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We extend a standard model of parental investment and intergenera-
tional mobility to include a fully specified genetic analysis of skill trans-
mission. The model’s predictions differ substantially from the stan-
dard model’s. The coefficient of intergenerational income elasticity
(IGE) may be larger than that in the standard model and depends
on the distribution of the genotype. The distribution of genetic en-
dowments may be stratified according to income. The model is tested
on data, including genetic information, of twins and their parents, es-
timating how IGE is affected by genetic factors and how environment
and genes interact. The effect of intelligence is substantially stronger
than that of other traits.
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I. Introduction

In recent research on heritability of phenotypes based on genome-wide as-
sociation studies (GWASs), a number of markers have been identified. A
GWAS is a study of common genetic variants spanning the entire genome
(typically 1 million single-nucleotide polymorphisms [SNPs] or more) in a
typically large set of individuals to determine whether and how much any
variant is associated with a trait. The markers that achieve significance at
the conventionalGWAS threshold1 are still limited innumber, and together
they explain a limited fraction of the variability of the phenotype. In spite of
this, a considerable fraction of phenotypic variation can be explained by a
larger set of genetic markers that includes variants that are not significant
by GWAS standards.
A way to take into account the information available in markers, includ-

ing, perhaps, those with significance lower than the GWAS threshold, is to
compute a polygenic score (PGS). A PGS is an individual-specific score, ob-
tained as sum of the value of the markers in a selected set, each value
weighted by a coefficient that has been estimated separately on an inde-
pendent training sample (Dudbridge 2013). Our analysis here is based
on the large GWAS of educational attainment reported by Lee et al.
(2018; see also Rietveld et al. 2013 andOkbay et al. 2016). An illuminating
discussion of the analysis of educational attainment in the modern GWAS
era is in Cesarini and Visscher (2017).
Theoretical framework.—We set up the investigation in a fully specified

model of parental investment in education of children. Some classical pa-
pers establishing this tradition are Becker and Tomes (1979, 1986) and
Loury (1981). Important developments of the early model are in, among
many, Solon (1992, 2004), Mulligan (1997, 1999), Black and Devereux
(2011), and Black et al. (2017). Our model differs from the existing ones
in the field in two respects, both introduced because we need to take into
account information on genotype and its transmission. First, we introduce
explicitly the fact that children are the outcomeof a joint process involving
a father and amother; so we need to include in themodel a theory of mat-
ing (similarly to Aiyagari, Greenwood, and Guner 2000 and Greenwood,

1 The threshold is 5 � 1028; the factor 1028 corrects (Bonferroni) for multiple comparisons.
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Guner, andKnowles 2003).2 The importance of assortativemating has been
well documented in the past. For instance, Greenwood et al. (2016) docu-
ment that assortative mating along educational characteristics has in-
creased in theUnited States.We build here on research like that by Fernán-
dez andRogerson (2001) and Fernández, Guner, and Knowles (2005), who
study models where assortative mating directly affects intergenerational
mobility. Second, we model the process of skill formation consistently with
the transmission of genotype from parents to children, along well-known
lines in genetics (see, e.g., Nagylaki 1992). From our vantage point, after
so much research, we can revisit the classical debate between Goldberger
(1989) and Becker (1989) and realize that both models were, in some im-
portantmeasure, imprecise.We take this opportunity to illustrate the impli-
cations of our work.3 Becker had in mind the autoregressive process as-
sumed in his earlier work (Becker and Tomes 1979, 1986), which we
discuss more in detail below (sec. III.C). In his thought-provoking 1985
Woytinsky lecture, Goldberger (1989, 505) suggests a modification of
Galton’s (1886) “Regression towardsMediocrity,”presentingGalton’s argu-
ment that the characteristic of the individual is some weighted average of
the characteristics of the entire history of ancestors. But the expectation
of the child’s phenotype conditional on the entire history of genotypes
of the ancestors is equal to the expectation conditional on the parents’ ge-
notype only. It also has a precise form,4 which is neither the one in Becker
and Tomes (1979) nor the one in Goldberger (1989).
Empirical questions.—Within our theoretical framework we address two

basic sets of questions. First, how much of the variance in income and ed-
ucational achievement is explained by the PGS, and how does family struc-
ture affect the transmission? Similar questions have been investigated with
the same data by McGue, Rustichini, and Iacono (2017) and McGue et al.
(2020), but they simply examined correlational results, rather than tests
of a well-specified model of parental investment. Tests of the effective-
ness of the PGS in predicting a variety of variables are presented in exist-
ing literature: for educational attainment, see Rietveld et al. (2013),
Okbay et al. (2016), Kong et al. (2018), Lee et al. (2018), andWilloughby
et al. (2021); for wealth, see Barth, Papageorge, and Thom (2020); for so-
cialmobility of children compared to parents, see Belsky et al. (2018); and

2 In this paper, two terms, “matching” and “mating,” are used interchangeably, as synon-
ymous for partnership among parents. The reason for the coexistence of the two terms is
that the “matching” is used more frequently in the economics literature and “mating” in
behavioral genetics. In each instance we use the term more appropriate in the context.

3 The discussion between Goldberger and Becker centered on twomain points: whether
adopting a utility-maximization framework makes a difference for the predictions of the
theory, and what is the stochastic process of skill. For the first, we adopt here the utility-
maximization setup, but as long as the comparison of policies is not explicitly modeled,
choosing one or the other makes little difference. We focus here on the second point.

4 See, e.g., eq. 10.104 in Nagylaki (1992).
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for health outcomes, see Barcellos, Carvalho, and Turley (2018). Earlier
contributions on the issue of health conditions and academic perfor-
mance using genetic markers are in Ding et al. (2009) and Fletcher
and Lehrer (2011). This estimate would give us a lower bound on how
much of the variance of success in education can be attributed to the in-
dividual’s genotype. How is this effect modified by assortative mating
among parents and the correlation among their genotypes? And finally,
how is the effect of genes mediated by the direct effect on the genotype
of the children, and how much is mediated by the indirect effect on the
environment provided to them, as well as parental investment?
Second, what are the channels through which the effect of genotype, as

summarized by the PGS, operates in each individual? Recall that the score
is built on a simple statistical association between genotype and the pheno-
type of interest, in our case success in education, and that no mechanism
underlying the association is identified. A natural first channel to consider
is intelligence: the score likely summarizes a set of highly polygenic effects
on intelligence, and in turn intelligence improves the chances of success in
education. But intelligence is not the only plausible channel; personality
traits are an important additional way. We use the term personality to indi-
cate a set of individual characteristics possessed by a person that together
determine a consistent pattern of cognition, emotions, motivations, and
behaviors in various situations. A substantial fraction of success in educa-
tionmight be traced back tomotivation, self-control, ambition: in general,
personality traits distinct from pure cognitive skills. A gene affecting these
traits would also appear as a contribution to the PGS, even if unrelated to
intelligence. These are all natural channels. The effect of genes on educa-
tion could operate, however, along completely different pathways, involv-
ing individual characteristics that have nobearing on the technology of ed-
ucational attainment, for example, discrimination. Clearly, understanding
which of these pathways operates, and in what measure, is essential, partic-
ularly for policy guidance. We now review our answers to these questions.
Outline of main results.—We develop (sec. II) a model of intergenera-

tionalmobility, building on classical parental investmentmodels but replac-
ing their ad hoc skill-transmission equation with a precise and correct
model of genetic inheritance from the two parents. In the model, the co-
efficient of persistence of skills is endogenous, depending on the distri-
bution of the genotypes in the populations; thus, most of the conclusions
of the classicalmodel are now invalid.We provide the correct predictions.
An important component of the theory is the model of assortative

matching among parents according to characteristics, some endowed with
a natural order (such as income and skills) and some not (such as person-
ality traits and physical appearance); we show how this affects the distribu-
tion of the genotypes at the invariant distribution of the system. A state of
the system is describedby a joint probability ongenotypes and endogenous
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variables, such as income and education. With assortative matching, the
transition function is nonlinear, so existence of a stationary distribution
is not simple. We prove its existence and some basic properties.
At the stationary distribution, within each class of matching, alleles are

in Hardy-Weinberg equilibrium.5 More notably, the frequency of alleles
with positive effect on educational attainment, and thus on income, pos-
itively correlates with income. The correlation is stronger, the stronger
the effect of the allele. These results identify a powerful force producing
lasting inequality, which has been ignored so far and is absent by assump-
tion in standard models.6

The model leads to a natural empirical test, using data described in
section IX. Information on the genotype of individuals is summarized into
a PGS obtained from a large GWAS on educational attainment. All the
predictions of the model are tested with a unique set of data in which we
have complete genetic information on parents and children, in addition
to information on education, personality traits, intelligence, family envi-
ronment, and income. We estimate equation (5), the intergenerational
elasticity coefficient of income, which is at the lower end of existing esti-
mates for the overall United States. We compare it to the effect size of ge-
netic factors measured by the PGS; we find that the latter is approximately
half of that of income. In section VI, we identify the pathways of the effect
on income through human capital formation.
In section VII, we use the twin structure of our data to check for the

robustness of the results and investigate passive gene-environment corre-
lation, that is, how the genetic endowment of the parents affects the phe-
notype of the children through the family environment. Natural and sig-
nificant channels of this effect are the education of parents and their
income, and we prove that this channel is significant. However, there
is no additional residual channel through family environment in addi-
tion to these two. When we study the pathways of the genetic effect mea-
sured by the PGS, we find that after correction for measurement errors,
the effect from genotype to educational and economic success is medi-
ated mostly by intelligence and only weakly by noncognitive skills. Con-
clusions are presented in section VIII.

II. Genetic Skill Transmission and
Parental Investment

We begin with the conceptual and theoretical structure for our empirical
analysis, introducing a model and an equilibrium concept. The complete

5 The definition of Hardy-Weinberg equilibrium is recalled in sec. III.
6 We use “standard model” in a broad sense here, which includes Goldberger (1989)’s

model.
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model to be tested is presented in section II.G. Our first aim is to show that
the standard analysis of parental investment in education, and intergener-
ational mobility (as pioneered in Becker and Tomes 1979, where the skill
transmission follows a simple AR(1) [autoregressive] process), should be
modified—if one wants to avoid significant misunderstandings—to take
into account a fully specified genetic mechanism of skill transmission. A
core feature of the model we propose is the combination of the theory
ofmarriage (Becker 1973) topredictmating, with amodel of genetic trans-
mission. A comparison of the prediction of the two models is provided in
section III.C; there we show that they differ substantially on key predictions
about, for instance, intergenerational mobility.
Our model has several components. After defining the basic environ-

ment (sec. II.A), in section II.B we describe how the skills of the children
are affected by the genetic endowment inherited by parents, family envi-
ronment, and random events. Then, in section II.D, we describe the deci-
sion of parents to invest in education of the children.

A. Setup

A population of individuals, constant in number over time, is organized
intohouseholds. Ahouseholdmaximizes a utility functionof ownconsump-
tion and future income of two children, which in turn is affected by the ge-
netic endowment of the children, parental investment in education, and
environment. The restriction to two children is consistent with the assump-
tion that population size is constant. In our data, the two children also hap-
pen to be twins: this detail has little importance when we study parental in-
vestment,7 but it becomes important when we study the correlation of skill
and income across siblings. We denote y the natural log of the income (so
this value ranges in the real line), E consumption expenditure, I parental
investment in education of children, and hhuman capitalmeasured by the
education level. The terms ee and ey denote the random shocks to educa-
tion and income, respectively: each one is i.i.d. (independently and iden-
tically distributed) across periods, and the two are independent within pe-
riods. Subscripteda’s denote productivity parameters of the variable in the
index; so aI, ah denote positive real numbers associated with parental in-
vestment and human capital; d ∈ ð0, 1Þ is the discount factor. A vector of
real numbers v 5 ðv1, ::: , vn1 , vn111, ::: , vnÞ describes the n skills, where the
index from 1 to n1 refers to hard or cognitive skills and that from n1 1 1
to n to soft or noncognitive skills (Heckman and Kautz 2012; Heckman,
Pinto, and Savelyev 2013). Skills enter linearly into the production of the

7 Note, however, that two children who are also twins have the same age, so the parental
investment in this case does not concern two individuals of different age, as instead is typ-
ical for siblings.
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education level though an n-dimensional vector of coefficients av. The su-
perscript i refers to the family and the subscript j 5 1, 2 to the siblings, so a
sibling is uniquely identified by the pair ij. Household log income yi is some
combination of the log incomes of the father yif and the mother, yim.8 The
precise formof the combination is specifiedbelow.WedenoteE the expec-
tation of a random variable.
We emphasize that the model is not a two-period model but an

overlapping-generations model, so each individual appears in the model
as a child and then as a parent, and the model describes behavior in both
stages of life. So when we model, for instance, how genetic factors affect
skill formation, human capital accumulation, and income of children,
we also model how the same variables have been determined for the par-
ents of these children. We make full use of this in some crucial step—for
example, in section E, where we describe how genetic factors affect be-
havior both as children and as parents.

B. Skill Transmission

We replace the standard AR(1) mechanism of skill transmission (discussed
more extensively in sec. III.C) with a detailedmodel where the skill vector v
results from genetic factors, parental investment in education, family en-
vironment common to all children, and idiosyncratic random events for
each individual.
We examine these components separately, beginning with the genetic

component.9 IfK is the number of loci, a genotype is a g ∈ G ; f0, 1, 2gK ,
so g 5 ðg ðkÞ : k 5 1, ::: , K Þ. Here “0, 1, 2” refers to the count of one of the
alleles in a biallelic system (a GWAS typically deals with variants, SNPs,
that are biallelic in the analysis). The joint distribution of genotypes of
the two children, given the genotype of the two parents, depends on the
twin type, which may be monozygotic, MZ, or dizygotic, DZ. To describe
how the distribution is determined, we start with the function from par-
ents’ genotype to the probability over genotypes of an individual off-
spring, given by a function H from G � G to Δ(G):

8 The use of letters “f ” and “m” avoids confusion with the family index.
9 In the context of the twin-studies model, the integration of parental investment mod-

els with a more realistic model of skill transmission has been explored in Rustichini,
Iacono, and McGue (2017), where the realistic model of genetic transmission is used to
provide a justification for the standard ACE models (see sec. II.G for a definition) in twin
studies in the context of economic analysis of parental investment. However, in Rustichini,
Iacono, and McGue (2017), there is no analysis of the invariant measure produced by as-
sortative mating according to characteristics (which we consider one of the main contribu-
tions of this paper), nor is there a comparison of the predictions of the standard skill trans-
mission model in the tradition of Becker and Tomes (1979). Finally, the empirical analysis
does not make any use of the genetic information used in this paper.
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H : ðgm, gfÞ↦H ðgm, gfÞ: (1)

We write H(⋅Fgm, gf) when we want to indicate explicitly the set on which
this measure operates. The function H follows well-known rules of Men-
delian inheritance (see, e.g., Crow and Kimura 1970 or Nagylaki 1992);
for instance, if K 5 1, so that G 5 f0, 1, 2g, then H(⋅F1, 1) is (0.25, 0.5,
0.25), and so H ð2j1, 1Þ 5 0:25. Similarly, H(⋅F0, 2) is (0, 1, 0).
The map in equation (1) is well defined only under the assumption,

which we make, that the distribution across loci is independent. Simple
examples show that we may have two different haplotype pairs that in-
duce the same genotype profile (gm, gf) for the parents but, without this
assumption, induce different elements in Δ(G) for the children.

