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Abstract. The Boltzmann distribution family describes a single parameter (temperature)
class of probability distributions over a state space; at any given temperature, the ratio
of probabilities of two states depends exponentially on their difference in energy. Beyond
physics, this distribution family is very popular in many important disciplines, under different
names with different interpretations.

Such widespread use in diverse fields suggests a common conceptual structure. We identify
such a structure on the basis of few natural axioms that can be statistically tested. Our
axiomatic characterization thus provides alternative empirical tests of the Boltzmannian
modeling theories.

1. Introduction

According to the classic Boltzmann distribution of statistical mechanics, when the energy
associated with some state a of a system is E (a), the frequency with which that state occurs
in equilibrium is proportional to

e−
E(a)
kt

where t is the system absolute temperature and k is the Boltzmann constant.
Under different interpretations and names (e.g., softmax or Multinomial Logit), the Boltz-

mann distribution is widely used in many fields of science, from physics to computer science,
from economics to psychology. For example, in economics the Multinomial Logit distribution
is the workhorse of discrete choice analysis. It gives the probability that an agent with a
utility function V = −E selects an alternative a when trying to maximize V but, say because
of lack of information, makes mistakes in evaluating the various alternatives. In this case,
the standard deviation of mistakes is proportional to t, that is, temperature is replaced by
noise.1 More recently, in econophysics the Boltzmann distribution has been used to describe
market imperfections (with E representing the bid-ask spreads of quotations) and income
distributions (with E representing the amounts of money corresponding to wealth levels).2

In this paper, we provide an axiomatic characterization of the Boltzmann distribution
based on observables. Specifically, we show that a family p = {pt} of conditional distributions

We wish to thank Carlo Baldassi, Daniele Durante, Claudio Tebaldi, Piero Veronese, Riccardo Zecchina,
the editor and an anonymous referee for very helpful comments, as well as Renato Berlinghieri, Marco
Pirazzini, and Giulio Principi for brilliant research assistance. Part of the material of this paper was first
circulated in the IGIER working paper 593 of 2016.

1See Train [16] for a textbook presentation. Later we will discuss another recent use of the Multinomial
Logit distribution in economics (Section 7.1).

2See the letter of Kanazawa et al. [8], and the colloquium of Yakovenko and Rosser [18].
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satisfies certain properties if and only if there exists an energy function E such that

pt (a | A) =
e−

E(a)
kt∑

b∈A e
−E(b)

kt

for all temperatures t and all states a in a collection A of accessible states. The function
E is unique up to an additive constant and can be retrieved from data. Besides a common
conceptual structure for this ubiquitous distribution, our axiomatic analysis thus also provides
new empirical tests for it. Differently from the existing characterizations of the Boltzmann
distribution, in ours the energy function E is derived rather than assumed.3

2. Notation

We denote by A the collection of all finite subsets A of a universal system of states X,
with |X| ≥ 2, and by p a random state function

p : (0,∞)×X ×A → R+

(t, a, A) 7→ pt (a | A)

that associates to a triplet (t, a, A) the frequency pt (a | A) of state a ∈ X, at temperature t
when A is the subsystem of accessible states.

Clearly,

pt (B | A) =
∑

b∈B
pt (b | A)

is the conditional frequency of some state in B ⊆ A. For a binary subsystem, we just write
pt (a, b) = pt (a | {a, b}) for the frequency of a state a, with its odds denoted by

rt (a, b) =
pt (a, b)

pt (b, a)

Finally, δa is the point mass at a ∈ X, i.e., δa (A) = 1 if a ∈ A and δa (A) = 0 otherwise.

3. Axioms and results

We consider a few axioms on a given random state function p : (0,∞)×X×A → R+ that
describes the statistical behavior of the system. We begin with positivity and conditioning
axioms that require each section pt of p to be a conditional probability system (see Renyi
[13] and Luce [11]).

Axiom A. 1 (Positivity). Given any (t, A) ∈ (0,∞)×A,∑
a∈X

pt (a | A) = 1

with pt (a | A) > 0 if and only if a ∈ A.

Axiom A. 2 (Conditioning). Given any (t, A) ∈ (0,∞)×A,

pt (b | A) = pt (b | B) pt (B | A)

for all B ⊆ A and all b ∈ B.

3See Section 5 for details and for a comparison with other axiomatic approaches in physics to the Boltzmann
distribution.
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The next axiom requires the conditional probability systems pt to vary continuously with
temperature.

Axiom A. 3 (Continuity). Given any (a,A) ∈ X ×A,

lim
t→s

pt (a | A)

exists for all s ≥ 0 and coincides with ps (a | A) when s > 0.

Continuity guarantees, inter alia, that, as t goes to 0, a limit probability p0 (a | A) is
defined for all (a,A) ∈ X ×A. The following axiom requires the consistency of freezing and
positive temperature probabilities.

Axiom A. 4 (Consistency). Given any a, b ∈ X,

pt (a, b) > pt (b, a) =⇒ p0 (a, b) > p0 (b, a)

for all t > 0.

Next we postulate that, if at a zero temperature a binary subsystem is not deterministically
in either state, then both states are equally likely.

Axiom A. 5 (Zero Uniformity). Given any a, b ∈ X,

p0 (a, b) 6= 0, 1 =⇒ p0 (a, b) = 1/2

Our final axiom ties together the conditional distributions at different temperatures. It
requires the dependence of odds from inverse temperature not to be infinitely far from ex-
ponential. It is just a “grain of exponentiality” in the evolution of the system that, as our
next theorem shows, develops into precisely an exponential dependence of odds on inverse
temperatures.

Axiom A. 6 (Boundedness). Given any a, b ∈ X,

sup
t,s∈(0,∞)

∣∣∣r 1
t+s

(a, b)− r 1
t

(a, b) r 1
s

(a, b)
∣∣∣ <∞

We can now state our first result, in which we characterize the Boltzmann distribution.

Theorem 1. A random state function p : (0,∞) × X × A → R+ satisfies A.1–A.6 if and
only if there exists a function E : X → R such that

pt (a | A) =
e−

E(a)
kt∑

b∈A e
−E(b)

kt

δa (A) (1)

for all (t, a, A) ∈ (0,∞)×X ×A.
In this case, the function E is unique up to an additive constant.

In view of this result, it is natural to say that a random state function p is Boltzmannian
if it satisfies A.1–A.6. A natural question is whether one can replace the thermal energy kt
with a more general noise term κ (t). To address this question, we introduce a generic binary
operation, concatenation, written ⊕, that has the usual sum + as a special case.
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Definition 1. A concatenation is a binary operation ⊕ on R+ which is associative, commu-
tative, with identity element 0, and such that

t > s =⇒ t⊕ v > s⊕ v ∀v ∈ (0,∞)

Besides the sum, other simple examples of concatenation are t ⊕ s = t + s + ηts and
t⊕ s = η

√
tη + sη for some η ∈ (0,∞).

The next axiom is the obvious extension of A.6 to a generic concatenation. It continues
to have a “grain of exponentiality” nature.

Axiom A. 7 (Weak Boundedness). Given any a, b ∈ X,

sup
t,s∈(0,∞)

∣∣∣r 1
t⊕s

(a, b)− r 1
t

(a, b) r 1
s

(a, b)
∣∣∣ <∞

for a continuous concatenation ⊕.

We can now generalize the earlier Boltzmannian result, which is the special case of the
theorem below when the concatenation ⊕ is the usual sum +. A final notion is needed: p is
uniform when pt (a | A) = δa (A) / |A| for all (t, a, A) ∈ (0,∞)×X ×A.

