1}{2}\sigma^2 Df(0)$
- this confirms the basic steady state accounting condition

► can infer α from $f(\cdot)$, without knowing μ