C. PGSs

Let w denote an n-valued function determining skills as a function of the
genotype g. The PGSs are denoted by w(g). They are computed under
the assumption of additivity across loci and within each locus, so that

wðg Þ 5 o
K

k51

aðkÞg ðkÞ, (2)

where a is a vector of parameters. The values w are latent variables, and
they would be of little use if we did not have an estimate. We rely on es-
timates, called estimated PGSs, of the true effect w(g) of the genotype g:

PGSðg Þ 5 o
K

k51

bðkÞg ðkÞ, (3)

where b’s are weights derived from a GWAS. We should note that the
weights obtained in a GWAS do not give a full account of the variability
in educational attainment. There may be rare variants (Yengo et al.
2020), as well as structural variants (Chiang et al. 2017), that are not well
captured by a GWAS.10 We let X i

j denote a vector of variables associated
with twin ij. These variables may be observable or not and may include,
for instance, the parents’ education, personality traits of the child, and
the family’s social status. Also, let Π denote a matrix with n rows, F a family-
specific n-dimensional vector (common to both twins in family i, either
MZ or DZ), and ev an individual-specific n-dimensional environmental
zero-mean shock on the skill. We specifically denote the effect of family
income, which is assumed to be linear with coefficient p.

10 We ignore the possible measurement error of PGSs here, since we are not primarily
interested in heritability per se. A possible extension of our research would reduce this at-
tenuation using, e.g., methods described in Becker et al. (2021).
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The skill of twin ij is thus given by11

vij 5 wðg i
j Þ 1 pyi 1 ΠX i

j 1 F i 1 ev,ij : (4)

We assume the no-correlation,

8 i, j , 8 k ∈ h, yf g : Eek,ij e
v,i
j 5 0, (5)

and zero-mean conditions:

8 i, j : EF i 5 0, Eðev,ij Þ 5 0:

D. Parental Investment

The ith household solves in the variables E expenditure in consumption
and I i pair of investment in the two children:

max
ðEi ,I i

1 ,I
i
2Þ
Eðvi1,vi2Þ ð1 2 dÞ ln Ei 1 do

j51,2

yij

 !
, (6)

subject to the budget constraint given by the household’s income (recall
that y is the natural log of income):

Ei 1 o
j51,2

I i
j 5 expðyiÞ: (7)

The choice on consumption and educational investment is taken with
the knowledge of the skills (vi1, v

i
2) of the children; hence the subscript

in the expectation of equation (6), which refers to the random shocks
eh and ey. Human capital accumulation is described by12

hi
j 5 aI ln I i

j 1 avv
i
j 1 eh,ij , j 5 1, 2, (8)

and income is given by

yij 5 ahh
i
j 1 e

y,i
j , j 5 1, 2: (9)

11 The effect of family income on skill in eq. (4) is taken here as given. One can easily set
up a more complex model in which parents also decide on an investment in skill forma-
tion, in addition to human capital accumulation as described in sec. II.D. This more com-
plex model is described in sec. S-0.1, where we show that it yields a skill equation just like
eq. (4) and where the income term is produced by a household optimization problem, just
as it is in eq. (8).

12 In both eqq. (8) and (9), we could add on the right-hand side a term w(g), multiplied
by some additional parameter, to allow direct influence of genetic component on the var-
iable. However, since this term already appears in the right-hand side of eq. (4), this genetic
component will, even in the simple version presented in eqq. (8) and (9), be considered in
empirical estimates, and this addition wouldmake themodelmore complex with no substan-
tial gain.
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We assume a zero mean for shocks to human capital and income,

8 i, j , 8 k ∈ fh, yg : Eek,ij 5 0, (10)

and assume that the shocks to human capital and income are not
correlated:

8 i, j : Eðeh,ij e
y,i
j Þ 5 0:

At the optimal solution of the problem in equations (6)–(10), optimal
parental investment is equal for the two siblings (Î i

1 5 Î i
2 ; Î i) and is a

constant fraction of household income:

Î i 5
daIh

1 2 d 1 2daIh

expðyiÞ ; w expðyiÞ, (11)

where aIh ; aIah. Equal investment in education for the two children is,
of course, a very special feature due to the preferences we have adopted.

E. Income of the Children

In the analysis below, we also use this more general model to control for
education of parents, college degree of parents, and work status of the
father. Substituting the optimal investment reported in equation (11)
into the human capital equation (8) and substituting the result into the
equation for income (eq. [9]), we get the reduced equation for income:

yij 5 a 1 aIhy
i 1 avhv

i
j 1 ahe

h,i
j 1 e

y,i
j , (12)

where a 5 aIh ln w and avh 5 avah.
To complete the model, we need to specify how the pairs of parents

are selected. To this we turn now.

F. Matching Processes

To complete the system described by equations (4), (8), (12), (18), and
(19), we need to specify the matching process for parents. We assume that
this process depends not only on the individual characteristics that wehave
described so far, namely, skill and income, which are relevant for economic
outcomes, but also on characteristics in a set C that are important for
matching but not for economic activity (such as the personality traits, dif-
ferent fromcognitive or noncognitive skills, that are recorded in our data).
Recall that Y is the set of log incomes; let Z ; G � Y � Θ � C and the ob-
servable characteristics ZO ; Y � Θ � C , with generic element zO; for con-
venience, we indicate with a subscript (as in Δm(Z )) whether the element
in Δ(Z ) refers to the mother or the father.
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Amatching associates with a pair of distributions ðmm, mfÞ ∈ ΔmðZ Þ � ΔfðZÞ
an element denoted M ðmm, mfÞ ; n ∈ ΔðZ � ZÞ, describing the distribu-
tion of pairs of genotypes, skills, income, and characteristics of the two par-
ents. The matching process is required to:

1. be feasible: the marginal of each type of parent distribution is the
same as the original distribution for that type:

M ðmm, mfÞΔiðZÞ 5 mi , i ∈ fm, fg;
2. have conditional independence of genotype: the random variables

gm and gf (genotype ofmother and father, respectively) are indepen-
dent, conditional on the information of observable characteristics.

The conditional-independence assumption requires that matching de-
pends only on the observable characteristics zO ∈ Y � Θ � C ; in other
words, matches are made on the basis of observable characteristic and
not on the genotype. Thus, matching of genotypes is not random within
the population, but it is random within the set of individuals with given
observable characteristics. The assumption is very weak, at least as long
as individuals choose their partners without taking into account the re-
sults of genetic tests, which is typically not yet the case.
Random matching within the entire population is a special example

of matching: in this case, a mother of type zmO is selected and indepen-
dently a father of type zfO, according to mm and mf, respectively. This model
is convenient for its simplicity, but it is not entirely supported by the data,
which show instead substantial positive correlation between several char-
acteristics of the parents. Thus, a model induced by preferences over
matchings is desirable and will provide a better approximation. A de-
tailed analysis of the equilibrium concept is presented in section A.

G. Matching According to Worth

The analysis of the invariant distribution is simpler if matching is depen-
dent only on the income and skill of the spouse. So we set

Π 5 0, F i 5 0, ev 5 0, eh 5 0, and ey ∼ N ð0, j2
eyÞ: (13)

We call the set of individuals with the same worth a worth class. In this
model, in each generation children are born of spouses of same worth
(not necessarily income: higher skill may compensate for a lower income).
A pair of genotype and income (g, y) has a worth wðg Þ 1 wyy. Mating is

random within each worth class. To define these classes, we consider par-
titions of the set. A possible partition is the discrete partition, inwhichmating
occurs only within pairs of exactly the same worth; we use this partition
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as a simple but not very realistic example. A more realistic model has a
“countable partition.” To define it, we take a countable set of values, in-
dexed by the integers

V ; vi : i ∈ Zf g: (14)

We assume that these values are increasing in the index and that the dis-
tance between successive terms is uniformly bounded above and below:

∃ M ,M , 8 i : 0 < M ≤ vi11 2 vi ≤ M: (15)

The class of genotype and income pairs of worth vi is defined as

CðviÞ ; ðg , yÞ : wðg Þ 1 wyy ∈ ½vi, vi11Þ
� �

: (16)

The worth function W :G � Y → V is defined as

W ðg , yÞ ; vi if ðg , yÞ ∈ CðviÞ: (17)

We consider a probability measure m ∈ ΔðG � Y , BðG � Y ÞÞ, where B are
the Borel subsets, as the description of the current distribution in the
population of pairs of genotype and income. Genotype G is finite, so
the Borel j-field is the power set; using the Borel definition and notation
for both G and Y simplifies the exposition.
As we mentioned above, children in our sample are all twins. The ge-

netic transmission function in equation (1) is obviously true in particular
for each individual twin. In addition to that equation, we have two addi-
tional conditions restricting the joint transmission to the pair of twins.
These conditions depend on the twin type, an element on the set {DZ,
MZ}, and are defined as

HDZðgm, gfÞðg 1, g 2Þ 5 H ðgm, gfÞðg 1ÞH ðgm, gfÞðg 2Þ (18)

for the genotype pair (g1, g2) of DZ twins and

HMZðgm, gfÞðg 1, g 2Þ 5
H ðgm, gfÞðg 1Þ if g 1 5 g 2,

0 otherwise

(
(19)

for that of MZ twins.
For the given m, we describe the next-period measure as follows. Each

worth class is chosen with the probability induced by m on the worth
space, denoted by mV. Two parents (that is, two pairs of genotype and in-
come) are chosen according to the probability on that class of genotypes
and income. Within the class, mating is random. The genotype of par-
ents then determines the genotype of the child, and parents’ income
and education, together with the child’s genotype, determine the child’s
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income. This entire process yields the new measure.13 The complete
model of the process on genotype, income, education, and skill is given by
equations (4) for skill and (8) for education, the reduced equation (12)
for income, and equations (18) and (19) for the genotype transmission.
Together with the mating process presented in section II.F, these equa-
tions completely determine a nonlinear (because of the function H in
eq. [1]) transition on measures on the space of genotypes and income,
ΔðG � Y Þ. An invariant distribution is a fixed point of this transition
function.
If an invariant distribution exists, we can then subtract from the vari-

ables ðyij , vij , hi
j , wðg i

j ÞÞ their expected value with respect to the invariant
distribution; so the constants are eliminated (e.g., the a term in the re-
duced equation for income is eliminated). Since no confusion is possi-
ble, we keep the same names for these variables, which now have a zero
mean. We write equations (18) and (19) in the compact form:

g i
j is distributed asHkðg i

m, g
i
f Þ, k ∈ fMZ, DZg: (20)

If we substitute equation (4) into the reduced equation for income
(eq. [12]), we get the twin’s income yij as a linear function of genetic en-
dowment g i

j , family income yi, and environment F i, and a weighted sum
of idiosyncratic ( j-dependent) variables:

yij 5 avhwðg i
j Þ 1 ðaIh 1 avhpÞyi 1 avhF

i

1 avhΠX
i
j 1 avhe

v,i
j 1 ahe

h,i
j 1 e

y,i
j :

(21)

The decomposition in equation (21) is a more detailed version of the
standard ACE decomposition in behavioral genetics (see, e.g., Knopik
et al. 2017, 358), where the phenotype is income; the “A” term is the
additive contribution of genotype, avhwðg i

j Þ; the common, or shared-
environment, component “C” is the sum of the two terms ðaIh 1 avhpÞyi
and avhF i; and the sum of the last four terms is the “E” component.
We assume that

aIh 1 avhp < 1 and avh > 0, (22)

to ensure that (the first inequality) the income process is bounded and
an invariant measure exists and that (the second inequality) skill has a
nontrivial effect on income. The equation describing human capital ac-
cumulation is similar, up to the constant multiplier ah; we report it here
for convenience because we cite it below in the empirical analysis:

13 For a precise definition of the transition from one period’s measure to the next, we
refer to sec. D; here, the income of the child is described by eq. (A9) and the genotype
of the child by eq. (A11).
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hi
j 5 avwðg i

j Þ 1 ðaI 1 avpÞyi 1 avΠX
i
j 1 avF

i 1 ave
v,i
j 1 eh,ij , (23)

and it is obtained by substituting equation (11) into equation (8) and
subtracting the constant term.
Different further specifications of the model are possible, depending

on how we model the variables X i
j and F i in equation (23) and therefore

in equation (21). We explore these possibilities in detail in the rest of the
paper. In particular, the equation modeling the variable F i is examined in
the section on passive gene-environment correlation (sec. III.A), and the
model for the variable X i

j is analyzed in the section on measurement er-
ror (sec. IV.B), where we discuss how we plan to estimate equations (21)
and (23), thus providing a link between theory and empirical analysis.