Theorem 2. A random state function p : (0,∞)×X×A → R+ satisfies A.1–A.5 and A.7 if
and only if there exist a function E : X → R and an increasing bijection κ : (0,∞)→ (0,∞)
such that

pt (a | A) =


e−

E(a)
κ(t)∑

b∈A e
−E(b)
κ(t)

a ∈ A

0 a /∈ A

(2)

for all (t, a, A) ∈ (0,∞)×X ×A.
In this case, p is uniform if and only if E is a constant function. When p is not uniform:

(i) functions Ẽ and κ̃ also represent p as in (2) if and only if there exist m > 0 and
q ∈ R such that Ẽ = mE + q and κ̃ = mκ;

(ii) the only concatenation ⊕ for which A.7 holds is

t⊕ s = φ−1 [φ (t) + φ (s)] ∀t, s ∈ [0,∞)

where φ : [0,∞)→ [0,∞) is given by φ (v) = 1/κ (1/v) for all v > 0 and φ (0) = 0.

4. Convex energy

The physical question that the Boltzmann distribution addressed was: What is the dis-
tribution of velocities in a gas at a certain temperature? The space of states (velocities)
is a convex set and energy, which is proportional to square speed, is a convex function.
Analogously, in economics concave utility functions play a fundamental role.

This motivates the next result that characterizes convex energy (so, concave utility).

Proposition 3. Let X be a convex set and p a Boltzmannian random state function with
energy E. The following conditions are equivalent:

(i) the function E : X → R is convex;
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(ii) there exists t ∈ (0,∞) such that

pαt (αa+ (1− α) b, b) ≥ pt (a, b) (3)

for all a, b ∈ X and all α ∈ (0, 1);
(iii) given any s ∈ (0,∞),

ps

(
b

∣∣∣∣ 1

η
A+

(
1− 1

η

)
b

)
≤ pηs (b | A) (4)

for all A ∈ A, all b ∈ A, and all η > 1;
(iv) given any s ∈ (0,∞),

ps

(
b

∣∣∣∣ 1

η
A+

(
1− 1

η

)
b

)
≤ pηs (b | A) (5)

for all A ∈ A, all b ∈ arg mina∈A pηs (a | A), and all η > 1.

The stochastic choice interpretation of this result is based on the trade-off between noise
(temperature) and states’ distinguishability. By mixing states we make them closer, so less
distinguishable, and we augment the probability of making a mistake. But the frequency of
mistakes also augments as noise (temperature) increases. Proposition 3 says that utility is
concave (energy is convex) if and only if decreasing distinguishability by a factor η > 1 is
less detrimental than increasing noise by the same factor.

5. Axiomatizations in Physics

Boltzmann himself derived, in 1877, the eponymous distribution via an axiomatic strat-
egy that consisted in finding the most likely macrostate for given total energy under the
assumption of uniform probability of accessible microstates. This is clear in the translation
of the original paper, with a scientific commentary, by Sharp and Matschinsky [15] and in
the extensive treatment of Bowler [4].

In another seminal axiomatization, Jaynes [7] showed that the Boltzmann distribution is
the maximizer of entropy subject to the constraint given by average energy. In this way,
the Boltzmann distribution appears as the least biased distribution compatible with a given
average energy value. This approach has inspired some important contributions in theoretical
economics, for example the costly information acquisition analysis of choice under uncertainty
of Matejka and McKay [12] (see below).

Further axiomatizations build on independence of configurations for conserved sum of en-
ergies. These approaches lead to an exponential functional equation in the energy variable.
See, e.g., Landau and Lifshitz [9], Eisberg and Resnick [6], and again Bowler [4].

In all these three (classes of) axiomatizations the total amount of energy is given and so
is the energy function. Moreover, in the last approach the dependence of the probability of
a given state on its energy level is explicitly postulated. In contrast, in our approach the
energy function is derived. Our axioms provide a test for the existence of an energy function
E : X → R such that, for every value t of temperature, the probabilities of states depend
on their energy via equation (1). In other words, our axioms allow to verify Boltzmannian
modeling theories without prior knowledge of the energy function. On the technical side, this
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is achieved by imposing a mild requirement of exponentiality relative to inverse temperatures
(Axiom A.6) rather than relative to energy levels —like in the third approach described above.

6. Testing Boltzmann Theories

In this section we examine how our axiomatic analysis can be used to test whether a random
state function is Boltzmannian and, if this is the case, to identify the energy function.

6.1. Alternative axioms and identification of the parameters. We start with conve-
nient reformulations of Axioms A.4 and A.7.

Axiom A. 8 (Monotonicity). Given any a, b ∈ X, limv→∞ rv (a, b) = 1; moreover,

rt (a, b) > 1 ⇐⇒ rs (a, b) > rt (a, b)

for all s < t in (0,∞).

Axiom A. 9 (Concatenation). Given any a, b, c, d ∈ X,

rv (a, b) > rt (a, b) rs (a, b) =⇒ rv (c, d) > rt (c, d) rs (c, d)

for all s, t, v ∈ (0,∞) such that rv (a, b) > 1 and rv (c, d) > 1.

These versions permit a reformulation of Theorem 2 that shows how the energy and noise
functions can be directly derived from the random state function.

Theorem 4. A random state function p : (0,∞) × X × A → R+ satisfies A.1–A.3, A.5,
A.8, and A.9 if and only if there exist a function E : X → R and an increasing bijection
κ : (0,∞)→ (0,∞) such that

pt (a | A) =


e−

E(a)
κ(t)∑

b∈A e
−E(b)
κ(t)

a ∈ A

0 a /∈ A

(6)

for all (t, a, A) ∈ (0,∞)×X ×A.
In this case, p is uniform if and only if E is constant. When p is not uniform, by arbitrarily

choosing v ∈ (0,∞) and c, d ∈ X such that pv (c, d) > pv (d, c), then (6) holds for E : X → R
and κ : (0,∞)→ (0,∞) defined by

E (a) = ln rv (c, a) and κ (t) =
ln rv (c, d)

ln rt (c, d)
(7)

for all (t, a) ∈ (0,∞)×X.

The expressions in (7) show that with large amounts of data it is possible to learn E and
κ by computing the asymptotic odds rt (a, b) for all triplets (t, a, b).

The identification of κ (t) given by (7) also implies that the Boltzmannian theories we are
after, in which κ (t) = kt, correspond to a constant t ln rt (c, d). This suggests the following
powerful axiom.
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Axiom A. 10 (Inversion). Given any a, b ∈ X,

t ln rt (a, b) = s ln rs (a, b)

for all s, t ∈ (0,∞).

This axiom is particularly amenable to statistical testing because it replaces Axioms A.3–
A.6 with a single equation.4 Hence the relevance of the next corollary.

Corollary 5. A random state function p : (0,∞) × X × A → R+ satisfies A.1, A.2, and
A.10 if and only if there exists a function E : X → R such that

pt (a | A) =
e−

E(a)
kt∑

b∈A e
−E(b)

kt

δa (A) (8)

for all (t, a, A) ∈ (0,∞)×X ×A.
In this case, arbitrarily choosing s ∈ (0,∞) and c ∈ X, expression (8) holds for E : X →

R given by
E (a) = ks ln rs (c, a) (9)

for all a ∈ X.

