Firm Growth and Unemployment

Erzo G.J. Luttmer
University of Minnesota

November 15, 2011
Federal Reserve Bank of Chicago

Work in Progress/Big Picture

\square Firm heterogeneity plays a central role in modern models of aggregate productivity, growth, and trade.
\square Models of growth and firm heterogeneity often feature continuous labor inputs and frictionless labor markets.
\square Does not help in interpreting rich body of evidence on job creation and destruction, unemployment, vacancies, labor market flows.
\square Supply of jobs in search models is often infinitely elastic...
\square Let's try to find a tractable way to include search frictions in the labor market in a model of firm heterogeneity that fits the data.

Some Related Work

\square Fujita and Ramey [2007]
\square Moscarini and Postel-Vinay [2008]
\square Veracierto [2009]
\square Acemoglu and Hawkins [2010]
\square Helpman, Itskhoki, Redding [2010]
\square Schaal [2010]
\square Elsby and Michaels [2011]
\square Kaas and Kircher [2011]
\square Lentz and Mortensen [2010, Annual Review of Economics]
\square Growth papers surveyed in Luttmer [2010, Annual Review of Economics]

Some Basic Facts

\square the US population and the number of firms grow at about 1% per annum
$\square 10 \%$ of all firms exit in a given year, most of them very small
$\square 11 \%$ of all firms did not exist the year before
$\square 50 \%$ of all employees work for firms with more than 500 employees
$\square 25 \%$ of all employees work for firms with more than 10,000 employees
$\square 3 \%$ of all employees work for firms with fewer than 5 employees
$\square 50 \%$ of all firms with at least 10,000 employees are older than 70 years
\square P\&G, Ford, HP, WalMart, Microsoft, Google started out really small
\square ... and they did not grow at 1% per year.

The Number of Firms Grows with Population

Where the Jobs Are

The Employment Size Distribution of Firms

What Large Firms Are Like

Luttmer, Review of Economic Studies, July 2011

Rapid Firm Growth

Contributions to Employment Growth

Average size of recent entrants and exiting firms: about 5.5 employees.

Peak to Trough Unemployment

Pareto Tails with Deterministic Growth

\square Potential employees $H_{t}=H e^{\eta t}$
\square Firm entry $E_{t}=E e^{\eta t}$, at size $n=1$
\square Firms grow at the rate μ and exit randomly at the rate δ
$\square \quad$ Age density

$$
f(a) \propto e^{-(\eta+\delta) a}
$$

\square Firms with n or more employees

$$
\begin{aligned}
\text { fraction } & =\frac{\int_{\ln (n) / \mu}^{\infty} e^{-(\eta+\delta) a} \mathrm{~d} a}{\int_{0}^{\infty} e^{-(\eta+\delta) a} \mathrm{~d} a}=\frac{1}{n^{\zeta}} \\
\text { employment share } & =\frac{\int_{\ln (n) / \mu}^{\infty} e^{-(\eta+\delta-\mu) a} \mathrm{~d} a}{\int_{0}^{\infty} e^{-(\eta+\delta-\mu) a} \mathrm{~d} a}=\frac{1}{n^{\zeta-1}}
\end{aligned}
$$

where

$$
\zeta=\frac{\eta+\delta}{\mu}
$$

\square Since firms larger that 500 employees account for half of employment

$$
\frac{1}{500^{\zeta-1}}=\frac{1}{2}
$$

or

$$
\zeta=1+\frac{\ln (2)}{\ln (500)}=1.1
$$

\square Population growth $=1 \%$ and large-firm exit rate is 2.5%
\square Hence the average surviving incumbent must grow at the rate

$$
\mu=\frac{\eta+\delta}{\zeta}=\frac{0.01+0.025}{1.06}=0.033
$$

Non-Stationary Firms \& Aggregate Mean Reversion

\square Employment

$$
\mathrm{D} N_{t}=-(\delta-\mu) N_{t}+E e^{\eta t}
$$

\square Employment-population ratio
$\mathrm{D}\left[\frac{N_{t}}{H_{t}}\right]=-(\eta+\delta-\mu)\left[\frac{N_{t}}{H_{t}}\right]+\frac{E}{H}=-\left(1-\frac{1}{\zeta}\right) \times(\eta+\delta) \times\left[\frac{N_{t}}{H_{t}}\right]+\frac{E}{H}$
\square Firm size distribution implies

$$
\left(1-\frac{1}{\zeta}\right) \times(\eta+\delta)=\left(1-\frac{1}{1.1}\right) \times(0.01+0.025)=0.003
$$

or at most, if all exit is random,

$$
\left(1-\frac{1}{\zeta}\right) \times(\eta+\delta)=\left(1-\frac{1}{1.1}\right) \times(0.01+0.10)=0.01
$$

\square Respective half-lives $\ln (2) / .003=231$ and $\ln (2) / 0.01=69$, in years..

Game Plan

\square Replace competitive labor market in Luttmer [2011] with search friction -joint account of firm employment dynamics and labor market flows $-\mu_{t}=F\left(a_{t}, 1\right)$, managerial output $=\left(1-a_{t}\right) y, a_{t} \in[0,1]$ $-a_{t}$ is high at start of recovery \rightarrow low measured labor productivity
\square Analytically tractable steady state used to identify most parameters
\square Recession = one-time destruction of projects, or matches, or both
\square Try to account for postwar recoveries
-unemployment
-vacancies
-measured labor productivity

Population and Utility

$$
\begin{gathered}
H_{t}=H_{0} e^{\eta t} \\
\int_{0}^{\infty} e^{-\rho t} H_{t} U\left(C_{t} / H_{t}\right) \mathrm{d} t \\
U(c)=\ln (c) \\
\rho>\eta
\end{gathered}
$$

Firms, Projects and Matches

\square Entrepreneurs set up firms by creating startup projects at the rate α
\square Projects must be assigned to managers, one per manager -recruited instantaneously from population of employed workers
\square Managers can replicate projects at the rate $\mu_{t}=F\left(a_{t}, 1\right), a_{t} \in[0,1]$

- projects stay within the firm, no internal labor markets
\square Managers search unemployed population for workers to team up with
— workers hired at rate $\beta_{t}=M\left(u_{t}, v_{t}\right) / v_{t}$
- workers quit into unemployment at the rate θ
\square Unemployed produce h, workers x, and managers $\left(1-a_{t}\right) y$
\square Projects fail at the rate λ, firms at the rate δ