III. Invariant Measures

We now show that an invariant measure exists and has some interesting
properties. Existence of the invariant measure is far from immediate, be-
cause the process on distributions of skills and income in our model is
nonlinear. The nonlinearity follows from the matching process: in every
period, the two distributions (for potential mothers and fathers) are
shuffled by the matching to produce a measure on the product space
of spousal pairs.
A few preliminaries are necessary for a good understanding of the

statement. We call the skill allele the allele at some locus that yields a
higher value of the skill (more precisely, it has a higher genic value).14

We find that, at equilibrium, matching is random within each worth class;
thus, alleles are in Hardy-Weinberg equilibrium at all loci, but the fre-
quency may differ across classes. We recall that a population is in Hardy-
Weinberg equilibrium at a biallelic locus (with alleles denoted A and a
and the frequency of A equal to p) if the frequencies of the three com-
binations (aa, aA, AA) are, respectively, ð1 2 pÞ2, 2pð1 2 pÞ, and p 2; these
are the combinations obtained by independent combination of two
gametes carrying A or a (one from the father and one from the mother)
with probabilities p and 1 2 p, respectively. Under some assumptions
(described in detail in, e.g., sec. 3.1 of Nagylaki 1992 or sec. 2.2 of Crow
and Kimura 1970), in particular the assumption that mating amongmale
and female is random, a Hardy-Weinberg equilibrium is reached in one
generation and maintained in all following generations. Finally, recall
that we assume (eq. [22]) that skill affects income but that the total co-
efficient of household’s income on children’s is less than 1. We can state
the following:

14 The genic value is a measure of the contribution of the allele to the phenotype of in-
terest, the skill in our case (see, e.g., Crow and Kimura 1970, 117).
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Theorem 3.1. Assume equation (22) and that the worth of an indi-
vidual depends linearly on income and skill. Then, for any vector of al-
lele frequencies:

1. an invariant measure exists, which induces that allele frequency;
2. within each worth class, alleles at each locus are in Hardy-

Weinberg equilibrium;
3. within each worth class of the discrete partition, a higher income

of both parents implies a lower expected PGS of the child; and
4. the allele frequencies are invariant across periods.

Some remarks may help to clarify the statement. An invariant measure
exists in spite of the process being nonlinear and for any initial allele fre-
quency. The proof relies on the order structure of the genotype and in-
come space. The Hardy-Weinberg equilibrium holds, but only within
worth classes.One can thus compute thefixation index,which is ameasure
of population differentiation due to genetic structure across populations
(in our model, populations are income and skill classes). The deviations
from Hardy-Weinberg equilibrium in the population may be small, since
the phenotype is highly polygenic and the size of the GWAS coefficient de-
clines quickly. Still, as we see in section III.B.2 below, the model predicts a
stratification across populations of the alleles with stronger effect. Higher
income of both parents is compensated for by the lower skill implicit in
the genotype (the third statement). The last statement shows that fre-
quency in the population of each allele does not change from one period
to the next. So there may be many invariant measures, depending on the
initial condition (at least 2K; see proposition A4). The intuitive reason for
the invariance property is that, as long as income does not affect the rel-
ative fertility for different genotypes and incomes, the specific features of
themating processmay affect the association of genotype and incomebut
can only reshuffle the existing alleles. The lack of differential effects on
fertility is a strong assumption, particularly when we are interested in sec-
ular development, and examining the implications of relaxing it is an es-
sential next step in research.

A. Gene-Environment Correlation

In our estimation (presented in sec. V) of the two equations (21) and (23),
we consider, among the independent variables, the PGSs of the parents.
We justify here the reason for this choice. Clearly, all the information on
the genotypes of the parents that could be potentially relevant for the
determination of the genotype of the twins is rendered irrelevant by the
direct information that we have on the genotype of the twins. However,
the genotypes of the parents can verywell have an additional indirect effect
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on the phenotype of interest of the offspring (educational achievement, in
our case) through the effect of the environment on thephenotype (passive
gene-environment correlation; Plomin, DeFries, and Loehlin 1977; Scarr
and McCartney 1983; Jaffee and Price 2007).
The idea of gene-environment correlation (usually denoted rGE) rejects

the assumption that environment and genes are uncorrelated.15 The cor-
relation may arise in three main ways. The most important for our purposes
is the “passive rGE effect.”16 Genes of the parents affect directly the genes
of the children, but they also affect the environment in which the child
grows; hence the potential for correlation betweenG and E. For example,
higher intelligence of parents, due in part to the genes of the parents, may
be transferreddirectly throughgenes to children but also through the fam-
ily environment created by parents. A related concept, “genetic nurture,”
has been extensively explored by Kong et al. (2018) and Okbay et al.
(2022), and we discuss it below.17

We now discuss how rGE can be analyzed within our model and how
we can then estimate it in our data analysis. First, the household income
(yi in eq. [23]) is already an example of an rGE path: the incomeof the par-
ents is determined in part by their genes (this follows applying the income
eq. [21] to the parents) and also by the grandparents’ genes (iterating the
process), and so on. Similarly, if we include among the variables in the vec-
torX i

j the human capital hi of the parents, then applying the human capital
equation (23) to the parents and iterating, we see that parents’ genes,
grandparents’ genes, and so on are relevant. Since the entire ancestry of
the individual enters into the determination of the family income and
parents’ education, we refer to this as ancestral rGE. Models of parental
investment, as in Becker and Tomes (1979), are a special, very simplified,

15 The rGE is different from the gene-environment interaction (usually denoted G � E).
The latter describes the idea that even if genes and environment are independent, the
way in which each of the two operates on personality and behavior may depend on the
value of the other; i.e., genes and environment do not operate additively. For example, genes
may determine the motivation of an individual (as a personality trait, measured, e.g., by
tasks or survey questions), and environment may offer opportunities (measured, for in-
stance, by schooling available in the place of origin), but the resulting success of the indi-
vidual (measured by education or income) may be different from a linear combination of
the two. For example, in a poor environment where opportunities are severely constrained,
a person with high motivation and intelligence may fail just as one with low values, and the
difference may emerge only when adequate opportunities are offered.

16 The other two effects are evocative and active. The evocative effect refers to the differ-
ence in response that different genotypes induce in the environment; for instance, more
active children are more likely to induce stronger social stimulation from the environment
and hence richer learning. The active effect is produced by the selection, perhaps purpose-
ful, of different environments in which to operate by different genetic types. These two ef-
fects are harder to estimate in our data.

17 Genetic nurture in Kong et al. (2018) is defined to operate through those genes that
are not transmitted from parents to children. The role of family environment in consid-
ered in detail in Willoughby et al. (2021), which is discussed in detail in sec. VII.
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case of ancestral rGE.We have information on family income and parents’
education in our data, and so we can control for its effects. But passive rGE
may arise in a different, more subtle way, which we model by considering
the case in which, in equation (23), the variable F has the special form

F i 5 aC
mg

i
m 1 aC

f g
i
f , (24)

that is, the family environment depends on the genetic profile of the par-
ents though some k-dimensional vectors that may differ for father and
mother. The additive form is the same we make for the genes affecting
directly educational attainment. In section E, we provide a detailed anal-
ysis of this case.
We emphasize that the weights aC in equation (24)may be very different

from those estimated by b in section II.C. In particular, very different genes
(more precisely, SNPs) can be relevant in equations (3) and (24). We pro-
vide an example of this difference below, where the two sets of genes are
disjoint. We also emphasize that “parents” in equation (24) should be in-
terpreted in the more precise meaning of individuals providing parents’
role. For example, if the child is adopted, then the genotypes ðg i

m, g i
f Þ in

equation (24) are those of the adopting parents, not the biological ones
(and the same holds for yi and hi). With minor changes, the proof of the-
orem 3.1 holds, and thus in particular existence of an invariant measure
holds. We refer to this component of rGE as “parental rGE.”

B. Numerical Computation

The main properties of the process and equilibrium distribution of the
model in section III can be illustrated with a numerical computation of
the equilibrium distribution.18 We study the distribution in ΔðG � Y Þ in
successive generations of a constant-size population where each house-
hold has two children. The sex of each child is determined independently
(from each other and from the other variables), with probability 1/2 on
each sex.

1. Speed of Convergence

Convergence to the invariant distribution is fast and approximately
achieved in our model within five generations. The value of the ratio of
the norm of the difference between current and past m to the norm of
the current m is within 10% after five generations and within 2.26% after
10 generations.

18 Coding is in Matlab (release R2022b). The Matlab code is available upon request.
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2. Endogenous Population Stratification

The skill alleles have at equilibrium a frequency that is increasing with
worth, education, and income. As we mentioned in theorem 3.1, society
is stratified. The effect is strong, and it is stronger the higher the genic
value of the allele. Both facts are illustrated in figure 1A.

3. Parental rGE

An intuitive reason for the next result is provided by a simplified example.
Consider the case in which the set of genes (or more precisely the SNPs)
that are relevant in equation (3) and the other set of those relevant for
equation (24) have an empty intersection. We refer to the first set as EA
(for educational attainment) SNPs and to the second as PC (for parental
care) SNPs. SNPs improving parental care also affect positively the educa-
tion and income of the children. Obviously, children’s PC SNPs are corre-
lated with those of the biological parents, by 50% or more (because of
assortative mating); and since parents’ PC SNPs affect educational attain-
ment of the children, these SNPs will be correlated to educational attain-
ment and thus will appear to influence educational attainment directly
even if they are not. This is illustrated by a comparison of the two panels
of figure 1.Thepanels report themain features of two economies that have
the same underlying preferences and technology but completely different

FIG. 1.—Population stratification and rGE. Both panels display the frequency of alleles
by income. The flattest line, with smallest difference across income, describes the frequency
of the allele with smallest genic value; the others are in increasing order, with purple line
for the highest-effect allele. A, Only child’s genotype affects income (no passive rGE).
B, Only parents’ genotypes affect income (full rGE). The figure illustrates how two very dif-
ferent economies may have very similar statistical properties.
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pathways fromgenes to traits; that is, they differ only in the functionsw and
F. We refer to the economy in panel A as the EA economy and to that in
panel B as the PC economy for short.19

The figure illustrates the following results. First, just as in the case in
which the effect on educational attainment is direct, there is also popu-
lation stratification when the genetic effect occurs only through parental
care, with higher frequency of the alleles with positive effect in the
richer, more educated population (see fig. 1A). Second, for each allele
k, the distribution of income for the three subgroups of the population
with g ðkÞ 5 0, 1, 2 is different, even in the economy where there is no
direct genetic effect on education (see fig. 1B). Third, as a consequence
of the second point, the estimated GWAS coefficients for educational at-
tainment are significant and positive even in this latter economy, where
there is no direct effect of genes on educational attainment.
Obviously, in principle parental rGE affects children’s phenotype. The

real question is, Once we control for ancestral rGE, is parental rGE quan-
titatively important? In section VII, we show that the answer is negative.

C. Intergenerational Mobility: Standard
and Genetic Models

In this section, we compare the predictions of the model we have pre-
sented with those of the standard model of parental investment. The
model with autoregressive transmission of skill (as introduced in Becker
and Tomes 1979) has (adopting our notation to this case) the following
equations: for income in generation t,

yt11 5 aIhyt 1 avhvt11 1 e
y
t11, (25)

and for skill,

vt11 5 hvt 1 evt11, (26)

where h ∈ ð0, 1Þ is a fixed “heritability” parameter. Note that there is only
one type of skill. At the stationary distribution, we can compute, using
the Yule-Walker equations, the intergenerational income elasticity rPM
(the subscript “PM” stands for perfect matching; the reason for this will
be clear in the comments following eq. [32]) to be

rPM 5 aIh 1 avh

hEðvyÞ
VðyÞ , (27)

19 The figure relies on the analysis developed in sec. E. In the notation of that section,
there is a K-dimensional vector a such that, in panel A, aA 5 a and aC

m 5 aC
m 5 0, and, in

panel B, aA 5 0, aC
m 5 aC

m 5 ð1=2Þa. In simple words, panel A describes an economy where
all alleles are EA and no passive rGE exists; in panel B, no allele affects educational attain-
ment, and the effect is only through the environment provided by the parents.
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where V denotes the variance of a random variable and E(vy) and V(y)
have an explicit expression in terms of the primitive parameters.20 When
jey 5 0, the intergenerational persistence formula (27) becomes the
well-known formula (see, e.g., Solon 2004) in which persistence is a sim-
ple weighted average of the income and skill transmission:

rPM 5
aIh 1 h

1 1 aIhh
: (31)

A direct comparison of the standard model (eqq. [25]–[26]) with a ge-
neticmodel like equations (20)–(21), where sex is an essential component
of reproduction, is meaningless, since, apart from the genes, there are not
even two parents in the standardmodel. So wemust first build amore gen-
eral model that includes the standard one as a special case of the general
class of models (with gametic reproduction, as is the case for human pop-
ulation) in sections A and II.G. We assume income and skill to be the
weighted average of the income and skill of the two parents, as in equa-
tions (A3) and (A4). Thus, the income of the child follows the equation

yt11 5 aIh o
i5m,f

w
y
i yit 1 avhvt11 1 e

y
t11, (32)

and the skill transmission follows

vt11 5 ho
i5m,f

wv
i vit 1 evt11: (33)

The matching between parents that decides the pairing of (vmt, ymt) with
(vft, yft) is determined by preferences and stablematching, as in section A.
The standard model (eqq. [25]–[26]) becomes a special case of equa-
tions (32)–(33) when we assume that preferences of mothers and fathers
are lexicographic (with any order on v and y) and that mm 5 mf , so match-
ing occurs only among identical types (perfect matching, hence the PM
subscript).
We now show that the formulas for intergenerational income elasticity

(eq. [27] or [31]) of the standard model are an upper bound on the per-
sistence within the class ofmodels requiring equations (25), (32), and (33).
The reason is that, as we have just seen, the standard model maximizes

20 The explicit expressions are

VðvÞ 5 j2
ev

1 2 h2 , (28)

EðvyÞ 5 avhVðvÞ
1 2 aIhh

, (29)

VðyÞ 5 1

1 2 a2
Ih

a2
vhVðvÞ 1 j2

ey 1 2aIhavhhEðvyÞð Þ: (30)
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the similarity among parents, forcing their income and skill to be identi-
cal. For example, consider the case where parents match only on income
but may differ in skill. This happens when preferences are linearly or-
dered by the income of the spouse. In this case, the corresponding inter-
generational elasticity, call it rMY, can be shown to satisfy

rMY < rPM: (34)

The proof is in section B. We can now discuss the relation between predic-
tions of the standard and geneticmodels on the important issue of the size
of intergenerational mobility. The standard model with autoregressive
transmission of skill assumes a fixed h (in eq. [26]). Such a fixed parame-
ter, however, has no correspondent in reality: the geneticmodel shows that
the persistence represented by that h is endogenous and depends on the
distribution of the genotype. Therefore, the corresponding elasticity, call
it rG, also does depend on the distribution, which is different in different
populations. So persistence may differ among populations independently
of preferences, technology, and institutions in the economy, depending
only on the distribution of the genotype in that population.
An important implication of the differences we have highlighted so far

is that the persistence in amodel with genetic transmission of skill can be
higher than that in the standard model, even higher than the highest
possible value in the class of standard models with sexual reproduction
(presented in eqq. [32]–[33]). That is, it may be the case that rG > rPM. It
follows, in particular, that the adoption of the amended model with
AR(1) transmission and sexual reproduction (eqq. [32]–[33]) might
make predictions worse, by further underestimating the persistence.
We illustrate this possibility in a simple but clarifying example. Take

K 5 1 (a single locus with alleles {A, a}), with frequency p(A) of A, deter-
mining a one-dimensional skill v ∈ fv0, v1, v2g, ordered as the index.
Preferences are determined by the household maximization problem
and hence are described by equation (A6); and to ease comparison with
the simple form (eq. [31]), we assume jey 5 0,Π 5 0, F 5 0, and ev 5 0.
This economy has a stationary distribution at two values:

ð0, y0, v0Þ with probability 1 2 pðAÞ and ð2, y2, v2Þ with probability pðAÞ, (35)

where

yi 5
avhvi

1 2 aIh

:

The persistence here is 1, and this can never occur in an autoregressive
model with h < 1.
The example is obviously artificial in the assumption that a skill phe-

notype is determined by a single locus, whereas the skills of interest for

(35)
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economic applications are highly polygenic. The force highlighted by
the example, however, is not at all artificial, and it points to the effect
that assortative mating has on increasing the variance of genetic values
and magnifying the heritability and the resemblance between relatives.21

This effect is absent by assumption in the autoregressive model, even in
the amended version in which two partners are introduced, given by
equations (25), (32), and (33).