6.2. The null hypothesis. To exemplify the statistical test of our axioms, we assume that
X is finite and replace (0,∞) with a finite (ideally large) set of temperatures T .5 With this,
a positive random state function can be seen as a vector of probability measures

p =
[
pt (· | A) ∈ ∆+ (A) : (t, A) ∈ T ×A

]
where ∆+ (A) denotes the relative interior of the simplex in RA

+. Simple combinatorics shows

that the dimension of this vector is ` = |T | × |X| 2|X|−1. Thus, setting Θt,A = ∆+ (A) for all
(t, A) ∈ T ×A, it follows that the set of all random state functions is

Θ =
∏

(t,A)∈T×A

Θt,A ⊆ R`

Each Axiom A.i (for i = 1, 2, ..., 10) requires the “true state function p” to belong to a subset
Θi of Θ. Testing Axiom A.i then means testing the statistical hypothesis

H i
0 : p ∈ Θi versus H i

1 : p /∈ Θi

This is a classical task in statistics that can be accomplished with both parametric approaches
—e.g., the likelihood ratio or the Bayes factor test— and non parametric ones —e.g., the
Kolmogorov-Smirnov or the Cramer-von Mises test.6

In light of Corollary 5, two sharp axioms to test are A.2 and A.10. Next we characterize
the corresponding hypotheses H2

0 and H10
0 .7

4The drawback of this axiom for decision theoretic applications is that its behavioral meaning is quite
obscure, while the interpretation of Axioms A.3–A.6 is more natural.

5This reduction is not conceptually necessary, but guarantees finite dimensionality of the set of parameters.
At the same time, it is not conceptually problematic, because Corollary 5 continues to hold for any set T of
temperatures (see the final part of its proof).

6See Lehmann and Romano [10] for a textbook presentation of hypothesis testing.
7A similar analysis can be performed for the other axioms, we focus on A.2 and A.10 for illustrative

purposes. Note that we assume positivity throughout (its corresponding Θ1 and H1
0 are obvious).
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6.2.1. Characterization of Θ2. Note that θ satisfies A.2 if and only if

θt (b | A) = θt (b | B) θt (B | A)

for all b ∈ B ⊆ A ∈ A and all t ∈ T . By simple computations, this is equivalent to

θt,A (a)

θt,A (b)
=
θt,{a,b} (a)

θt,{a,b} (b)

for all a, b ∈ A ∈ A and all t ∈ T , where θt,A (a) is the a-th component of the vector θt,A ∈ RA
+

which in turn is the (t, A)-th component of the vector θ. Thus,

Θ2 =

{
θ ∈ Θ :

θt,A (a)

θt,A (b)
=
θt,{a,b} (a)

θt,{a,b} (b)
∀ (t, a, b, A) ∈ T × A2 ×A

}
Hypothesis H2

0 : θ ∈ Θ2 can be rejected when states have different degrees of similarity, this
fact is well discussed in the discrete choice analysis literature (see, e.g., Chapter 3 of Train
[16]), and we present a novel example in Appendix C.

6.2.2. Characterization of Θ10. Note that θ satisfies A.10 if and only if

t ln
θt,{a,b} (a)

θt,{a,b} (b)
= s ln

θs,{a,b} (a)

θs,{a,b} (b)

for all a, b ∈ X and all s, t ∈ T . Thus,

Θ10 =

{
θ ∈ Θ :

(
θs,{a,b} (a)

θs,{a,b} (b)

) s
t

=
θt,{a,b} (a)

θt,{a,b} (b)
∀ (s, t, a, b) ∈ T 2 ×X2

}
Hypothesis H10

0 : θ ∈ Θ10 is typically rejected in the generalized Boltzmannian case (6) when
the noise function κ(t) is not linear.

6.3. Testing with data. In view of the previous discussion, a statistical test of the Boltz-
mann theory that does not require an explicit expression of the probability distribution under
scrutiny is

H0 : p ∈ Θ0 versus H1 : p /∈ Θ0 (10)

where Θ0 = Θ2 ∩Θ10.
This test can be performed in many ways. Yet, the specific choice of the test and its

analytical/computational implementation goes beyond the scope of this paper and inevitably
depends on the data collection technique. For this reason, we just provide an elementary
example as a proof of concept. A data set is a collection

D = {(ai, ti, Ai) : i = 1, . . . , I}

where (ai, ti, Ai) ∈ X × T ×A and ai ∈ Ai for each i. The probability of observing D, given
θ ∈ Θ, is

LD (θ) =
I∏
i=1

θti (ai | Ai)
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and the likelihood ratio statistic for (10) —that is, for testing Axioms A.2 and A.10 jointly—
is

λ (D) =
supθ∈Θ0

LD (θ)

supθ∈Θ LD (θ)
(11)

Once a critical threshold c is adopted, say c = 0.99, the null hypothesis H0 (the Boltzmann
theory) is rejected if λ (D) ≤ c, otherwise it is accepted.

Summing up, thanks to their axiomatic foundation, our tests of Boltzmannian theories
do not require any prior knowledge of the energy function. As a by-product, the testing
procedure itself delivers a maximum likelihood estimate of the energy function. Indeed, the
θ̂ that maximizes the numerator of (11) is the maximum likelihood Boltzmannian random
state function, given data D. Our identification results (Theorem 4 and Corollary 5) then

allow to derive from θ̂ a maximum likelihood estimate Ê of the energy function.

7. Additional remarks

7.1. Optimal information acquisition. In economics, the Multinomial Logit distribution
has been used to formalize versions of the discovered preference hypothesis, where the utility
function V = −E is to be learned by an agent who confronts a cost t of acquiring and
processing one unit of information. In particular, Matejka and McKay [12] showed that the
Multinomial Logit distribution gives the optimal choice probability with which such an agent
chooses an alternative a from a set A of (a priori homogeneous) available alternatives. Our
axioms allow an analyst who controls t to test this theory.8

Remarkably, in this case axiom A.10 has a neat psychophysics interpretation (see Luce
[11]). It says that, given any two alternatives a and b, the quantity

t ln rt (a, b)

remains constant. That is, the strength ln rt (a, b) of the revealed preference for a over b
is inversely proportional to the cost of information acquisition t. The smaller this cost is,
the more information is gathered and so the better are understood the relative values of
alternatives. Until, in the limit, the best alternative is chosen without error.

In this economic setting, the concavity of the utility function is based on the trade-off be-
tween information cost and alternatives’ distinguishability. Under this interpretation, Propo-
sition 3 says that utility is concave if and only if decreasing distinguishability by a factor
η > 1 is less detrimental than increasing information cost by the same factor.

7.2. Tsallis distributions. The Boltzmann distribution with inverse temperature β, ob-
tained by minimization of Shannon entropy, is easily seen to be the limit for q → 1 of the
distributions obtained by minimizing the Tsallis q-entropy. So, a natural development of this
paper would consist in characterizing, for every q ∈ R, the family of distributions

pqβ (a | A) =
(1− β (q − 1)E (a))

1
q−1∑

b∈A (1− β (q − 1)E (b))
1
q−1

8Different sets of axioms for more general Multinomial Logit forms appear in the subsequent papers of
Saito [14] and Cerreia-Vioglio et al. [5] .
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for all inverse temperatures β and all states a in a collection A of accessible states (see Tsallis
[17]). This is the object of current investigation.

8. Conclusions

In this paper we provide some novel axiomatic characterizations of the Boltzmann distribu-
tion based on observables. Differently from the characterizations of this distribution existing
in the physics literature, in ours the energy and noise functions are derived rather than as-
sumed. Moreover, we characterize axiomatically the convexity of the energy function and we
present the basic techniques that permit to test statistically the axioms through empirical
data.

Our exercise has two objectives. First, axioms provide a principled approach that makes
transparent the conceptual assumptions of a theory. Second, when regarded as “statistical
hypotheses,” axioms make theories testable through experiments and permit to identify their
parameters. Both these objectives are here especially important because of the great influence
of Boltzmaniann theories in natural and social sciences.
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Appendix A. Proofs of the main results

This appendix presents the proofs of Theorem 1, Theorem 2, and Proposition 3.