IV. Estimation Strategy

Our empirical analysis will estimate equations (21) and (23). In the next
two subsections, we discuss the introduction into the analysis of the ge-
notype of the parents among the explanatory variables (X i

j ) and the ad-
ditional information we can derive from a special subset of our data, the
DZ twins. We recall that the joint distribution of genotypes is described
by equations (18) and (19).

A. Correlation among Twins

In the fixed-effects analysis below, we rely on the fact that DZ twins share
important environmental characteristics but do not entirely share the ge-
notype. The degree of the sharing depends on the nature and strength of
the assortative matching between parents. Genetic correlation among par-
ents may occur for two different types of reasons. Correlationmay exist be-
cause matching is directly on the relevant phenotype (e.g., the correlation
on genes affecting intelligence among parents occurs because parents
match according to intelligence), or it may occur indirectly, when match-
ing occurs along dimensions unrelated to the phenotype (e.g., matching
occurs along the characteristics in the set C of physical appearance), but
because of population stratification a correlation between genes affecting
variables in C and Θ exists.22

Whatever the cause, the correlation for DZ twins is a simple function of
the correlation between the PGS of the parents. We use the subscripts 1

21 This force is well recognized in population genetics: see chap. 4 of Crow and Kimura
(1970), in particular sec. 4.6 for our single-locus example and sec. 4.7 for a multivariable
example. The analysis in population genetics is very different from the one we present here
because the assortative mating in our model is endogenous and determined at equilibrium
in the marriage market.

22 We can illustrate this second possibility, considering the extreme case in which there is
no overlap between loci affecting the v skills and the characteristics in C and matching
along C characteristics is perfect. In this case, the stationary distribution has segregated
populations with different frequencies on the alleles determining v and thus different dis-
tributions on the v skills. This equilibrium is not robust, of course: with a small imperfec-
tion in the C-matching the frequency of the v alleles converges exponentially in the long
run to a value independent of the C characteristics; however, the transition is slow when the
imperfection is small, and in the transition the correlation may be substantial.
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and2 to indicate that the variable refers to first and second siblings and the
subscripts “m” and “f,” for mother and father, respectively. Then:
Lemma 4.1. The correlation between the standardized PGSs of non-

identical full siblings, hence in particular of DZ twins, is equal to 1/2
plus half of the correlation between the standardized PGSs of the par-
ents, that is,

EðPGS1PGS2Þ 5 1

2
1

1

2
EðPGSmPGSfÞ:

The proof is in section C.23 Lemma 4.1 gives the predicted correlation
among DZ twins as a function of the correlation among parents. In sec-
tion VII, we present the correlation among parents’ PGSs and find that
data are consistent with the prediction of the lemma.
In the next sections, we test and estimate the parameters of the two

equations (21) for income and (23) for human capital. The data we use
are described in detail in section IX.

B. Measurement Error and Structural Equation Models

Reliable estimates—for example, that of the path from genetic factors to
educational outcomes—must take into account errors in measurement
of the variables. This is obviously important if we want to minimize down-
ward biases of single coefficients, but it is evenmore important if we want
to compare the relative sizes of the effect operating through cognitive
and noncognitive skills, since the error in measurement might be differ-
ent for the two groups of variables. For example, it might be natural to
expect a larger error in measures of noncognitive skills, based on sur-
veys, than in those of cognitive skills, based on tests. We model explicitly
and estimate errors in measurement using a structural equation model
(SEM).
The SEM we consider is of the usual form (see, e.g., Bollen 1989):

Y 5 BY 1 ΓX 1 aY 1 z , (36)

with Y an m-vector of mY endogenous observed variables y and mh endog-
enous unobserved variables h; X an n-vector of nX exogenous observed
variables x and ny exogenous unobserved variables y; aY a vector of
means; and z a vector of errors. Entries of B are denoted by b’s, entries
of Γ by g’s. In this section, we adopt the notation convention that vari-
ables with a capital first letter are endogenous and those with a lowercase
first letter are exogenous.24

23 On the related, but different, issue of segregation variance (i.e., the variance of the
offspring about the mid–parent value), see Rogers (1983).

24 This carries the modest price of changing PGS to pGS.
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We set up our analysis by adopting a general form (eq. [36]) to test the
basic equations of the model, with basic equations (21) and (23). Spe-
cific examples are the system of equations (39)–(40) and that of equa-
tions (43)–(45). We recall that the variables in the vector X i

j for ij (intro-
duced in sec. II.C) are not necessarily observed, so we add equations
providing measurements of these latent variables. They may also be en-
dogenous, so we add equations describing how they are determined. Ex-
amples of variables that are components of X i

j are the latent endogenous
variables C and NC (cognitive and noncognitive skills, in eqq. [37]–[38];
these are the h-variables); observed endogenous variables eh and yh in
equations (43)–(44), (y-variables); and finally pGSm and pGSf, exoge-
nous observable x-variables in equations (43)–(45).

V. Income and Human Capital Determination

We first estimate the parameters of the model presented in section II.G.
Table 1 reports the panel regression of the log income at the age-29 as-
sessment over family income, PGS, and other control variables. Estimates
reported in the table control for the difference in the age of the individ-
uals (parent or child) at which the information on income was collected.
Since wage increases with age at a rate that may be heterogeneous (Rupert
and Zanella 2015; Lagakos et al. 2018), this difference may introduce a bias
in the estimated coefficient if the slope depends on characteristics, such
as education, that are correlated with wage. We use a specification of the
Mincer (1974) equation that has that of Lagakos et al. (2018),25 as special
case, allowing the slope to depend on education. If the slope increases
with education, we expect the estimated elasticity coefficient to overesti-
mate the true value; thus, we control for the time difference, the educa-
tion of the parents, and an interaction term.
The estimated unconditional intergenerational elasticity (IGE) is

0.134 (SE 5 0:027); the table (col. 1) reports the values after sex and
the interaction between sex and family income are controlled for. Age
does not have a significant effect, as might be expected, since individuals
in the sample are approximately the same age. Sex of the individual has a
strong and significant effect: income for male individuals has a substan-
tially larger intercept (27.7%) but a smaller (by 6%) dependence on the
family income. The fraction of males in the twins population is 48%;
thus, the standardized male variable is approximately equal to 1 for male
and 21 for female.
In column 2, the coefficient of the individual PGS is 7.8% (SE 5 0:025,

p-value 5 :002). Its size is approximately half of that of family income
(12.8%). Considering that the PGS we are using is estimated from

25 Specifically, the formulation given in sec. VI.A of Lagakos et al. (2018).
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coefficients from a GWAS for education, it is likely that the weight of ge-
netic factors affecting income is higher.
Column 3 in the table presents controls for some of the variables that

are likely to mediate the effect of the PGS. Education years is the most
natural variable to capture the effect of the PGS in education, and in fact
the estimated coefficient is large (25.6% [SE 5 0:035], p-value < :001)
and significant.26

The controls for principal components and the difference in the age
of parents and children at the collection of data on income produce no
significant coefficient; the IGE falls after the control for difference in
age, as expected, but in small measure (on the order of 10%). Controls

TABLE 1
Income at the Age-29 Assessment, Family Income, PGS, and Personality

Variable

Coefficients (SE)

(1) (2) (3)

Family income .134*** .128*** .078**
(.027) (.027) (.032)

Male .277*** .276*** .313***
(.025) (.025) (.029)

Male � family income 2.060** 2.060** 2.050*
(.025) (.025) (.030)

PGS .078*** .021
(.025) (.028)

Education in years .256***
(.035)

IQ .008
(.029)

MPQ PA .061**
(.026)

MPQ NA 2.024
(.027)

MPQ CN .034
(.032)

Externalizing 2.072*
(.037)

Academic effort .057
(.038)

Academic problems 2.017
(.034)

Observations 2,100 2,100 1,485

Note.—All variables, including parent college and male, are standardized
to mean zero and SD 1. The signs of the MPQ variable NA, externalizing, and
academic problems are reversed. Estimates control for principal components
and the parent-child time difference in age at income data collection.
* p < .1.
** p < .5.
*** p < .01.

26 Note that the sample size is smaller because several variables are missing for some
subjects.
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for additional variables (in particular education of parents and PGSs of
father and mother) produces elasticity coefficients that are small and
nonsignificant, with no effect on the coefficients of the variables of more
significant interest.27

The values of IGE are on the lower side of the currently available esti-
mates for developed countries, which vary between a minimum of 0.2
and 0.4 (see, e.g., Solon 1992, Zimmerman 1992, Mazumder 2005, Lee
and Solon 2009, and surveys in Blanden 2011 and Björklund, Roine, and
Waldenström 2012). The coefficient reaches higher values in some stud-
ies: see, for example, Palomino, Marrero, and Rodríguez (2018), who in
a finer analysis (taking into account quartiles of the distribution) show
that it can take higher values for the highest and lowest levels of income.
There are some possible explanations for this difference. One is measure-
ment error in our income data. Another is that in some developed coun-
tries with European populations the IGE coefficient is lower. For example,
in Sweden (a country that is more relevant, given the demographic com-
position ofMinnesota at the time in which the data were collected), values
are lower (see, e.g.,Österberg 2000, 427, where values are around 0.125),
although they can be substantially higher at higher values of income (see
Björklund, Roine, and Waldenström 2012) that are less relevant for our
sample.28

VI. Identifying the Path from PGS to Education

In this section, we identify how much of the effect of PGS on educational
achievement can be attributed to factors such as cognitive or noncogni-
tive skills.
In our estimates below, the vector Y has a vector h of endogenous latent

variables equal to (C, NC), denoting cognitive and noncognitive skills, re-
spectively. The structural observed component of the Y vector is number
of education years of the twins, e : we focus on this measure (rather than
college or GPA [grade point average]) because it is the most relevant for
economic consequences. The measurement variables in Y are a vector
ððctiÞi51, ::: ,IctÞ, ðnctjÞj51, ::: ,JnctÞÞ ofmeasurements of cognitive andnoncognitive
skills. Turning to the vectorX, in our case x ; ððxkÞk51, ::: ,K Þ is a vector of con-
trol variables, such as household income variables, education and PGS of
parents, the principal components, age, and sex. The system we estimate is

27 The coefficients are 0.004 (SE 5 0:166) for parents’ education, 20.03 (SE 5 0:037)
for mother’s PGS, and 0.04 (SE 5 0:038) for father’s PGS.

28 See Björklund and Jäntti (1997) for a comparison of Sweden and United States on in-
tergenerational mobility; they find that mobility is higher in Sweden.
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C 5 bCpGS 1 zC, (37)

NC 5 bNCpGS 1 zNC, (38)

cti 5 acti 1 gC
cti C 1 z cti , i 5 1, ::: , Ict, (39)

nctj 5 anctj 1 gNC
nctjNC 1 zncti , j 5 1, ::: , Jnct, (40)

e 5 ae 1 gC
eC 1 gNC

e NC 1o
k

gxk
e xk 1 ze, (41)

gC
ct1 5 gNC

nct1 5 1: (42)

The PGS may be added to the right-hand side of equation (41)
with little consequence. The normalization condition (42) is necessary
because any multiplication of the variables bC and zC by a positive con-
stant, and corresponding division by the same constant of the vector
(gcti : i 5 1, ::: , Ict), gives a new vector of parameters, with the corre-
sponding random variables still satisfying the system of identification
equations; a similar rescaling of bNC, zNC and (gnctj : j 5 1, ::: , Jnct) would
have the same effect. Hence the two normalization conditions (42).
With this normalization, the model is identified, if there are at least
two cognitive and two noncognitive tests. More precisely:
Proposition 6.1. Assume that Ict ≥ 2 and Jnct ≥ 2; then the system

(37)–(42) is identified.
Proof. Substituting equations (37)–(38) into equations (39)–(41) re-

duces the system to a system of observed variables. We indicate by j2
X the

variance of a variable X. The simpler system in observed variables can be
solved recursively for the parameters in the following order: j2

pGS, bC, bNC,
gC
cti , g

NC
ncti , j

2
zC
, j2

zNC
, j2

zcti
for all i ≠ 1, j2

znctj
for all j ≠ 1, gC

e , gNC
e , and finally j2

ze
.

QED
The structural component of the SEM estimation is reported in ta-

ble 2. In the equation for education years, the coefficients for both C
and NC are significant. We can compute with the delta method the prod-
uct of the coefficient for the link from the PGS to the variable C, times
the coefficient from C to education years. The value of the product is
0.082 (SE 5 0:018, z 5 4:53, p-value < :001), with confidence interval
[0.046, 0.117]. The corresponding product for the path passing through
NC has a value of 0.034 (SE 5 0:019, z 5 1:8, p-value 5 :071), with con-
fidence interval [20.003, 0.072].
Once we control for C and NC, the coefficient of the PGS is not sig-

nificant (p-value 5 :725). For comparison, we note that in the regression
restricted to twins, controlling only for sex, the coefficient is 18.7%
(SE 5 0:022, z 5 8:37, p-value < :001). The coefficients of education
of parents and family income are both significant and of the same order
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of magnitude, but that of education of parents (13.6%, SE 5 0:029,
z 5 4:58, p-value < :001) is approximately twice that of family income
(7.5%, SE 5 0:031, z 5 2:38, p-value 5 :017). The PGS of parents is not
significant.

VII. Fixed-Effects Analysis and Parental rGE

In this section, we estimate the equations for income and human capital,
using three important additional pieces of information: the fact that
children are twins, both DZ and MZ, the overlapping-generations struc-
ture of the model, and the information, including genetic information,
on parents. We begin with the analysis based on DZ twins.

A. Fixed-Effects Analysis with DZ Twins

DZ twins offer a uniquely informative way for the analysis of the effect
of genetic variables on educational achievement. DZ twins share many

TABLE 2
SEM of Pathways from PGS to Education Years (N 5 852)

Equation, Variable Coefficient z p-Value Confidence Interval

Education years:
C .285 4.87 <.001 [.171, .401]

(.058)
NC .856 3.11 .002 [.315, 1.4397]

(.276)
PGS .014 .35 .725 [2.066, .94]

(.041)
PGS mother .033 .71 .282 [2.027, .093]

(.030)
PGS father .019 .66 .512 [2.039, .078]

(.030)
Education of parents .136 4.58 <.001 [.078, .194]

(.29)
Family income .075 2.38 .017 [.013, .137]

(.031)
Male 2.151 22.77 .007 [2.260, 2.041]

(.055)
Constant .376 9.85 <.001 [.301, .450]

(.027)
C:
PGS .287 9.21 <.001 [.226, .349]

(.031)
NC:
PGS .040 1.95 .051 [2.0002, .081]

(.025)

Note.—The model estimated is described in eqq. (37)–(41). All observed variables are
standardized to mean zero and SD 1. Cognitive-skills test scores (C) are verbal and perfor-
mance IQ; the noncognitive-skills test scores (NC) are the three broad MPQ dimensions.
Standard errors are estimated by bootstrapping. Model vs. saturated: Pr > x2 < 0:0001.
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significant variables: date and condition of birth, family background,
and very similar family environment in the following years. Therefore, a
fixed-effects analysis of measures of educational achievements regressed
on PGS, once restricted to DZ twins, will control for the effect of environ-
mental factors common to the two twins.
We have seen in section IV.A the theoretical estimate of the correlation

amongDZ twins, depending on the degree of assortativemating of the par-
ents. The difference in PGS correlation and the predicted correlation with
random assortativematching (which is 1/2) is 0.083, and it must be due to
the assortative matching among parents. In our case, we are considering
not the genome-wide correlation29 but that between the PGSs of parents.
The correlation coefficient between the PGSs of the two parents is
r 5 0:152. As discussed recently in the literature (see Abdellaoui, Verweij,
and Zietsch 2014; Robinson et al. 2017), the estimate of genetic assortative
mating can be influenced by population stratification, whichmay produce
spurious correlation. For example, the genetic assortativemating estimated
in Domingue et al. (2014) becomes insignificant when a control with prin-
cipal components is performed.30 In table S-10 (sec. S-0.5) we report the
controls for principal components in our data. The table shows that the es-
timated correlation in PGSs of spouses is robust to such control. This cor-
relation is to be expected, given the strong correlation between education
years of the two parents: for education years, the correlation coefficient is
r 5 0:522, and for IQ it is 0.37.
The fixed-effects analysis is presented in tables S-2 to S-5 for education

years, GPA, college, and IQ score, respectively. All the regressions show
that the coefficient of the PGS is significant in the fixed-effects regres-
sion. In the case of GPA, the coefficient is large and is approximately
equal in the two regressions.

B. The Explanatory Power of Parents’ PGS

A different way to control for the effect of genetic endowment of parents
on family environment is to control directly for their PGS; in this case, we
can use the information on both types of twins, including MZ.
The system we estimate is presented in equations (43)–(45) and is a spe-

cial case of the general SEM structure in the general system (eq. [36]), with
the same interpretation for the parametersaY, b, g, and j as in section IV.B.
Asusual, the superscript i refers to the family and the subscript j to the twin.
The variables eh and yh denote, respectively, education of parents (average

29 See p. 12 of the Supplementary Information in Robinson et al. (2017).
30 See sec. S2 (“Principal Components”) of the Supporting Information for Domingue

et al. (2014), in particular table S1. These are the same tests we use in table S-10.
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of the education years of the two parents) and family income. The y-
variables are eh, yh, and e; the x-variables are pGSm, pGSf, and pGS. There
are no exogenous latent y-variables. The equations of the model (note
that, unlike the estimate reported in table 2, we are not controlling for C
and NC variables) are

e ih 5 aeh 1 gpGSm

eh pGSi
m 1 gpGSf

eh pGSi
f 1 z eh , (43)

yih 5 ayh 1 gpGSm

yh pGSi
m 1 gpGSf

yh pGSi
f 1 z yh , (44)

eij 5 ae 1 geh
e e

i
h 1 gyh

e y
i
h 1 gpGS

e pGSi
j 1 gpGSm

e pGSi
m 1 gpGSf

e pGSi
f 1 ze: (45)

With this formulation we can take into account the difference in the
PGSs of the DZ twins and still use the information on MZ twins (see
Okbay et al. 2022 for a justification of this method). The estimate of the
SEM is presented in table 3.
Education of parents and family income have a strong and significant in-

fluence on educational attainment of the twins; thus, they exert their influ-
ence though this channel in addition to the direct one of the genotype of
the twins. However, the coefficients of the two parental PGSs, which could
potentially report additional unobserved channels from genotype of par-
ents to education years, are not significant, although they are of course
large and significant in the equations for both family income and parents’
education. This finding is consistent with the result reported inWilloughby
et al. (2021): conditioning on parental IQ and socioeconomic status sub-
stantially reduces the effect of parental genotype. Within our model, this
result is an implication of the identification of family income and parental
education31 as the pathways of the effect of family background.32

The results are similar if we introduce explicitly a latent variable F of
family environment, affected by the PGS of the parents, and modify the
education-years equation as

e ij 5 ae 1 geh
e e

i
h 1 gyh

e y
i
h 1 gF

e F
i 1 gpGS

e pGSi
j 1 z e : (46)

The PGSs of parents significantly affect the education of parents and
income of the family, and in turn the education of parents and income
of the family affect education years of children, but F has little residual
influence.
We find similar results if we consider different measures of educational

attainment. For example, if we take the variable eij to be a binary variable
indicating whether the twin has a college degree or not (and estimate the
correspondent of eq. [45] with a probit model), we find the coefficients
of eh to be 0.35 (SE 5 0:05, z 5 6:98, p-value < :001;marginal effect 12%);

31 These variables were not considered by Willoughby et al. (2021).
32 For the record, the coefficient of the score of the mother is significant at the 10% level.
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for yh the coefficient is 0.21 (SE 5 0:057, z 5 3:76, p-value < :001; mar-
ginal effect 6.7%). The estimated coefficient for the PGS of the twin is
0.16 (SE 5 0:043, z 5 3:67, p-value < :001; marginal effect 5.4%).

C. Regression on Parents’ PGS

In this section, we see that if we regress variables of interest on the PGS of
the children and we include that of the parents, we typically find the co-
efficient of the parents’ score to be significant and positive. This finding
provides evidence that the genes of parents affect the success of children,
in addition to the direct effect on the genes of the children. After we con-
trol for education of parents and family income, the coefficient of the par-
ents’ PGS is insignificant, while the coefficient of the PGS of the twin stays
significant. This second finding suggests that income and education of
parents channel most of the additional effect of parents’ genes.

TABLE 3
SEM of Pathways from PGS to Education Years (N 5 802)

Equation, Variable Coefficient (SE) z p-Value Confidence Interval

Education of parents:
PGS mother .182 5.62 <.001 [.118, .245]

(.032)
PGS father .301 8.96 <.001 [.235, .367]

(.033)
Constant .066 2.00 .045 [.001, .132]

(.033)
Family income:
PGS mother .091 3.12 <.001 [.034, .149]

(.029)
PGS father .154 5.05 <.001 [.094, .213]

(.030)
Constant .131 4.28 <.001 [.070, .198]

(.030)
Education years:
Education of parents .183 8.76 <.001 [.142, .224]

(.021)
Family Income .112 4.84 <.001 [.066, .157]

(.023)
PGS .103 4.84 .002 [.038, .167]

(.032)
PGS mother .052 2.26 .094 [2.006, .084]

(.023)
PGS father 2.003 2.13 .899 [2.051, .044]

(.024)
Male 2.139 22.85 .004 [2.235, 2.043]

(.048)
Constant .345 13.43 <.001 [.284, .395]

(.025)

Note.—The model estimated is described in eqq. (43)–(45). All observed variables are
standardized to mean zero and SD 1. Standard errors are estimated by bootstrapping.
Model vs. saturated Pr > x2 < 0:0001.
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We present the results in section S-0.4 for education years (table S-6),
GPA (table S-7), college (table S-8), and IQ (table S-9). These results are
consistent with earlier findings of passive rGE33 but add insight into the
mechanism from genetic profile of parents to children’s outcomes: most
of this effect is channeled by parents’ education and income, with parents’
education typically having the largest and most significant role.
When we control for education of parents and family income (see col. 4

in table S-6 [app. S-0.4], the coefficients of the PGS of the parents are sub-
stantially reduced andnot significant. In thismodel, the fraction explained
by the education of parents is large (coefficient is 0.116, [SE 5 0:025]),
and so is the case for family income (coefficient is 0.083 [SE 5 0:028]).
Interestingly, the coefficient of the mother’s PGS shows some modest ef-
fect in columns 2 and 3, that is, even after we condition for IQ and soft
skills. The same result of the decline in significance of the PGS of parents
holds for other indicators of educational attainment, such as college and
the GPA index, reported in tables S-7 and S-8, respectively.
In conclusion, we add two findings to the analysis in Kong et al. (2018)

andWilloughby et al. (2021), where evidence of a passive rGE is reported.
First, we identify, consistently with the model we developed in section II
and with the more general theory of parental investment, two paths
through which genetic factors of the parents operate indirectly, namely,
family income and education of parents; education of parents has a larger
coefficient than family income. Second, we show that once these two fac-
tors are taken into account, there is no significant residual indirect effect.34

VIII. Conclusions

Our analysis has been set up as a natural extension of theories of parental
investment and intergenerational mobility (as in Becker and Tomes 1979
and in the large literature building on that model), but it replaces the ad
hoc assumption of an asexual AR(1) process with a fully specified formula-
tion of genetic transmission of skills from a pair of parents in a stable, non-
random mating equilibrium. Our model provides the basis for an eco-
nomic analysis of genetic factors in education and intergenerational
mobility; it is more realistic than the existing models, and it is still analyt-
ically manageable, so that it can be tested in the data. Our data analysis
provides a proof of concept of this statement.

33 See Kong et al. (2018); see also the analysis in Willoughby et al. (2021).
34 Within the model defined precisely here, there is little evidence of genetic nurture, as

defined in recent literature (see, for an in depth discussion, Wang et al. 2021 and Okbay
et al. 2022).
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Realism of the assumptions would matter little, perhaps, if the predic-
tions of the alternative models were similar. We have shown instead that
the predictions of ourmodel of intergenerationalmobility differ substan-
tially from those of the standardmodel.Most notably, there is no constant
heritability coefficient as in the standardmodel; instead, heritability is de-
termined endogenously and depends on the probability distribution of
the genotype and on the features of the assortative mating, hence ulti-
mately on the mating preferences of the agents. We have concluded in
our analysis that the standard model is likely to underestimate the inter-
generational elasticity of income. Our model also allows a precise test of
important features affecting intergenerational mobility, such as assorta-
tivemating and passive gene-environment correlation, which is the effect
of genes of parents operating (over and above the direct effect on genes)
through the environment provided by parents to children. If we want to
analyze precisely the relative weights of nature and nurture, an issue that
is crucial for a variety of public policies, economic theory will have to
adoptmodels that incorporate this information explicitly. The difference
between standard and fully specified genetic models will become even
more consequential as more precise estimates of the link between genes
and phenotypes of economic interest, as well as richer information on
the genetic profile of individuals, become available.
In our empirical analysis, we confirm earlier results that genetic factors

measured by the PGS have a large effect on educational achievement, for
example, raising the fraction achieving college from about 20% in the low
decile of the score to about 60% in the top decile. Very different pathways
of the effect of PGS could be consistent with this finding: for example, the
effect might be entirely due to discrimination operating on individual
characteristics that are genetically based but irrelevant for the technology
of educational achievement. These discrimination effects are less likely for
components that operate through intelligence and personality; any frac-
tion of the explanatory power of the PGS that can be attributed to the me-
diation of these individual characteristics is less likely to operate through
discrimination. Regression analysis shows that the pathways occur in signif-
icant part through intelligence and personality and that the size of the ef-
fect of intelligence is stronger overall.
Our data include information on the genetic profile of the parents, so

we can test directly the size and significance of the effect of the genotype
of parents on the environment of children (passive rGE). Our analysis de-
composes this effect into two different paths: one operates through genes
that directly affect educational attainment of the parents but influence the
environment of the children indirectly through the effects on income and
education. This first is the path that economists have analyzed withmodels
of parental investment. A second path operates through genes that affect
directly the environment of the children without affecting educational
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attainment of the parents and thus their income and education. Our anal-
ysis of the data suggests that most passive rGE operates though the first
channel; within this channel, education matters more than income.
Fixed-effects analysis on DZ twins is performed, exploiting the informa-

tion we have on the genotype, summarized by the PGS, which is identical
forMZ twins anddiffers forDZ twins, in ameasure that depends on chance
and the degree of assortative mating between the child’s parents. Our re-
sults shows a significant effect of PGS on a measure of academic perfor-
mance at school (the GPA score) and on intelligence, as well as in educa-
tional achievement, in particular college degree. This final result provides
an important support for our conclusion, since DZ twins share very similar
environments in their formative years but are significantly different in ge-
notype, in spite of assortative mating. The analysis of the pathways operat-
ing from genes associated with educational attainment though cognitive
and noncognitive skills shows that the largest effect is through cognitive
skills.35

IX. Description of the Data

Individuals in the sample we use here are twin participants in the Minne-
sota Twin Family Study (MTFS; Disney et al. 1999; Iacono et al. 1999),
which includes two cohorts of twins, one assessed initially at a target age
of 11 (N 5 1,512) and a second assessed initially at a target age of 17
(N 5 1,252), and subsequent follow-up assessments undertaken at target
ages of 20, 24, and 29 for the older cohort and 14, 17, 20, 24, and 29 for the
younger cohort. The participation rates in the follow-ups of MTFS have
generally been above 90% (see McGue, Irons, and Iacono 2014).