A theorem of Aczel [1] characterizes continuous concatenations.

Theorem 6 (Aczel). A binary operation ⊕ on R+ is a continuous concatenation if and only
if there exists an increasing bijection f : R+ → R+ such that

t⊕ s = f−1 (f (t) + f (s)) ∀t, s ∈ R+

In this case, f (0) = 0 and f is strictly increasing and continuous.

The function f is said be a generator for ⊕, which is then denoted by ⊕f .

Lemma 7. If p : (0,∞)×X ×A → R+ is a random state function that satisfies A.1, A.3,
A.4, and A.5, then:

(i) the relation defined on X by a % b if and only if p0 (a, b) > 0 is such that

a � b ⇐⇒ p0 (a, b) > p0 (b, a)

⇐⇒ p0 (a, b) = 1 and p0 (b, a) = 0

a ∼ b ⇐⇒ p0 (a, b) = p0 (b, a)

⇐⇒ p0 (a, b) = p0 (b, a) ∈ {1, 1/2}
b � a ⇐⇒ p0 (a, b) < p0 (b, a)

⇐⇒ p0 (a, b) = 0 and p0 (b, a) = 1

(ii) given any a, b ∈ X, the function ϕa,b : (0,∞)→ (0,∞) defined by

ϕa,b (t) = r1/t (a, b) ∀t ∈ (0,∞)

is continuous and either diverges to ∞ as t→∞ (if a � b) or is constantly equal to
1 (if a ∼ b) or vanishes as t→∞ (if b � a).

Proof A.1 and A.3 imply that p0 (· | {a, b}) is a probability distribution (supported) on {a, b},
for all a, b ∈ X. The proof is made pedantic by the fact that, if a = b, then {a, b} = {a} = {b}
and

p0 (a, b) + p0 (b, a) = p0 (a | {a}) + p0 (b | {b}) = 2

else a 6= b and

p0 (a, b) + p0 (b, a) = 1

(i) By definition, a � b iff a % b and not b % a, that is, p0 (a, b) > 0 and p0 (b, a) ≤ 0.

• Assume a � b, then p0 (a, b) > 0 and p0 (b, a) ≤ 0 imply p0 (a, b) > p0 (b, a).

• Assume p0 (a, b) > p0 (b, a). This is impossible if a = b, therefore a 6= b and p0 (a, b) >
0. If it held p0 (b, a) > 0, then p0 (a, b) + p0 (b, a) = 1 would imply p0 (a, b) , p0 (b, a) ∈
(0, 1), and A.5 would yield p0 (a, b) = 1/2 = p0 (b, a), a contradiction. Then it must
be p0 (b, a) = 0 and p0 (a, b) = p0 (a, b) + p0 (b, a) = 1.

• Assume p0 (a, b) = 1 and p0 (b, a) = 0, then p0 (a, b) = 1 and p0 (b, a) ≤ 0, and a � b.

By definition, a ∼ b iff a % b and also b % a, that is, p0 (a, b) > 0 and p0 (b, a) > 0.
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• Assume a ∼ b. If a = b, then p0 (a, b) = 1 = p0 (b, a). Else a 6= b, p0 (a, b) , p0 (b, a) > 0,
and p0 (a, b) + p0 (b, a) = 1, then p0 (a, b) , p0 (b, a) ∈ (0, 1), and A.5 yields p0 (a, b) =
1/2 = p0 (b, a).

• Assume p0 (a, b) = p0 (b, a). If a = b, then p0 (a, b) = p0 (b, a) = 1. Else a 6= b,
and p0 (a, b) + p0 (b, a) = 1, then 2p0 (a, b) = 1 and 2p0 (b, a) = 1, that is, p0 (a, b) =
p0 (b, a) = 1/2.

• Assume p0 (a, b) = p0 (b, a) ∈ {1, 1/2}, then p0 (a, b) , p0 (b, a) > 0, and a ∼ b.

The case b � a follows from the case a � b exchanging the roles of the states.
(ii) Given any t ∈ (0,∞), ϕa,b (t) = r1/t (a, b) = p1/t (a, b) /p1/t (b, a) ∈ (0,∞) for all

a, b ∈ X because p1/t (· | {a, b}) is a positive probability distribution on {a, b}, thus ϕa,b :
(0,∞)→ (0,∞) is well defined. Moreover, by A.3, ϕa,b is also continuous on (0,∞).

• If a � b, then p0 (a, b) = 1 and p0 (b, a) = 0, so a 6= b and

lim
t→∞

ϕa,b (t) = lim
t→∞

p1/t (a, b)

p1/t (b, a)
= lim

t→∞

1− p1/t (b, a)

p1/t (b, a)
=∞

hence ϕa,b diverges at ∞ as t→∞.

For later reference, note that so far A.4 has not been used.

• If a ∼ b, and per contra ϕa,b (t) 6= 1 for some t ∈ (0,∞), then
◦ either ϕa,b (t) > 1, thus p1/t (a, b) > p1/t (b, a) and, by A.4, p0 (a, b) > p0 (b, a),

contradicting a ∼ b,
◦ or ϕa,b (t) < 1, thus p1/t (a, b) < p1/t (b, a) and, by A.4, p0 (a, b) < p0 (b, a),

contradicting a ∼ b,
in conclusion, ϕa,b (t) = 1 for all t ∈ (0,∞).

• If b � a, the thesis follows because ϕa,b = 1/ϕb,a. �

Proof of Theorem 2 Let p be a random state function that satisfies A.1–A.5 and A.7. As
in Lemma 7, define, for all a, b ∈ X,

ϕa,b (t) = r1/t (a, b) ∀t ∈ (0,∞)

Also let f : [0,∞)→ [0,∞) be a generator of a continuous concatenation ⊕ = ⊕f for which
A.7 holds. Set g = f−1. By Theorem 6, g : [0,∞) → [0,∞) is a continuous and strictly
increasing bijection such that g (0) = 0.

Next we show that, given any a, b ∈ X,

ϕa,b (g (t+ s)) = ϕa,b (g (t))ϕa,b (g (s)) ∀t, s ∈ (0,∞) (12)

Three cases have to be considered, depending on whether a � b, a ∼ b, or b � a according
to the relation % defined in Lemma 7.

• If a � b, then ϕa,b is unbounded above and so is ϕa,b ◦ g : (0,∞)→ (0,∞). Moreover,
by A.7, there exists M > 0 such that, for all t, s ∈ (0,∞)∣∣∣r 1

t⊕s
(a, b)− r 1

t
(a, b) r 1

s
(a, b)

∣∣∣ < M∣∣∣∣r 1
g(g−1(t)+g−1(s))

(a, b)− r 1
t

(a, b) r 1
s

(a, b)

∣∣∣∣ < M
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hence, for all t′, s′ ∈ (0,∞), choosing t = g (t′) and s = g (s′), we have∣∣∣∣r 1
g(g−1(g(t′))+g−1(g(s′)))

(a, b)− r 1
g(t′)

(a, b) r 1
g(s′)

(a, b)

∣∣∣∣ < M∣∣∣∣r 1
g(t′+s′)

(a, b)− r 1
g(t′)

(a, b) r 1
g(s′)

(a, b)

∣∣∣∣ < M

|ϕa,b (g (t′ + s′))− ϕa,b (g (t′))ϕa,b (g (s′))| < M

But (0,∞) is a semigroup with respect to usual addition and ϕa,b ◦ g is unbounded
above. Therefore, Theorem 1 of Baker [3] implies that (12) holds.
• If a ∼ b, then ϕa,b (t) = 1 for all t ∈ (0,∞) and (12) holds.
• Else, b � a and, as the first point shows,

ϕb,a (g (t+ s)) = ϕb,a (g (t))ϕb,a (g (s))

for all t, s ∈ (0,∞), but then

ϕa,b (g (t+ s)) =
1

ϕb,a (g (t+ s))

=
1

ϕb,a (g (t))ϕb,a (g (s))

= ϕa,b (g (t))ϕa,b (g (s))

and (12) holds again.