A. Measures of Income

Data on income of parents and twins were collected at different points in
time. The age of parents at the moment at which the data on income were
collected is higher than the age of the children by approximately 10 years.
We control for this difference in the estimation (see the discussion preced-
ing table 1). The measure of parents’ income was collected on a 13-point,
self-reported scale that ranged from less than $10,000 to over $80,000.36

35 This conclusion is different from the one reached in McGue, Rustichini, and Iacono
(2017) andMcGue et al. (2020), using the same data. The reason for the discrepancy is ex post
clear. Neither of these papers sets up the analysis as a test of a fully specifiedmodel of parental
investment, and both ignore key variables in the analysis, such as household income.

36 The precise bandswere (1) less than$10,000, (2) $10,001–$15,000, (3) $15,001–$20,000,
(4) $20,001–$25,000, (5) $25,001–$30,000, (6) $30,001–$35,000, (7) $35,001–$40,000,
(8) $40,001–$45,000, (9) $45,001–$50,000, (10) $50,001–$60,000, (11) $60,001–$70,000,
(12) $70,001–$80,000, and (13) more than $80,000.
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A first assessment of the income of the twins was collected at the age-
29 assessment and was the answer to the question What is your annual
income before taxes (in thousands of dollars? No specific band of in-
come was suggested. In the analysis, the data on income are translated
into dollar amounts, then log transformed and standardized.

B. Measures of Human Capital

Information on educational achievement in the sample is provided by a
classification of the individual into one of seven classes, described in ta-
ble 4. Data on academic performance of the twins in school were col-
lected in a dedicated academic history interview, given to both mother
and child. Four scores were calculated: GPA, behavior problems, aca-
demic problems, and academic motivation.
The GPA score used here is a GPA-like index, not the actual GPA. Five

questions in the academic history survey asked separately both themother
and the child about grades the child was getting in school. The questions
provided a 5-point letter scale, from A to F, for the answer. The questions
asked about grades in (a) reading/English, (b) arithmetic/math, (c) sci-
ence, (d) social studies/history, and (e) overall. The GPA score was then
calculated to represent an average of items a–d transformed to a four-point
scale. In a validation sample ( Johnson, McGue, and Iacono 2004), the cor-
relation between reported grades and actual GPA from school transcripts
exceeded 0.8.

C. Explanatory Variables

A specific strength of our data is the availability of information on vari-
ables that are natural candidates to provide an explanation of the way in
which the genetic profile of individuals, summarized by the PGS, can af-
fect educational achievement. We describe these data here.

TABLE 4
Education Years Variable

Education Level Class Years

Less than high school 1 10
GED 1 11
High school 2 13
High school 1 vocation 3 14
Community college 3 15
College 4 19
Professional degree 5 22

Note.—The variable “Class” is a coarser classification used in the
analysis.
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Computation of PGSs.—We constructed the PGSs predicting years of ed-
ucation from the summary statistics released by Lee et al. (2018), with the
cohorts 23andMe andMCTFR (Minnesota Center for Twin and Family Re-
search) removed. The weights of the SNPs in the score were then calcu-
lated with the software tool LDpred (Vilhjálmsson et al. 2015), which uses
an external sample to estimate the correlations between SNPs in order to
convert the univariate regression coefficients in GWAS summary statistics
to partial regression coefficients. We used the data in MCTFR for parents
of European ancestry to estimate the correlations between SNPs and calcu-
lated the partial regression coefficients of the 450,000 SNPs that were orig-
inally genotyped in MCTFR and survived all default software filters. We
set the LDpred shrinkage parameter equal to unity—the highest possible
value and the one leading to the least shrinkage of the PGS weights. This
choice, sometimes regarded as the most conservative, was followed by Lee
et al. (2018). Our experience has shown that varying this parameter over a
tenfold range scarcely influences the prediction R2 (e.g., Willoughby et al.
2021).
Cognitive ability.—Cognitive ability was assessed at intake for bothMTFS

cohorts by means of four subtests from the age-appropriate Wechsler
Intelligence Scale. Twins in the younger cohort were assessed with the
Wechsler Intelligence Scale for Children–Revised (WISC-R), and twins
in the older cohort were assessed with the Wechsler Adult Intelligence
Scale–Revised (WAIS-R). The short forms consisted of two performance
subtests (block design and picture arrangement) and two verbal subtests
(information and vocabulary), and the scaled scores from these subtests
were prorated to determine overall IQ. IQ from this short form has been
shown to correlate (r 5 0:94) with IQ from the complete test (Sattler
1974).
Noncognitive skills: personality measures.—Six measures of noncognitive

skills derived from the age-17 assessment of both cohorts were used.
First, we used three higher-order scales from theMultidimensional Person-
ality Questionnaire (MPQ; Tellegen and Waller 2008). The MPQ has
11 primary trait scales (absorption, well-being, social potency, achievement,
social closeness, stress reaction, aggression, alienation, control, harm avoid-
ance, and traditionalism). Each is assessed with 18 self-reported items. The
three higher-order MPQ scales (positive emotionality of affectivity [PA, as-
sociatedwith well-being, social potency, achievement, and social closeness],
negative emotionality or affectivity [NA, associated with stress reaction,
alienation, and aggression], and constraint (CN, associated with control,
harm avoidance, and traditionalism]) are computed as linear functions
of the 11 primary scales.37

37 For details, see https://www.upress.umn.edu/test-division/mpq/copy_of_mpq_BF
-overview.
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High constraint is associated with tendencies to inhibit and constrain
impulsive as well as risk-taking behavior. Individuals with higher NA scores
are more prone to experience anxiety, anger, and, in general, negative en-
gagement. Positive emotionality is associated with search for rewarding be-
havior and experience, while low PAmay be associated with loss of interest,
depressive engagement, and fatigue. In our sample, the threehigher-order
dimensions, as well as IQ, are approximately normally distributed.
Additional noncognitive skills.—Three additional measures of soft skills

were derived from answers to questionnaires.

1. Externalizing was the total number of DSM-IV (Diagnostic and Statis-
tical Manual of Mental Disorders, fourth edition) symptoms of oppo-
sitional defiant disorder, conduct disorder, and adult antisocial be-
havior (i.e., the adult symptoms used in diagnosing antisocial
personality disorder) obtained by interviewing the twin with the
Diagnostic Interview for Children and Adolescents (DICA-R;
Welner et al. 1987; Reich 2000) and the Structured Clinical Inter-
view for DSM-III-R (SCID; Spitzer et al. 1992). The interviews were
modified to ensure complete coverage of DSM-IV, and symptoms
were reported over the lifetime of the adolescent. In the analysis
reported here, the “externalizing” scale was log-transformed (after
adding 1) to minimize positive skew.

2. The academic effort scale consisted of eight items answered by the
twins’ mother on a four-point scale (definitely false, probably false,
probably true, definitely true). Items on this scale (with a 5 0:91)38

cover academic effort (e.g., “Turns in homework on time”) andmoti-
vation (“Wants to earn good grades”).

3. Finally, the academic problems scale consisted of three items (a 5 0:77)
answered on the same four-point format by the mother and covering
behavioral problems in a school setting (e.g., “Easily distracted in
class”).

Family background.—Three indicators of family background assessed at
intake were analyzed here. First, parent occupational status was based on
mothers’ and fathers’ reports and coded on the Hollingshead scale
(Hollingshead 1957). We inverted the seven-point Hollingshead scale
so that higher scores represented higher occupational status. Individuals
were coded as missing if they did not work full-time, were disabled or in-
stitutionalized, or reported their occupation as homemaker. The occu-
pation status of the home was taken as the maximum of the two parent

38 Cronbach’s (1951) alpha is a good lower bound on the reliability when the scale mea-
sures only one common factor.
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reports. Parent college was the number of parents having completed a
4-year college degree.

Data Availability

The data and codes necessary to replicate the empirical results in the pa-
per are available in Rustichini et al. (2023), in the Harvard Dataverse:
https://doi.org/10.7910/DVN/OYHSJL. The folder includes the Stata
code (Stata17) and data file (dta format) to reproduce the tables in the
paper.

Appendix

Proofs and Additional Material

A. Preferences and Stable Matchings

We assume a preference order over matchings; consistent with our assumption
on matchings, the order is defined on the observable vector zO of each of the
two mates. It is also monotonic in the Θ � Y component and is homophilic in
the C component. More precisely, recall that Θ ; �n

l51Θk : each component has
a natural order (such as “taller,” “more intelligent,” “lower Neuroticism score,”
and so on), and Y has the natural order over the real numbers, so Θ and Θ � Y
have an induced partial order. An individual in the marriage market is a type
zO ∈ Θ � Y � C . Preferences over mates of the individual zO of sex s ∈ fm, fg (re-
call that “m” is for mother, assumed to be female) are represented by a weak order
≽zsO that is monotonic,

8 z00M, z
0
M : z00M ≥ z0M implies 8 c ∈ C , ðz00M, cÞ≽zOs

ðz0M,cÞ, (A1)

and homophilic,

8 zM, c, e, f : dð f , cÞ ≤ dðe, cÞ implies 8 z0Mðz0M, f Þ≽ðzM,cÞsðz0M, eÞ: (A2)

The household maximization problem described in equations (6)–(10),
which depends only on the Θ � Y components, defines a preference over matches.
In the maximization problem, an individual (vm, ym) evaluates the utility U(vm, ym,
vf, yf) from a match with an individual (vf, yf) anticipating the household income
and the skill of the two children; so her preferences (if the preferences are com-
pletely described by the household maximization problem) are represented by
U(vm, ym, ⋅). The same holds for the “f ” potential spouse. We assume that house-
hold log income yh is a linear combination of the income of the two spouses, with
weights wyi adding to 1, and that the expected (by the parents) skill of each child vc

is a linear combination of the skills of the parents with weight wv
i , i ∈ fm, fg also

adding to 1. In summary, we assume

yh 5 wy
mym 1 w

y
f yf (A3)

and
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vc 5 wv
mvm 1 wv

f vf ; (A4)

Substituting the optimal investment (eq. [11]) into the budget constraint, ed-
ucation, and income equations ([7], [8], and [9], respectively), we find that, up
to a constant independent of v and y, the worth in the marriage market of a type
(v, y) of sex i ∈ fm, fg is

Wiðv, yÞ ; ð1 2 d 1 2daIhÞwy
i y 1 2davhw

v
i v, (A5)

and the utility of a household is the sum of the worth of the spouses,

U ðvm, ym, vf , yfÞ 5 Wmðvm, ymÞ 1 Wfðvf , yfÞ, (A6)

so the household utility from the household maximization problem is linear and
monotonically increasing in the parents’ types and income, and hence the over-
all utility is (if we assume that any additional components are monotonically in-
creasing) monotonically increasing.

A stable matching is defined as usual: a matching that cannot be blocked by in-
dividuals or pairs of mates.39 By the properties we have derived, we conclude, us-
ing standard arguments:

Proposition A1. A stable matching exists. There is complete segregation
over C. Parents’ genotypes (the random variables gm and gf) are conditionally in-
dependent for any vector of observable characteristics.

B. Proof of Inequality (34)

The inequality follows because when parents match on income and only on in-
come the system (28)–(30) is as follows. Equation (28) becomes

VðvÞ 5 j2
ev
1 h2=2ð ÞEðvm, vfÞ
1 2 h2=2ð Þ : (A7)

Equations (29) and (30) are unchanged. Rearranging one obtains the inequality
(34). QED

C. Proof of Lemma 4.1

We denote PGSi the PGS of twin i and PGSm and PGSf, as indicated by the sub-
script, those of the mother and father, respectively. We use similar notation for
g, the genotype of various individuals. The proof uses the fact that the genotype
of the child is (after meiotic recombination) the sum of one haplotype of the
mother and one of the father, each chosen with equal probability. Recall that
we are considering an additive model, as stated in equation (2). Given these
premises, we have

39 More precisely, a matching n is stable if and only if for all—except possibly a zero-
measure set (with respect to the product measure n� n)—pairs (zm, z f, z0m, z0f ),

z f ≻zm z
0
f or z

0
m ≻z0f zm or z f ≽zm z

0
f and z0m ≽z0f zmð Þ:
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EðPGSi jgm, gfÞ 5 PGSm 1 PGSf

2
: (A8)

We then have

EðPGS1PGS2Þ 5 EðEðPGS1PGS2Þjgm, gfÞ
5 EðEðPGS1 gm, gfÞEðPGS2j jgm, gfÞÞ

5 E E
1

2
ðPGSm 1 PGSfÞ

����gm, gf
� �

E

�
1

2
ðPGSm 1 PGSfÞ

����gm, gf
���

5
1

2
EðEððPGSmÞ2 1 PGSmPGSfÞjgm, gfÞ

5
1

2
1

1

2
EðPGSmPGSfÞ,

where the first equality follows from elementary property of expectation, the sec-
ond from the conditional independence of PGS with respect to parents’ geno-
type, the third from additivity of PGS of each offspring (eq. [A8]), the fourth
from symmetry between PGSm and PGSf, and the fifth again from elementary
properties of expectation. QED

D. Proof of Theorem 3.1

We recall the equations describing the process on income and genetic profile,
simplifying the notation for clarity in exposition.

We write the income equation in the compact form:

yc 5 bCðym, yfÞ 1 wðgcÞ 1 jZ , (A9)

where b < 1, j > 0, Z is a standard normal, and C is a composition map giving
household income as a function of the income of the two parents. We assume
that C is continuous and satisfies

min ym, yff g ≤ Cðym, yfÞ ≤ max ym, yff g; Cðy, yÞ 5 y: (A10)

We call the value of this composition household income and denote it yh. This form
includes the special cases in which the household income is the average of the
two parents’ income, possibly with different weights.

The genotype of the child, given the pair of parents’ genotypes (gm, gf), is a
random variable with distribution, conditional on (gm, gf),

H ð⋅jgm, gfÞ ∈ ΔðGÞ: (A11)

We can now bemore precise. We first assign to m its disintegration according to
the partition, W 21ðVÞ, that is, the vector of pairs of probability of the class vi and
the conditional probability, given vi,

ðmVðviÞ, mð⋅jviÞÞ : i ∈ Zð Þ: (A12)

By Rohlin’s (1952) theorem, such a disintegration exists, and in addition, (i) mV
is a probability measure on V, (ii) for every i, mð�jviÞ is a probability measure on
G � Y that satisfies mðCðvi jviÞÞ 5 1, and (iii) mð⋅Þ 5 oi∈ZmVðviÞmð⋅jviÞ.

education and intergenerational mobility 2763



Wenow describe the function giving the next-periodmeasure, examining each
component of this object separately. First, there is a Markov kernel assigning to
a parents’ profile (gm, ym, gf, yf) a probability on G � Y , interpreted as the child’s
genotype and household income, assigning to OG � OY ∈ BðGÞ � BðY Þ

KF ððgm, ym, gf , yfÞ,OG � OY Þ 5 H ðOG jgm, gfÞdCðym,yf ÞðOY Þ: (A13)

Next is the Markov kernel assigning to a pair (gc, yh) of child’s genotype and
household income a distribution on child’s income, as by equation (A9), assign-
ing to a Borel subset of Y, OY

KIððgc, yhÞ,OY Þ ; Φ
1

j
ðOY 2 byh 2 wðgcÞÞ

� �
, (A14)

where Φ is the measure induced by the standard normal. We define the function
Ψ : ΔðG � Y Þ→ ΔðG � Y Þ as

ΨðrÞ ; ðr� rÞKFKI , (A15)

where r� r is the independent product of the twomeasures, and KFKI is the com-
position of the two kernels.

Lemma A2. The map Ψ is continuous in the weak topology.
Proof. The map r→ r� r is continuous (see lemma 1.1 of Parthasarathy

1967, chap. 3). The rest follows from the continuity assumption on the combina-
tion function C and the fact that the topology on G is discrete; thus, H is contin-
uous. QED

The next-period measure is defined by the function

T : ΔðG � Y , BðG � Y ÞÞ→ ΔðG � Y , BðG � Y ÞÞ,
where for every set O ∈ BðG � Y ÞÞ,

ðTmÞðOÞ ; o
i∈N

mVðviÞΨðmð⋅jviÞÞðOÞ: (A16)

As is standard in economics, we study the distribution on population character-
istics (genotype and income), considering the invariant distributions.

D1. Invariant Measures

This section illustrates a reason why the model with a fully specified genetic
transmission is different from the standard model.

The following invariance property is true for any function T 0 (including the
function T we defined above) on ΔðG � Y Þ that has two basic properties. The first
is the mating property: the mating process operates though a mating function
M : ðΔðG � Y ÞÞ2 → ΔððG � Y Þ2Þ that preservesmarginals. In the case of T defined
in equation (A16), the mating function is

dM ðm, mÞ 5 o
vi

mV ðviÞ mð⋅ viÞ � mð⋅j jviÞð Þ:

The second is the factor property: the distribution of child’s genotype and
income factor through the H function in equation (A11) and a kernel
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S : ðG � Y Þ2 → ΔðY Þ denoted Sð�; ðgm, ym, gf , yfÞÞ (in the case of T, this is the Mar-
kov kernel KFKI).

Lemma A3. The set of measures with the same minor-allele frequency is in-
variant under any T 0 that satisfies the mating and factor properties.

Proof. Let C :G → f0, 0:5, 1gK , defined by Cðg , kÞ ; g ðkÞ=2, and the push-
forward mapping m ∈ ΔðGÞ to C*m; the expectation with respect to C*m at k gives
the frequency of the allele at locus k as

AFðkÞ 5
ð
G

dmGðg ÞCðg , kÞ:

Then, denoting X ; ðG � Y Þ2, with generic element x ; ðgm, ym, gf , yfÞ, the next-
period allele frequency at k isð

G�Y

ð
X

dM ðm, mÞðxÞH ðgc; gm, gfÞSðdyc; xÞCðgc, kÞ 5ð
G

ð
X

dM ðm, mÞðxÞH ðgc; gm, gfÞ
ð
Y

Sðdyc; xÞCðgc, kÞ 5ð
G

ð
X

dM ðm, mÞðxÞH ðgc; gm, gfÞCðgc, kÞ 5ð
G

ð
G 2

dM ðm, mÞG 2ðgm, gfÞH ðgc; gm, gfÞCðgc, kÞ 5ð
G

dmGðg ÞCðg , kÞ,

where the first equality follows from Fubini’s theorem; for the second, we have
used the obvious fact that, for all x,ð

Y

Sðdyc; xÞ 5 1;

for the third, we have defined, for O ∈ BðG 2Þ,
M ðm, mÞG 2ðOÞ 5 M ðm, mÞðO � Y 2Þ;

and the last follows from the basic properties of the function H. QED
The following proposition examines a case that is uninteresting from a substan-

tial point of view (because it excludes heterogeneity) but is very useful for illustra-
tion of the differences between ourmodel and the standardmodel of parental skill
transmission. Let us define the set of genotypes that are homozygotes at all loci:

Hom ; g ∈ G : 8 k, g ðkÞ ∈ 0, 2f gf g, (A17)

a set of 2K elements. If the marginal of the initial measure is concentrated on a
single element in Hom, then all the iterates have the same property.

Proposition A4. The map T has at least 2K fixed points.
Proof. Take the initial measure to be concentrated on a single genotype

g ∈ Hom. We consider for illustration the case in which the partition is fine.
In the general case, the result follows as a corollary of our results below. With
the fine partition mating takes place among individuals with the same income
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and genotype. There is no dynamics involving G, so there is a unique invariant
measure, distributed as N ðwðg Þ=ð1 2 bÞ, j2=ð1 2 b2ÞÞ. QED

Note that the dynamic is entirely in the set Δ(Y ); restricted to this set, the it-
erates of T are weakly asymptotically stable. Of course, the initial condition is not,
in the interesting case, concentrated on an element in Hom.

D2. Estimates of T

As we mentioned in the main text, the specific difficulty in analyzing T derives
from the fact that, because of the product of measures in the definition of Ψ,
T is not linear. Thus, standard theorems on existence of invariant measures, such
as the Krylov-Bogoliuvov, which is based on averaging, are not available.

To address this difficulty, we first endow G � Y with a partial order. We say that
g 0≽G g if wðg 0Þ ≥ wðg Þ, and we define the partial order on G � Y , denoted ≽, as
the one induced by the ≽G and the natural order over the real numbers. The or-
der ≽ allows us to define the set of increasing functions on G � Y as

I ; f :G � Y →R, ðg 0, y0Þ ≽ ðg , yÞ ⇒ f ðg 0, y0Þ ≥ f ðg , yÞf g: (A18)

In turn, we can now define the first-order stochastic dominance order on prob-
ability measures on G � Y as the stochastic order induced by the cone I .

We cannow construct our estimates of the functionT. In simple terms, the idea is
to construct a function that is definedby the sameprocess on incomeandgenotype
as T is but gives the best possible income and the best possible genotype to the
child. This will give us a control from above, and a similar procedure will give
the control from below. Since the construction for the lower bound is completely
symmetric to that of the upper bound, we develop in detail only the first.

Our control from above will operate on the subset of measures that have sup-
port on the best possible genotype, which we now define. We let g* and g* be any
choice of g providing the maximum and minimum values, respectively, of the
function w on the finite set G, arbitrarily selecting one of the optimal values if
necessary; that is,

8 g ∈ G : wðg *Þ ≥ wðg Þ ≥ wðg*Þ:
We refer to g* (g*) as the selected best (worst) genotype. The first step is to de-
fine the largest class to which an income can belong, for some genotype:

V ðyÞ ; max vi :G � yf g \ CðviÞ ≠ ∅f g: (A19)

Conditions (15) and (16) insure that the function V is well defined, that is, that
the supremum is finite and it is achieved. Also note that by definitions (16) and
(17), V ðyÞ 5 W ðg *, yÞ; definition (A19) is more convenient for future use. Next,
we define the supremum over the incomes in a class:

�Y ðviÞ ; sup y : G � yf g \ CðviÞ ≠ ∅f g : (A20)

Note that W ðg*, �Y ðviÞÞ 5 vi11.
Lemma A5. The function V is piecewise constant, increasing, and right-

continuous. The function y→ �Y ðV ðyÞÞ
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1. is piecewise constant, increasing, and right-continuous; and
2. is such that, for all y ∈ Y such that V ðyÞ 5 vi ,

wðg *Þ 2 wðg*Þ
wy

≤ �Y ðV ðyÞÞ 2 y ≤
vi11 2 vi 1 wðg *Þ 2 wðg*Þ

wy

; y �Q:

Proof. Let B* : V → Y be defined by

B*ðviÞ 5 vi 2 wðg *Þ
wy

:

Note that

g *f g � Yð Þ \ CðviÞ 5 g *f g � ½B*ðviÞ, B*ðvi11ÞÞ:
The function V is constant and equal to vi on the interval ½B*ðviÞ, B*ðvi11ÞÞ; hence,
the statement concerning V follows. The function �Y ðV ð⋅ÞÞ inherits the properties
of V and so is piecewise constant and right continuous. The function y→ �Y ðV ðyÞÞ
has, on the interval ½B*ðviÞ, B*ðvi11ÞÞ, the minimum at B*ðvi11Þ and the maximum
atB*(vi), and the values in the statement follow from simple computations, with the
differenceB*ðvi11Þ 2 B*ðviÞ providing the additional term ðvi11 2 viÞ=wy in the up-
per estimate. QED

We denote the subset of measures with full support on the selected best genotype

Δ*ðG � Y Þ ; n ∈ ΔðG � Y Þ : nð g *f g � Y Þ 5 1f g: (A21)

Lemma A6. For m ∈ ΔðG � Y Þ and n ∈ Δ*ðG � Y Þ,
n ≽ m if and only if nY ≽ mY :

Proof. If n ≽ m, then considering functions that are constant with respect to G
proves that nY ≽ mY . If nY ≽ mY , then for any h ∈ I ,

ðn, hÞ 5

ð
Y

dnðg *, yÞhðg *, yÞ

≥
ð
Y

dmðg , yÞhðg *, yÞ

≥
ð
Y

dmðg , yÞhðg , yÞÞ

5 ðm, hÞ,
where the first equality is the definition, the second is the hypothesis we made,
the third follows because h ∈ I , and the last is the definition. QED

We now introduce the function on measures that will provide the upper
bound for T; it is denoted �Q , and we provide first a description of its definition.
Take any y, and assign to both parents the income y 1 y �Q , so that yh 5 y 1 y �Q , and
genotype g*. Then apply the same transition from the pair of parents’ genotype
and income, as we do for T. The induced function on measures �Q is linear.

Definition A7. The Markov kernel S �Q is defined as, for any OY ∈ BðY Þ,

S
�Q ðy,OY Þ ; Φ

1

j
OY 2 bðy 1 y �Q Þ 2 wðg *Þ	 
� �

:
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The function �Q from Δ*ðG � Y Þ to itself is defined as

ð �Q nÞðfg *g � OY Þ 5
ð
Y

dnðfg *g, yÞS �Q ðy,OY Þ: (A22)

Lemma A5 implies that any household income obtained by a match in the
class V(y) is less than y 1 y �Q ; since any genotype gc obtained by that match has
wðgcÞ ≤ wðg *Þ, the next-period income obtained by this process dominates in
first-order stochastic dominance induced by the process underlying T. Thus,
for every y and m in the order interval,

S
�Q ðy, ⋅Þ ≽ ST

m ðy, ⋅Þ,
where ≽ is the order on operators (see the second part of definition 5.2.1 in
Müller and Stoyan 2002, chap. 5; see also O’Brien 1975 and Kamae, Krengel,
and O’Brien 1977).

We also recall that the sequence of iterates Pn, n ∈ N, of a Markov operator on
a metric space X is called weakly asymptotically stable if P has a unique invariant
distribution m* and

8 m ∈ ΔðX , BÞ : Pn converges weakly to m*:

Lemma A8. The function �Q has a unique fixed point, �n∞, given by

�n∞ðfg *g, ⋅Þ ∼ N
by �Q 1 wðg *Þ

1 2 b
,

j2

1 2 b2

� �
: (A23)

The sequence of its iterates is weakly asymptotically stable.
Proof. Take the moment-generating function of the nth iterate of the func-

tion defining the next-period income random variable,

y0 5 bðy 1 y �Q Þ 1 wðg *Þ 1 jZ ,

and consider the limit. QED
To allow the comparison betweenT and �Q , we represent the action ofT in a form

similar to equation (A22) for �Q . Since T is not linear, the Markov kernel corre-
sponding to S �Q must depend on the current measure and is written ST

m ðy,OY Þ as
the probability of a Borel set OY at the point y and population measure m.

We first provide an informal description of the process underlying this special
Markov kernel. The income of the parent m is chosen (this is chosen according
to the measure mY). The genotype gm is then chosen according to a version of the
conditional measure mð⋅jymÞ. The parent belongs to the class of worth vi 5
W ðgm, ymÞ, and a mate is chosen randomly in that class, with probability mð⋅jviÞ.
The parents’ profile (gm, ym, gf, yf) gives the probability on child’s pair (gc, yc).