Summing up, the functional equation (12) holds for all a, b ∈ X. Continuity of ϕa,b ◦ g, its
strict positivity, and (12), imply that

ϕa,b (g (t)) = ev(a,b)t ∀t ∈ (0,∞)

for a unique v (a, b) ∈ R (see, e.g., Theorem 2.1.2.1 of Aczel [2]). It follows that ϕa,b (s) =
ϕa,b (g (f (s))) = ev(a,b)f(s) for all s ∈ (0,∞).

Now fix some a∗ ∈ X and define E : X → R by E (x) = −v (x, a∗) for all x ∈ X. Given
any t ∈ (0,∞) and any x, y ∈ X, by A.1, A.2, and Theorem 2 of Luce [11], it follows that

ϕx,y (t) = r1/t (x, y) = r1/t (x, a∗) r1/t (a∗, y) =
r1/t (x, a∗)

r1/t (y, a∗)

=
ϕx,a∗ (t)

ϕy,a∗ (t)
=
ev(x,a∗)f(t)

ev(y,a∗)f(t)
=
e−E(x)f(t)

e−E(y)f(t)

By Theorem 3 of Luce [11], for every t ∈ (0,∞), A ∈ A, and a ∈ A, arbitrarily choosing
c∗ ∈ A,

pt (a | A) =
rt (a, c∗)∑
b∈A rt (b, c∗)

=
ϕa,c∗ (1/t)∑
b∈A ϕb,c∗ (1/t)

=
e−E(a)f(1/t)

e−E(c∗)f(1/t)∑
b∈A

e−E(b)f(1/t)

e−E(c∗)f(1/t)

=
e−f(

1
t )E(a)∑

b∈A e
−f( 1

t )E(b)

and (2) holds for κ (t) = 1/f (1/t) (because pt (a | A) = 0 for a /∈ A by A.1).
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NB 1 So far we have shown that: If p is random state function that satisfies A.1–A.5 and
A.7 (with respect to ⊕f ); then, setting κ (t) = 1/f (1/t) for all t ∈ (0,∞), there exists
E : X → R such that

pt (a | A) =
e−

E(a)
κ(t)∑

b∈A e
−E(b)
κ(t)

δa (A)

for all (t, a, A) ∈ (0,∞)×X ×A.
Moreover, since f|(0,∞) is a continuous and strictly increasing bijection from (0,∞) to (0,∞),
and s 7→ 1/s is a continuous and strictly decreasing bijection from (0,∞) to (0,∞), then
κ : t 7→ 1/f (1/t) a continuous and strictly increasing bijection from (0,∞) to (0,∞).

This proves the “only if” part of the statement.

As to the “if” part, assume that (2) holds. It is routine to check that p satisfies A.1–A.5.
To prove that also A.7 holds, define φ : [0,∞) → [0,∞) by setting φ (v) = 1/κ (1/v) for all
v > 0, and φ (0) = 0. Since k is an increasing bijection from (0,∞) to (0,∞), so is φ|(0,∞).
But then φ : [0,∞)→ [0,∞) is an increasing bijection too. Then

t⊕ s = φ−1 [φ (t) + φ (s)] ∀t, s ∈ [0,∞) (13)

is a (well defined) binary operation on R+. Theorem 6 guarantees that ⊕ = ⊕φ is indeed a
continuous concatenation. With this, given a, b ∈ X, for all t, s ∈ (0,∞)

r 1
t⊕s

(a, b) = e
− 1

κ( 1
t⊕s)

[E(a)−E(b)]

but, by (13), t⊕ s > 0, hence, by definition of φ,

r 1
t⊕s

(a, b) = e−φ(t⊕s)[E(a)−E(b)] = e−(φ(t)+φ(s))[E(a)−E(b)]

= e−φ(t)[E(a)−E(b)]e−φ(s)[E(a)−E(b)]

= e−
1

κ(1/t)
[E(a)−E(b)]e−

1
κ(1/s)

[E(a)−E(b)]

= r1/t (a, b) r1/s (a, b)

A fortiori, A.7 holds, with respect to ⊕φ, where φ (v) = 1/κ (1/v) for all v > 0, and φ (0) = 0.
Actually, we proved a stronger fact:

NB 2 Given a function E : X → R and an increasing bijection κ : (0,∞) → (0,∞), the
function defined by

pt (a | A) =
e−

E(a)
κ(t)∑

b∈A e
−E(b)
κ(t)

δa (A)

for all (t, a, A) ∈ (0,∞)×X ×A is a random state function that satisfies A.1–A.5 and A.7
(with respect to ⊕φ, where φ (v) = 1/κ (1/v) for all v > 0, and φ (0) = 0).
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This concludes the proof of the first part of the statement.

Now assume that (2) holds for a function E : X → R and an increasing bijection κ :
(0,∞)→ (0,∞). Note that

rt (a, b) = exp

(
− 1

κ (t)
[E (a)− E (b)]

)
1

κ (t)
[E (a)− E (b)] = − ln rt (a, b) = ln rt (b, a)

for all (t, a, b) ∈ (0,∞)×X2.
If p is uniform, then ln rt (b, a) = 0 for all (t, a, b) ∈ (0,∞)×X2, and strict positivity of κ

implies E is constant. The converse follows immediately from (2).
Else, E is not constant. Let Ẽ : X → R and κ̃ : (0,∞) → (0,∞) also represent p as in

(2), then

1

κ (t)
[E (a)− E (b)] = ln rt (b, a) =

1

κ̃ (t)

[
Ẽ (a)− Ẽ (b)

]
for all (t, a, b) ∈ (0,∞)×X2. Arbitrarily choose (t∗, a∗, b∗) ∈ (0,∞)×X2 such that E (a∗) >
E (b∗). Then:

(i) For all a ∈ A,

1

κ (t∗)
[E (a)− E (b∗)] = ln rt∗ (b∗, a) =

1

κ̃ (t∗)

[
Ẽ (a)− Ẽ (b∗)

]
hence

Ẽ (a) =
κ̃ (t∗)

κ (t∗)︸ ︷︷ ︸
m∗

E (a) + Ẽ (b∗)− κ̃ (t∗)

κ (t∗)
E (b∗)︸ ︷︷ ︸

q∗

and, for all t ∈ (0,∞),

1

κ (t)
[E (a∗)− E (b∗)] = ln rt (b∗, a∗) =

1

κ̃ (t)

[
Ẽ (a∗)− Ẽ (b∗)

]
1

κ (t)
[E (a∗)− E (b∗)] =

1

κ̃ (t)
[m∗E (a∗)−m∗E (b∗)]

κ̃ (t) = m∗κ (t)

thus there exist m > 0 and q ∈ R such that Ẽ = mE+ q and κ̃ = mκ. This proves the “only
if” part of point (i). The “if” part is trivial.