The precise definition is given next:
Definition A9. For m ∈ ΔðG � Y Þ, ST

m : Y → ΔðY , BðY ÞÞ is defined as

ST
m ðy,OY Þ ;

ð
G 2�ðG�Y Þ

dmðgmjyÞo
vi

dviðW ðgm, yÞÞdmðgf , yf jviÞ

� H ðgcjgm, gfÞΦ 1

j
ðOY 2 bCðym, yfÞ 2 wðgcÞÞ

� � (A24)

for any OY ∈ BðY Þ.
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The Y-marginal of Tm is an average of ST
m ðy, ⋅Þ:

Lemma A10. For all m ∈ ΔðG � Y Þ and OY ∈ BðY Þ,

ðTmÞðG � OY Þ 5
ð
Y

dmY ðyÞST
m ðy,OY Þ: (A25)

Proof. We first observe that for any m ∈ ΔðG � Y Þ,

o
vi

mV ðviÞðmð⋅jviÞ � mð⋅jviÞÞðgm, ym, gf , yfÞ 5

mY ðymÞdmðgmjymÞo
vi

dmðgf , yf jviÞdvi ðW ðgm, yÞÞ:
(A26)

Take now any real-valued bounded continuous function f on Y:

ðTm, f Þ 5
ð
G�Y

dðTmÞðg , yÞf ðycÞ

5

ð
Y

f ðycÞ
ð
G

dðTmÞðg , yÞ

5

ð
Y

f ðycÞ
ð
G

ð
ðG�Y Þ2ovi

mV ðviÞðmð⋅jviÞ � mð⋅jviÞÞðgm, ym, gf , yf ÞH ðgc gm, gf Þ Prðycj jym, yf , gcÞ

5

ð
Y

f ðycÞ
ð
ðG�Y Þ2

ð
G

mY ðymÞ dmðgmjymÞo
vi

dmðgf , yf ÞjviÞdvi ðW ðgm, yÞÞH ðgc gm, gfÞ Prðycj jym, yf , gcÞ

5

ð
Y

dmY ðyÞ
ð
Y

ST
m ðy, dycÞf ðycÞ,

where in the fourth equality we have used the initial observation (A26), the sec-
ond follows because f depends only on y, the third is the definition of T, and the
last is the definition of ST

m ðy, ⋅Þ. QED
We define the function Q , the set Δ*ðG � Y Þ, the kernel SQ , and the measure

n∞, in a manner similar to �Q , Δ*ðG � Y Þ, S �Q , and �n∞, respectively.
We can now define the order interval

½n∞, �n∞� ; m : n∞ ⪯ m⪯ �n∞f g: (A27)

Lemma A11. For every m ∈ ½n∞, �n∞�, Tm ∈ ½n∞, �n∞�.
Proof. For m in the order interval,

Tm ⪯ �Qm

⪯ �Q�n∞

5 �n∞,

where the first relation follows from T ⪯ �Q , the second from themonotonicity of
�Q (first part of definition 5.2.1 in Müller and Stoyan 2002), and the last because
�n∞ is a fixed point of �Q . QED

The order interval has a key property, proved in the next lemma:
Lemma A12. The set ½n∞, �n∞� is weakly compact and is convex.
Proof. Convexity is clear. We first prove that the set is relatively compact in

the weak topology. By Prohorov’s theorem (Parthasarathy 1967), it suffices to
show that it is uniformly tight. Let e > 0 be given: we claim that there exists a
compact set K ⊆ G � Y such that for any m in the set, mðK Þ ≥ 1 2 e. We will find
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a set K 5 G � ½2M ,M � for some M. For such a K, mðK Þ 5 mY ð½2M ,M �Þ. By
lemma A6, we derive that

n∞Y ≺ mY ≺ �n∞Y :

Find M large enough that

maxfn∞Y ð2∞,2M �, �n∞Y ½M ,1∞Þg <
e

2
,

so that

mY ð½2M ,M �cÞ < e,

as required.
Finally, the order interval is weakly closed (see, e.g., proposition 3 of Kamae,

Krengel, and O’Brien 1977). QED
Lemma A13. The function T on ½n∞, �n∞� is continuous in the weak topology.
Proof. The measures in the set are uniformly absolutely continuous with re-

spect to the Lebesgue measure by equation (A9); note that the variance j is in-
dependent of the income. Recall now that a sequence mn converges weakly to m

if and only if

lim
n →∞

mnðAÞ 5 mðAÞ

for any Borel set A whose topological boundary ∂A has m-measure zero. Now the
statement follows from the fact that for any i ∈ Z,

∂CðviÞ 5 [g g ,
vi 2 w gð Þ

wy

� �
, g ,

vi11 2 wðg Þ
wy

� �� �
,

which is a set of finite points in G � Y . QED
A simple example shows that continuity may fail when the uniform absolute

continuity with respect to the Lebesgue measure fails.
Example A14. Let K 5 1, G ; faa, aA, AAg, wðaaÞ 5 0, wðaAÞ 5 1,

wðAAÞ 5 2, and wy 5 1. Let v1 5 0, and V ; fv1g. Denote ðG � Y Þ ∖ Cðv1Þ ;
Cðv0Þ, and denote the conditioning on the set C(v0) as conditioning on v0.
Consider the sequence in ΔðG � Y Þ:

mn 5
1

2
pndðaa,1=nÞ 1 ð1 2 pnÞd AA,221 1=nð Þð Þð Þ 1 1

2
ð1 2 pnÞdðaa,21=nÞ 1 pnd AA,222 1=nð Þð Þð Þ,

(A28)

with pn 5 2=3 if n is even and 1/3 when odd. If we also let

m 5
1

2
dðaa,0Þ 1

1

2
dðAA,22Þ,

then mn converges weakly to m.
We now consider the disintegration of the measures. For any n,

mn
V ðv1Þ ; mnðCðv1ÞÞ 5 mnðCðv0ÞÞ 5 1

2
,
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but
mðCðv1ÞÞ 5 1 and mðCðv0ÞÞ 5 0:

Also,

mnð⋅jv1Þ 5 pndðaa,1=nÞ 1 ð1 2 pnÞdðAA,221 1=nð ÞÞ

and

mnð⋅jv0Þ 5 ð1 2 pnÞdðaa,21=nÞ 1 pndðAA,222 1=nð ÞÞ:

On the other hand, mð⋅jv0Þ is undefined, and

mð⋅jv1Þ 5 1

2
dðaa,0Þ 1

1

2
dðAA,22Þ:

Thus, the sequence of conditional expectations at a given worth oscillates with no
limit, and the limit of any subsequence (when it exists) is different from the condi-
tional value of the limit measure.

Also, the function m→ mV ðviÞ is not continuous.
We can now summarize the analysis developed so far, recalling the statement

of theorem 3.1:
Theorem A15. Assume equation (22) and that the worth of an individual de-

pends linearly on income and skill. Then, for any vector of allele frequencies:

1. an invariant measure exists, which induces that allele frequency;
2. within each worth class, alleles at each locus are in Hardy-Weinberg

equilibrium;
3. within each worth class of the discrete partition, a higher income of both

parents implies a lower expected PGS of the child; and
4. the allele frequencies are invariant across periods.

Proof. The first part follows, given the previous analysis, from Himmelberg’s
(1972) theorem.

The second part follows, applying Hardy-Weinberg’s theorem to the population
within the worth class and using the fact that equilibrium is reached in one period.

For the third part of the theorem, consider in the discrete partition case two
families, indexed by i 5 1, 2 with y2j > y1j , j ∈ fm, fg, so the genotype worth, de-
noted wi

j , is such that w2
j < w1

j , j ∈ fm, fg. The proof is very simple when the func-
tion w is injective. For any pair (wm, wf),

EðwðgcÞjwmÞ, wfÞ 5 o
k

bðkÞEðgcðkÞjwm, wfÞ

5 o
k

bðkÞEðgcðkÞjgm, gfÞ

5 o
k

bðkÞEðgcðkÞjgmðkÞ, gfðkÞÞ

5 o
k

bðkÞ 1
2
ðgmðkÞ 1 gfðkÞÞ

5
1

2
wðgmÞÞ 1 wðgfÞð Þ

5
1

2
wm 1 wfð Þ:

education and intergenerational mobility 2771



Injectivity is used in the second equality. The third equality uses the absence of
linkage disequilibrium among the SNPs in the PGS. In the general case in which
w21(wj) is not a singleton, it suffices to take averages. Note that the probability on
the finite set w21ðwmÞ � w21ðwfÞ is uniform.

The fourth part follows from lemma A3. QED

E. Passive Gene-Environment Correlation

We focus on triples of a child, mother, and father. Let g s
l ∈ f0, 1, 2gK be the geno-

typeof l ∈ fc, m, fg, andwith s ∈ ft, ntg, let g s
l ∈ f0, 1g the transmitted (s 5 t) and

nontransmitted parts of the genotype of l; gl(k) and g s
l ðkÞ are the values at the kth

locus. Note that

gc 5 g t
m 1 g t

f , gf 5 g t
f 1 g nt

f , and gm 5 g t
m 1 g nt

m : (A29)

We take aA as the 3K-dimensional vector of true genic values of the genes as
they affect directly the phenotype of interest (here, superscript A refers to the
additive part in the standard ACE decomposition); aC

l is the vector for the effect
on the environment provided to the child by the parent of type l.

Recalling the form of the family environment variable in equation (24) and
using equation (23), if we set Π 5 0 to focus on the issue of interest and take
the value av to be part of the genic values,

hi
j 5 aAgc 1 ryi 1 aC

mgm 1 aC
f gf 1 zh,i

j , (A30)

where we have denoted, to lighten notation:

r ; aI 1 avp, av; z
h,i
j ; ev,ij 1 eh,ij :

Equation (A30) clarifies the different ways in which passive gene-environment
interaction occurs. The first way is described by terms of the form aC

l gl , which ex-
press the direct effect of the parents on the child’s environment, through path-
ways that are possibly completely unrelated to the phenotype of interest (which
is human capital in our case).

The second way operates through the term ryi, which contains implicitly terms
of the form aA

l gl , relative to parents, grandparents, and so on, that affected the
child’s household income. Unlike the first, this pathway involves genes that are
relevant for the phenotype of interest.

E1. Fully Genetic Decomposition of Income

Recall that income is in our model a linear function of human capital with coef-
ficient ah. In the following, we assume that we have rescaled the index of human
capital so that ah 5 1. We can now express the income of an individual as the dis-
counted series of all past genetic contributions of ancestors, plus a random, zero-
mean term. To denote in a simple way the ancestors of an individual i, we use the
following notation. For any n ∈ f0, 1, 2, :::g, a list of possible ancestors of depth
n is an element s in the set {m, f}n. For instance, mi is the mother of i, fmi is the
father of the mother of i, and so on. We adopt the convention that at n 5 0, the
only element s in {m, f}n is the identity, so for such s, si 5 i, smi 5 mi, and so
on. We denote as h(i) the family of individual i.
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Lemma A16. For every individual i,

yi 5 o
∞

n50

r

2

� �n

o
s∈ m,ff gn

aAgsi 1 aC
mgmsi 1 aC

f gfsið Þ 1 o
s∈ m,ff gn

z si

 !
: (A31)

Proof. Using equation (A30) and recalling that ah 5 1, we get, for every indi-
vidual i,

yi 5 ryhðiÞ 1 aAgi 1 aC
mgmi 1 aC

f gf i 1 z i , (A32)

where

yhðiÞ 5
1

2
ðymi 1 yf iÞ: (A33)

Substituting equation (A33) formulated for each ancestor repeatedly into equa-
tion (A32) yields equation (A31). The series converges under our assumption
that r < 1. QED

E2. Estimation

Lemma A16 has some useful implications for our estimations.

E2.1. GWAS Coefficients

The estimated GWAS coefficients b(k) of the kth SNPs are obtained as a linear
univariate regression of the hi

j values (or, given our normalization ah 5 1, of yij)
on the gc(k) values. They are a biased estimate of the aC values, for three reasons.
The first reason is due to the term yi in equation (A30), because yi is obviously cor-
related with gc, since they are both affected by the parents’ and other ancestors’
genotype. The second factor is the term introduced by the environmental value F,
given by the parents’ genotypes, again correlated with gc. The third factor is the
linkage disequilibrium (LD) correlation between different loci.

We standardize the genotype variables to have mean zero and variance equal
to 1 (for the g(k) variable) and 1/2 (for the gs(k) variables), obtaining the new
variables Sg(k) and Sgs(k).40 Using the formula in lemma A16, if we ignore the
LD correlation we find:

40 That is, we call p(k) the frequency of the allele with value 1, and define

SgðkÞ ; g ðkÞ 2 2pðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðkÞð1 2 pðkÞÞp ; Sgl ðkÞ ; g l ðkÞ 2 pðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðkÞð1 2 pðkÞÞp , for l 5 t, nt : (A34)

Of course, at Hardy-Weinberg equilibrium,

ESgðkÞ 5 E Sgl ðkÞ 5 0, Var SgðkÞ 5 1, Var SglðkÞ 5 1=2, l 5 t, nt,

and

SgðkÞ 5 SgtðkÞ 1 SgntðkÞ: (A35)
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Lemma A17. For every k,

EbðkÞ 5 aAðkÞ 1 1

2
aC

mðkÞ 1 aC
f ðkÞð Þ 1 rC , (A36)

where C is a constant.
The term multiplied by r takes into account the effect occurring through

grandparents and previous generations. As we have seen, r is between 0.2 and
0.4; thus, terms with r or higher order are small. Eliminating the potential bias
introduced by the terms of the form aC is possible using information of the geno-
type of parents, direct or imputed (see Kong et al. 2018 and Young et al. 2022).
Complete elimination of the bias would require information on the infinite se-
quence of ancestors, although the complete formula shows that the effects decays
exponentially; thus, effects of generations beyond parents is small.

We emphasize that, even if aC
m 5 aC

f 5 0, a passive rGE effect persists through
the influence on the environment of the children that genes influencing educa-
tional attainment produce on family income and parents’ education. This effect
may be substantial, and in our data it is. This what we consider next.

E2.2. Controlling for Parental PGS

We consider first the case with no effect of parents’ genotype on environment,
that is,

aC
m 5 aC

f 5 0: (A37)

In this case, substituting equation (A33) into equation (A32), we obtain

yi 5 aAgi 1
r

2
aAðgmi 1 gf iÞ 1 r2

2
ðyhðmiÞ 1 yhðf iÞÞ 1 z i :

The PGS of the child is an unbiased measure of the term aAgi , and so are the
parental scores for aAgsi , s ∈ fm, fg. Since r is relatively small, the larger part of
the effect on income is produced by terms measured by the PGS of the child and
the PGSs of the parents. This is the model we estimate in section S-0.4.

When the assumption in equation (A37) does not hold, we have the bias de-
scribed in equation (A36), and at the current state of knowledge one has to accept
it. However, the estimates presented in section S-0.4 suggest that adding the terms
modeling the environmental effect changes little of the results.
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