(ii) By NB 2, under (2), the binary operation defined by

t⊕φ s = φ−1 [φ (t) + φ (s)] ∀t, s ∈ [0,∞)

where φ : [0,∞) → [0,∞) is given by φ (v) = 1/κ (1/v) for all v > 0 and φ (0) = 0, is a
concatenation for which A.7 holds. By NB 1, if ⊕ = ⊕f is a concatenation for which A.7
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holds, then setting κ̃ (t) = 1/f (1/t) for all t ∈ (0,∞), there exists Ẽ : X → R such that

pt (a | A) =
e−

Ẽ(a)
κ̃(t)∑

b∈A e
− Ẽ(b)
κ̃(t)

δa (A)

for all (t, a, A) ∈ (0,∞) × X × A. By point (i), there exist m > 0 and q ∈ R such that
Ẽ = mE + q and κ̃ = mκ; therefore, for all t ∈ (0,∞),

1

f (1/t)
= κ̃ (t) = mκ (t) =

m

φ (1/t)

hence f = φ/m on (0,∞), and f (0) = 0 = φ (0) /m by Theorem 6. Finally, f = φ/m implies
⊕f = ⊕φ, concluding the proof of (ii). �

Proof of Theorem 1 If p is a random state function that satisfies A.1–A.5 and A.6, then it
also satisfies A.7 with respect to ⊕f where f (t) = t/k and k is the Boltzmann constant. By
NB 1 of the previous proof, setting κ (t) = 1/f (1/t) for all t ∈ (0,∞), it follows κ (t) = kt
and there exists E : X → R such that

pt (a | A) =
e−

E(a)
kt∑

b∈A e
−E(b)

kt

δa (A)

for all (t, a, A) ∈ (0,∞)×X ×A. The converse is routine.
As to uniqueness of the representation, by point (i) of Theorem 2, if Ẽ : X → R, and

κ̃ (t) = kt, also represent p as in (1), then there exist m > 0 and q ∈ R such that Ẽ = mE+q
and κ̃ = mκ, but this means kt = mkt for all t > 0, that is m = 1. Again, the converse is
routine. �

Proof of Proposition 3 (ii) is equivalent to (i). There exists t ∈ (0,∞) such that (3) holds
if and only if

∃t ∈ (0,∞) : pαt (αa+ (1− α) b, b) ≥ pt (a, b)

⇐⇒ ∃t ∈ (0,∞) : rαt (αa+ (1− α) b, b) ≥ rt (a, b)

⇐⇒ ∃t ∈ (0,∞) : rαt (b, αa+ (1− α) b) ≤ rt (b, a)

⇐⇒ ∃t ∈ (0,∞) : e
1
kαt

[E(αa+(1−α)b)−E(b)] ≤ e
1
kt

[E(a)−E(b)]

⇐⇒ E (αa+ (1− α) b) ≤ αE (a) + (1− α)E (b)

for all (a, b, α) ∈ X ×X × (0, 1).
(i) implies (iii). Given any s ∈ (0,∞), A ∈ A, b ∈ A, and η > 1,

ps

(
b

∣∣∣∣ 1

η
A+

(
1− 1

η

)
b

)
=

1∑
a∈A e

− 1
ks [E( 1

η
a+(1− 1

η )b)−E(b)]

but convexity of E implies E ((1/η) a+ (1− (1/η)) b)− E (b) ≤ (1/η) (E (a)− E (b)) hence

− 1

ks
[E ((1/η) a+ (1− (1/η)) b)− E (b)] ≥ − 1

kηs
[E (a)− E (b)]

for all a ∈ A, and ps (b | (1/η)A+ (1− (1/η)) b) ≤ pηs (b | A).
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(iii) implies (iv). Trivial.
(iv) implies (i). To prove convexity, it is sufficient to check that, given any α ∈ (0, 1),

E (αx+ (1− α) y) ≤ αE (x) + (1− α)E (y) (14)

for all x, y ∈ X such that E (y) ≥ E (x).9 Now, arbitrarily choose s ∈ (0,∞). If E (y) ≥
E (x), then y ∈ arg mina∈{x,y} ps/α (a | {x, y}), then (5), with η = 1/α, yields

ps (y | α {x, y}+ (1− α) y) ≤ ps/α (y | {x, y})
=⇒ rs (y, αx+ (1− α) y) ≤ rs/α (y, x)

=⇒ 1

ks
[E (αx+ (1− α) y)− E (y)] ≤ α

ks
[E (x)− E (y)]

for all α ∈ (0, 1), which implies (14)). �

Appendix B. Additional axiomatizations

This appendix presents the proofs of Theorem 4 and Corollary 5.

The proof of Theorem 4 is quite involved. We start with some preliminary results of
independent interest.

B.1. Identification of the energy and noise functions in Theorem 2. First observe
that when p is uniform the axioms of Theorem 2 hold, E is constant, and κ is undetermined.
Otherwise, we have the following result.

Proposition 8. Let p be a random state function that satisfies pv̄
(
c̄, d̄
)
> pv̄

(
d̄, c̄
)

for some

v̄ ∈ (0,∞) and c̄, d̄ ∈ X. If A.1–A.5 are not violated, then A.7 is satisfied if and only if
representation (2) holds with

Ẽ (a) = ln rv̄ (c̄, a) and κ̃ (t) =
ln rv̄

(
c̄, d̄
)

ln rt
(
c̄, d̄
)

for all (t, a) ∈ (0,∞)×X.

This result shows how the energy and noise functions can be directly derived from the
random state function (provided of course A.1–A.5, and A.7 are not violated).

Proof of Proposition 8 If A.7 is satisfied, by Theorem 2 there exist a function E : X → R
and an increasing bijection κ : (0,∞)→ (0,∞) such that p is represented by (2). Moreover,
pv̄
(
c̄, d̄
)
> pv̄

(
d̄, c̄
)

implies E
(
d̄
)
> E (c̄).

For all a ∈ A,

rv̄ (a, c̄) = exp

(
− 1

κ (v̄)
[E (a)− E (c̄)]

)
1

κ (v̄)
[E (a)− E (c̄)] = − ln rv̄ (a, c̄) = ln rv̄ (c̄, a)

9In fact, if E (x̄) > E (ȳ), (14) yields, for any β ∈ (0, 1), E (βȳ + (1− β) x̄) ≤ βE (ȳ) + (1− β)E (x̄).



18SIMONE CERREIA-VIOGLIO, FABIO MACCHERONI, MASSIMO MARINACCI, AND ALDO RUSTICHINI

hence ln rv̄ (c̄, a) = mE (a) + q, with m = 1/κ (v̄) and q = −E (c̄) /κ (v̄). For all t ∈ (0,∞),

ln rv̄
(
c̄, d̄
)

ln rt
(
c̄, d̄
) =

− 1
κ(v̄)

[
E (c̄)− E

(
d̄
)]

− 1
κ(t)

[
E (c̄)− E

(
d̄
)] =

1

κ (v̄)
κ (t) = mκ (t)

Point (i) of Theorem 2 implies that (2) holds, with Ẽ (·) = mE (·) + q = ln rv̄ (c̄, ·) and
κ̃ (·) = mκ (·) = ln rv̄

(
c̄, d̄
)
/ ln r·

(
c̄, d̄
)
.

The converse follows from Theorem 2 too: if representation (2) holds,10 then A.7 is
satisfied. �

B.2. Testability of Axioms A.4 and A.7. Axioms A.4 and A.7 are difficult to test: The
first requires observation of the system at the limit temperature 0 for all a, b ∈ X. The second
contains an existential quantifier. Axioms A.8 and A.9 do not present these drawbacks.

The next result permits to replace A.4 and A.7 in Theorem 2 with A.8 and A.9 used in
Theorem 4.

Proposition 9. Let p : (0,∞) × X × A → R+ be a random state function that satisfies
A.1–A.3, and A.5. Then, p satisfies A.4 and A.7 if and only if it satisfies A.8 and A.9.

The next Lemma uses the notation of Lemma 7.

Lemma 10. If p : (0,∞)×X ×A → R+ is a random state function that satisfies A.1, A.3,
A.5, and A.8, then, given any a, b ∈ X:

(i) a � b if and only if ϕa,b is an increasing bijection from (0,∞) to (1,∞);
(ii) a ∼ b if and only if ϕa,b is constantly equal to 1;

(iii) a ≺ b if and only if ϕa,b is a decreasing bijection from (0,∞) to (0, 1).

In particular, all the above monotonicity and bijectivity properties are maintained when
ϕa,b is extended to [0,∞) by setting ϕa,b (0) = 1.

Proof By the arguments adopted in the proof of Lemma 7, we have that, given any a, b ∈ X,
the function

ϕa,b : (0,∞) → (0,∞)
t 7→ r1/t (a, b)

is well defined, and continuous.

Fact 1. If rτ (a, b) > 1 for some τ ∈ (0,∞), then

r (a, b) : (0,∞) → (0,∞)
t 7→ rt (a, b)

is strictly decreasing and everywhere strictly greater than 1, that is, ϕa,b is strictly increasing
and everywhere strictly greater than 1.

If rτ (a, b) < 1 for some τ ∈ (0,∞), then

r (a, b) : (0,∞) → (0,∞)
t 7→ rt (a, b)

10At the risk of being pedantic, the sentence “representation (2) holds for some Ẽ and κ̃ ” means that

Ẽ : X → R is a function, κ̃ : (0,∞) → (0,∞) is an increasing bijection, and equation (2) holds for all
(t, a, A) ∈ (0,∞)×X ×A.
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is strictly increasing and everywhere strictly smaller than 1, that is, ϕa,b is strictly decreasing
and everywhere strictly smaller than 1.

Proof Let rτ (a, b) > 1. If rt (a, b) ≤ 1 for some t > τ , by A.8 it would follow rτ (a, b) ≤
rt (a, b) ≤ 1, a contradiction. Then rt (a, b) > 1, for all t ∈ [τ,∞). Now, given any s ∈ (0,∞),
taking t ∈ [τ,∞) such that s < t, by A.8 it follows rs (a, b) > rt (a, b) > 1. Therefore,
rt (a, b) > 1, for all t ∈ (0,∞). But then, given any s < t in (0,∞), since rt (a, b) > 1, by A.8
it follows rs (a, b) > rt (a, b), and

r (a, b) : (0,∞) → (0,∞)
t 7→ rt (a, b)

is strictly decreasing, then ϕa,b is strictly increasing.
Let rτ (a, b) < 1, then

rτ (b, a) =
1

rτ (a, b)
> 1

hence r (b, a) is strictly decreasing, r (a, b) strictly increasing, ϕa,b strictly decreasing. �

(i) If a � b, again by arguments of the proof of Lemma 7, it follows that

lim
t→∞

r1/t (a, b) = lim
t→∞

ϕa,b (t) =∞

then rτ (a, b) > 1 for some τ ∈ (0,∞), and ϕa,b is strictly increasing. Finally, by A.8,

lim
t→0

ϕa,b (t) = lim
t→∞

rt (a, b) = 1

and so ϕa,b is an increasing bijection from (0,∞) to (1,∞).
Conversely, if ϕa,b is an increasing bijection from (0,∞) to (1,∞), then

r0 (a, b) = lim
t→0

rt (a, b) = lim
t→∞

r1/t (a, b) = lim
t→∞

ϕa,b (t) =∞

But then it must be the case that a 6= b, and the above limit corresponds to

lim
t→0

1− pt (b, a)

pt (b, a)
=∞

thus p0 (b, a) = 0 and p0 (a, b) = 1. Then, by definition of %, a � b.
(ii) If a ∼ b and a = b, then obviously, ϕa,b (t) = p1/t (a, b) /p1/t (b, a) = 1, irrespective of

t ∈ (0,∞). Else if a ∼ b and a 6= b, by point (i) if Lemma 7 we have that p0 (a, b) = p0 (b, a),
and so

lim
t→∞

ϕa,b (t) = lim
t→∞

p1/t (a, b)

p1/t (b, a)
= lim

t→0

pt (a, b)

pt (b, a)
=
p0 (a, b)

p0 (b, a)
= 1 (15)

If ϕa,b (t̄) > 1 for some t̄ ∈ (0,∞), then rτ (a, b) > 1 for some τ ∈ (0,∞) (say, τ = 1/t̄),
then ϕa,b is strictly increasing, which contradicts (15), because it implies limt→∞ ϕa,b (t) ≥
ϕa,b (t̄) > 1. If ϕa,b (t̄) < 1 for some t̄ ∈ (0,∞), then rτ (a, b) < 1 for some τ ∈ (0,∞) (say,
τ = 1/t̄), then ϕa,b is strictly decreasing, which contradicts (15). Therefore, ϕa,b (t) = 1,
irrespective of t ∈ (0,∞).

Conversely, if ϕa,b (t) ≡ 1, then rt (a, b) ≡ 1, hence pt (a, b) ≡ pt (b, a), and p0 (a, b) =
p0 (b, a), thus a ∼ b.
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(iii) a ≺ b iff b � a iff ϕb,a is an increasing bijection from (0,∞) to (1,∞) iff ϕa,b = 1/ϕb,a
is a decreasing bijection from (0,∞) to (0, 1). �

By the previous arguments, and since, by Lemma 7, % is a trichotomy, we have the
following:

Corollary 11. If p : (0,∞) × X × A → R+ is a random state function that satisfies A.1,
A.3, A.5, and A.8, then, given any a, b ∈ X:

(i) a � b if and only if rt (a, b) > 1 for some/all t ∈ (0,∞);
(ii) a ∼ b if and only if rt (a, b) = 1 for some/all t ∈ (0,∞);

(iii) a ≺ b if and only if rt (a, b) < 1 for some/all t ∈ (0,∞).

Proof of Proposition 9 Assume p is not uniform (the uniform case is left to the reader).
If p satisfies A.4 and A.7, then using the representation provided by Theorem 2, it is routine
to show that it satisfies A.8 and A.9. We only prove the converse.

As to A.4, let (t, a, b) ∈ (0,∞) × X2 be such that pt (a, b) > pt (b, a). Then a 6= b and
rt (a, b) > 1, by the previous results, ϕa,b (t) = r1/t (a, b) is an increasing bijection from (0,∞)
to (1,∞), then

lim
s→0

ps (a, b)

1− ps (a, b)
= lim

s→0
rs (a, b) = lim

t→∞
ϕa,b (t) =∞

thus p0 (a, b) = 1 > 0 = p0 (b, a). As wanted.
As to A.7. Given any a, b ∈ X, set ϕa,b (0) = 1 as in Lemma 10. Denote wt (a, b) =

lnϕa,b (t), for all (t, a, b) ∈ [0,∞)×X2. Arbitrarily choose â � b̂ ∈ X, so that ϕâ,b̂ : [0,∞)→
[1,∞) is an increasing bijection, and notice that the function

f (t) = lnϕâ,b̂ (t) = wt(â, b̂) ∀t ∈ [0,∞) (16)

is an increasing bijection onto [0,∞), so f (0) = 0 and f|(0,∞) is an increasing bijection onto
(0,∞). The next steps verify that p satisfies A.7 with respect to ⊕f .

Note that, given any t, s ∈ (0,∞), we have

wf−1(f(t)+f(s))︸ ︷︷ ︸
τ

(â, b̂) = f

f−1 (f (t) + f (s))︸ ︷︷ ︸
τ

 (17)

= f (t) + f (s) = wt(â, b̂) + ws(â, b̂) (18)

Next we show that (17) and A.9 imply

wf−1(f(t)+f(s)) (a, b) = wt (a, b) + ws (a, b) (19)

for all a, b ∈ X and all t, s ∈ (0,∞). Given any c, d, x, y ∈ X and any s, t, τ ∈ (0,∞) such that
wτ (c, d) > 0 and wτ (x, y) > 0, we have r1/τ (c, d) = ewτ (c,d) > 1 and r1/τ (x, y) = ewτ (x,y) > 1,
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hence, by A.9,

r1/τ (c, d) > r1/t (c, d) r1/s (c, d)

⇐⇒ r1/τ (x, y) > r1/t (x, y) r1/s (x, y)

wt (c, d) > wt (c, d) + ws (c, d)

⇐⇒ wτ (x, y) > wt (x, y) + ws (x, y)

(the roles of (c, d) and (x, y) are symmetric in the axiom). By Corollary 11, if wt̂ (c, d) > 0
and wŝ (x, y) > 0 for some t̂, ŝ ∈ (0,∞), then wτ (c, d) > 0 and wτ (x, y) > 0 for all τ ∈ (0,∞).
Therefore, given any c, d, x, y ∈ X, if wt̂ (c, d) > 0 and wŝ (x, y) > 0 for some t̂, ŝ ∈ (0,∞),
then, given any s, t, τ ∈ (0,∞), it follows

wτ (c, d) ≤ wt (c, d) + ws (c, d) (20)

⇐⇒ wτ (x, y) ≤ wt (x, y) + ws (x, y) (21)

Moreover, as we argued for (16), since c � d and x � y, the functions h (t) = wt(c, d) and
g (t) = wt(x, y) are increasing bijections from (0,∞) to (0,∞) and (20) implies

τ ≤ h−1 (h (t) + h (s)) ⇐⇒ τ ≤ g−1 (g (t) + g (s))

for all s, t, τ ∈ (0,∞). But then, h−1 (h (t) + h (s)) = g−1 (g (t) + g (s)) for all s, t ∈ (0,∞).
Hence, for all s, t, τ ∈ (0,∞),

τ = h−1 (h (t) + h (s)) ⇐⇒ τ = g−1 (g (t) + g (s))

that is, h (τ) = h (t) + h (s) ⇐⇒ g (τ) = g (t) + g (s).
Therefore:

• if wt̂ (c, d) > 0 and wŝ (x, y) > 0 for some t̂, ŝ ∈ (0,∞), then, given any s, t, τ ∈ (0,∞),
it holds

wτ (c, d) = wt (c, d) + ws (c, d)

⇐⇒ wτ (x, y) = wt (x, y) + ws (x, y)

• if wt̂ (c, d) > 0 and wŝ (x, y) < 0 for some t̂, ŝ ∈ (0,∞), then, wŝ (y, x) > 0 and, given
any s, t, τ ∈ (0,∞), it holds

wτ (c, d) = wt (c, d) + ws (c, d)

⇐⇒ wτ (y, x) = wt (y, x) + ws (y, x)

⇐⇒ −wτ (y, x) = −wt (y, x)− ws (y, x)

⇐⇒ wτ (x, y) = wt (x, y) + ws (x, y)

• if wt̂ (c, d) > 0 and wŝ (x, y) = 0 for some t̂, ŝ ∈ (0,∞), then, ϕx,y is constantly equal
to 1, and wτ (x, y) = wt (x, y) = ws (x, y) = 0, for all s, t, τ ∈ (0,∞), thus, given any
s, t, τ ∈ (0,∞), it holds

wτ (c, d) = wt (c, d) + ws (c, d)

=⇒ wτ (x, y) = wt (x, y) + ws (x, y)
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Summing up, since â � b̂, then, given any s, t, τ ∈ (0,∞),

wτ (â, b̂) = wt(â, b̂) + ws(â, b̂) (22)

=⇒ wτ (x, y) = wt (x, y) + ws (x, y) (23)

for all x, y ∈ X. Now by (17)

wf−1(f(t)+f(s))︸ ︷︷ ︸
τ

(â, b̂) = wt(â, b̂) + ws(â, b̂) ∀t, s ∈ (0,∞)

and so (22) implies

wf−1(f(t)+f(s))︸ ︷︷ ︸
τ

(x, y) = wt (x, y) + ws (x, y) ∀t, s ∈ (0,∞)

and for all x, y ∈ X. Finally, for all x, y ∈ X and all t, s ∈ (0,∞)

r 1
t⊕f s

(x, y) = ϕx,y (t⊕f s) = ϕx,y
(
f−1 (f (t) + f (s))

)
= ewf−1(f(t)+f(s))(x,y) = ewt(x,y)ews(x,y)

= ϕx,y (t)ϕx,y (s) = r 1
t

(x, y) r 1
s

(x, y)

and A.7 holds. �

B.3. Proof of Theorem 4. Theorem 2 and Proposition 9 yield the equivalence between the
axioms and representation (6).

• If p is uniform, by Theorem 2, then E is constant, and κ is undetermined.
• Else p is not uniform, then it cannot be the case that pv (c, d) = pv (d, c) for all
v ∈ (0,∞) and all c 6= d in X. Per contra, assume this is the case, then since A.2
holds, for all A ∈ A, all c, d ∈ A, and all v ∈ (0,∞) it follows

pv (c | A) = pv (c, d) pv ({c, d} | A) = pv (d, c) pv ({d, c} | A) = pv (d | A)

yielding uniformity of p, a contradiction. Then, pv̄
(
c̄, d̄
)
> pv̄

(
d̄, c̄
)

for some v̄ ∈
(0,∞) and c̄, d̄ ∈ X, and so Proposition 8 delivers the explicit expressions (7) of the
energy and noise functions. �

B.4. Proof of Corollary 5. Arbitrarily choose c ∈ X. By A.1, A.2, and Theorem 3 of Luce
[11], it follows that

pt (a | A) =
rt (a, c)∑
b∈A rt (b, c)

δa (A) ∀ (t, a, A) ∈ (0,∞)×X ×A

Now set vt (a) = ln rt (a, c) for all (t, a) ∈ (0,∞)×X, so that

pt (a | A) =
evt(a)∑
b∈A e

vt(b)
δa (A) ∀ (t, a, A) ∈ (0,∞)×X ×A
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Arbitrarily choose s ∈ (0,∞), then A.10 implies

t ln rt (a, c) = s ln rs (a, c) ∀ (t, a) ∈ (0,∞)×X

vt (a) =
svs (a)

t
∀ (t, a) ∈ (0,∞)×X

Recall s is fixed and define, for all a ∈ A, E (a) by

svs (a) = −E (a)

k

that is,

E (a) = −ksvs (a) = −ks ln rs (a, c) = ks ln rs (c, a)

to obtain

vt (a) =
svs (a)

t
= −E (a)

kt
∀ (t, a) ∈ (0,∞)×X

The rest is standard verification. Also note that the same proof continues to hold when
(0,∞) is replaced by any set T of positive temperatures. �

Appendix C. A Violation of Axiom A.2

This appendix presents a counterexample to the Conditioning axiom.

Suppose balls are falling from a random abscissa and ordinate t in the “vase” below. The
set of states is the set of local minima a < b < c.

When t is not too extreme it is reasonable to expect pt (a | {a, b, c}) /pt (c | {a, b, c}) ≈ 3/5
because most balls will stop in the “valley” in which they fall. When state b is excluded by
“filling” the vase,
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then, it will most likely be the case that pt (a | {a, c}) /pt (c | {a, c}) ≈ 5/5 = 1 which clearly
violates Conditioning.
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